cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 103 results. Next

A182797 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the k X k X k triangular grid.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 24, 5, 0, 0, 6, 192, 60, 6, 0, 0, 6, 2112, 1620, 120, 7, 0, 0, 6, 32640, 98820, 7680, 210, 8, 0, 0, 6, 718080, 13638780, 1574400, 26250, 336, 9, 0, 0, 6, 22665216, 4260983940, 1034019840, 13676250, 72576, 504, 10
Offset: 1

Views

Author

Alois P. Heinz, Dec 02 2010

Keywords

Comments

The k X k X k triangular grid has k rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(k) vertices and 3*A000217(k-1) edges altogether.
The coefficients of the chromatic polynomials for the column sequences are given by the rows of A193283. - Georg Fischer, Jul 31 2023

Examples

			Square array A(n,k) begins:
  1,   0,    0,       0,          0,             0,  ...
  2,   0,    0,       0,          0,             0,  ...
  3,   6,    6,       6,          6,             6,  ...
  4,  24,  192,    2112,      32640,        718080,  ...
  5,  60, 1620,   98820,   13638780,    4260983940,  ...
  6, 120, 7680, 1574400, 1034019840, 2175789895680,  ...
		

Crossrefs

Rows n=1-10 give: A000007(k-1), A000038(k-1), A040006(k-1), A182798, A153467*4, A153468*5, A153469*6, A153470*7, A153471*8, A153472*9, A153473*10.

A045619 Numbers that are the products of 2 or more consecutive integers.

Original entry on oeis.org

0, 2, 6, 12, 20, 24, 30, 42, 56, 60, 72, 90, 110, 120, 132, 156, 182, 210, 240, 272, 306, 336, 342, 360, 380, 420, 462, 504, 506, 552, 600, 650, 702, 720, 756, 812, 840, 870, 930, 990, 992, 1056, 1122, 1190, 1260, 1320, 1332, 1406, 1482, 1560, 1640, 1680
Offset: 1

Views

Author

Keywords

Comments

Erdős and Selfridge proved that, apart from the first term, these are never perfect powers (A001597). - T. D. Noe, Oct 13 2002
Numbers of the form x!/y! with y+1 < x. - Reinhard Zumkeller, Feb 20 2008

Examples

			30 is in the sequence as 30 = 5*6 = 5*(5+1). - _David A. Corneth_, Oct 19 2021
		

Crossrefs

Programs

  • Mathematica
    maxNum = 1700; lst = {}; For[i = 1, i <= Sqrt[maxNum], i++, j = i + 1; prod = i*j; While[prod < maxNum, AppendTo[lst, prod]; j++; prod *= j]]; lst = Union[lst]
  • PARI
    list(lim)=my(v=List([0]),P,k=1,t); while(1, k++; P=binomial('n+k-1,k)*k!; if(subst(P,'n,1)>lim, break); for(n=1,lim, t=eval(P); if(t>lim, next(2)); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Nov 16 2021
  • Python
    import heapq
    from sympy import sieve
    def aupton(terms, verbose=False):
        p = 6; h = [(p, 2, 3)]; nextcount = 4; aset = {0, 2}
        while len(aset) < terms:
            (v, s, l) = heapq.heappop(h)
            aset.add(v)
            if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i]")
            if v >= p:
                p *= nextcount
                heapq.heappush(h, (p, 2, nextcount))
                nextcount += 1
            v //= s; s += 1; l += 1; v *= l
            heapq.heappush(h, (v, s, l))
        return sorted(aset)
    print(aupton(52)) # Michael S. Branicky, Oct 19 2021
    

Formula

a(n) = A000142(A137911(n))/A000142(A137912(n)-1) for n>1. - Reinhard Zumkeller, Feb 27 2008
Since the oblong numbers (A002378) have relative density of 100%, we have a(n) ~ (n-1) n ~ n^2. - Daniel Forgues, Mar 26 2012
a(n) = n^2 - 2*n^(5/3) + O(n^(4/3)). - Charles R Greathouse IV, Aug 27 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2000
More terms from Reinhard Zumkeller, Feb 27 2008
Incorrect program removed by David A. Corneth, Oct 19 2021

A052787 Product of 5 consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 720, 2520, 6720, 15120, 30240, 55440, 95040, 154440, 240240, 360360, 524160, 742560, 1028160, 1395360, 1860480, 2441880, 3160080, 4037880, 5100480, 6375600, 7893600, 9687600, 11793600, 14250600, 17100720, 20389320, 24165120, 28480320, 33390720
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Appears in Harriot along with the formula (for a different offset) a(n) = n^5 + 10n^4 + 35n^3 + 50n^2 + 24n, see links. - Charles R Greathouse IV, Oct 22 2014

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n-2)*(n-3)*(n-4): n in [0..35]]; // Vincenzo Librandi, May 26 2011
    
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(numbperm (n,5), n=0..31); # Zerinvary Lajos, Apr 26 2007
    G(x):=x^5*exp(x): f[0]:=G(x): for n from 1 to 31 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..31); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Times@@@(Partition[Range[-4,35],5,1])  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    a(n)=120*binomial(n,5) \\ Charles R Greathouse IV, Nov 20 2011

Formula

a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)=n!/(n-5)!. [Corrected by Philippe Deléham, Dec 12 2003]
a(n) = 120*A000389(n) = 4*A054559(n).
E.g.f.: x^5*exp(x).
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, (-1-n)*a(n)+(-4+n)*a(n+1), a(5)=120}.
O.g.f.: 120*x^5/(-1+x)^6. - R. J. Mathar, Nov 16 2007
For n>5: a(n) = A173333(n,n-5). - Reinhard Zumkeller, Feb 19 2010
a(n) = a(n-1) + 5*A052762(n). - J. M. Bergot, May 30 2012
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=5} 1/a(n) = 1/96.
Sum_{n>=5} (-1)^(n+1)/a(n) = 2*log(2)/3 - 131/288. (End)

Extensions

More terms from Henry Bottomley, Mar 20 2000

A055112 a(n) = n*(n+1)*(2*n+1).

Original entry on oeis.org

0, 6, 30, 84, 180, 330, 546, 840, 1224, 1710, 2310, 3036, 3900, 4914, 6090, 7440, 8976, 10710, 12654, 14820, 17220, 19866, 22770, 25944, 29400, 33150, 37206, 41580, 46284, 51330, 56730, 62496, 68640, 75174, 82110, 89460, 97236, 105450
Offset: 0

Views

Author

Henry Bottomley, Jun 15 2000

Keywords

Comments

Original name: Areas of Pythagorean triangles (X, Y, Z = Y + 1) with X^2 + Y^2 = Z^2.
a(n) is the set of possible y values for 4*x^3 + x^2 = y^2 with the x values being A002378(n). - Gary Detlefs, Feb 22 2010
This sequence is related to A028896 by a(n) = n*A028896(n) - Sum_{i = 0..n-1} A028896(i) and this is the case d = 3 in the identity n*(d*(d+1)*n*(n+1)/4) - Sum_{i = 0..n-1} d*(d+1)*i*(i+1)/4 = d*(d+1)*n*(n+1)*(2*n+1)/12. - Bruno Berselli, Mar 31 2012
Also sums of rows of natural numbers (cf. A001477) seen as triangle with an odd numbers of terms per row, see example. - Reinhard Zumkeller, Jan 24 2013
Without mentioning the connection to Pythagorean triangles, Bolker (1967) gives it as an exercise to prove that these numbers are always divisible by 6. This is easy to prove from the formula that he gives, n(n - 1)(2n - 1): obviously either n or (n - 1) must be even; then, if n is congruent to 2 mod 3 it means that (2n - 1) is a multiple of 3, otherwise either n or (n - 1) is a multiple of 3; thus both prime divisors of 6 are accounted for in a(n). - Alonso del Arte, Oct 13 2013
a(n) = n*(n+1)*(n+(n+1)) is the product of two consecutive integers multiplied by the sum of those two consecutive integers. - Charles Kusniec, Sep 04 2022

Examples

			.  n   A001477(n) as triangle with row lengths = 2*n+1   Row sums = a(n)
.  0                         0                                  0
.  1                      1  2  3                               6
.  2                   4  5  6  7  8                           30
.  3                9 10 11 12 13 14 15                        84
.  4            16 17 18 19 20 21 22 23 24                    180
.  5         25 26 27 28 29 30 31 32 33 34 35                 330
.  6      36 37 38 39 40 41 42 43 44 45 46 47 48              546
.  7   49 50 51 52 53 54 55 56 57 58 59 60 61 62 63           840 .
- _Reinhard Zumkeller_, Jan 24 2013
		

References

  • Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.5.

Crossrefs

Cf. A005408 (X values), A046092 (Y values), A001844 (Z values), A002939 (perimeter), A033581.
Similar sequences are listed in A316224.

Programs

Formula

a(n) = n*(n+1)*(2*n+1).
G.f.: 6*x*(1+x)/(1-x)^4. - Bruno Berselli, Mar 31 2012
From Benoit Cloitre, Apr 30 2002: (Start)
a(n) = 6*A000330(n) = A007531(2*n)/4 = 3*A000292(2*n-1)/2 = A005408(n)*A046092(n)/2 = A005408(n)*(A001844(n)-1)/2.
Sum_{n > 0} 1/a(n) = 3 - 4*log(2). (End)
a(n) = Sum_{i = 1..n} A033581(i). - Jonathan Vos Post, Mar 15 2006
a(n) = A000217(2*n)*A000217(2*n+1)/(2*n+1). - Charlie Marion, Feb 17 2012
a(n) = Sum_{i = 1..2*n + 1} (n^2 + (i-1)). - Charlie Marion, Sep 14 2012
Sum_{n >= 1} (-1)^(n+1)/a(n) = Pi - 3, due to Nilakantha, circa 1500. See Roy p. 304. - Peter Bala, Feb 19 2015
a(n) = A002378(n) * (2n+1). - Bruce J. Nicholson, Aug 31 2017
a(n) = Sum_{k=n^2..(n+1)^2-1} k. - Darío Clavijo, Jan 31 2025
E.g.f.: exp(x)*x*(6 + 9*x + 2*x^2). - Stefano Spezia, Feb 02 2025
a(n) = A005898(n) - A005408(n) = A083374(n+1) - A083374(n). - J.S. Seneschal, Jul 08 2025

A054602 a(n) = Sum_{d|3} phi(d)*n^(3/d).

Original entry on oeis.org

0, 3, 12, 33, 72, 135, 228, 357, 528, 747, 1020, 1353, 1752, 2223, 2772, 3405, 4128, 4947, 5868, 6897, 8040, 9303, 10692, 12213, 13872, 15675, 17628, 19737, 22008, 24447, 27060, 29853, 32832, 36003, 39372, 42945, 46728, 50727, 54948, 59397, 64080, 69003, 74172
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Every term is the product plus the sum of 3 consecutive numbers. - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Continued fraction [n,n,n] = (n^2+1)/(n^3+2n) = (n^2+1)/a(n); e.g., [7,7,7] = 50/357. - Gary W. Adamson, Jul 15 2010

Crossrefs

Programs

Formula

a(n) = n^3 + 2*n = A073133(n,3). - Henry Bottomley, Jul 16 2002
G.f.: 3*x*(x^2+1)/(x-1)^4. - Colin Barker, Dec 21 2012
a(n) = ((n-1)^3 + n^3 + (n+1)^3)/3. - David Morales Marciel, Aug 28 2015
From Bernard Schott, Nov 28 2021: (Start)
a(n) = A007531(n+1) + A008585(n) (see 1st comment).
a(n) = 3*A006527(n). (End)
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: exp(x)*x*(3 + 3*x + x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A292022(n)/4. (End)

A128960 a(n) = (n^3 - n)*2^n.

Original entry on oeis.org

0, 24, 192, 960, 3840, 13440, 43008, 129024, 368640, 1013760, 2703360, 7028736, 17891328, 44728320, 110100480, 267386880, 641728512, 1524105216, 3586129920, 8367636480, 19377684480, 44568674304, 101871255552, 231525580800, 523449139200, 1177760563200, 2638183661568
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*2^n: n in [1..25]]; /* or */ I:=[0,24,192,960]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Mathematica
    CoefficientList[Series[24 x/(1 - 2 x)^4, {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -24, 32, -16}, {0, 24, 192, 960}, 30] (* Vincenzo Librandi, Feb 12 2013 *)
  • PARI
    a(n)=(n^3-n)<Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 24*x^2/(1-2*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Vincenzo Librandi, Feb 12 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A000079(n).
Sum_{n>=2} 1/a(n) = (2*log(2)-1)/8.
Sum_{n>=2} (-1)^n/a(n) = (3/2)^2*log(3/2) - 7/8. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008

A265609 Array read by ascending antidiagonals: A(n,k) the rising factorial, also known as Pochhammer symbol, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
Offset: 0

Views

Author

Peter Luschny, Dec 19 2015

Keywords

Comments

The Pochhammer function is defined P(x,n) = x*(x+1)*...*(x+n-1). By convention P(0,0) = 1.
From Antti Karttunen, Dec 19 2015: (Start)
Apart from the initial row of zeros, if we discard the leftmost column and divide the rest of terms A(n,k) with (n+k) [where k is now the once-decremented column index of the new, shifted position] we get the same array back. See the given recursive formula.
When the numbers in array are viewed in factorial base (A007623), certain repeating patterns can be discerned, at least in a few of the topmost rows. See comment in A001710 and arrays A265890, A265892. (End)
A(n,k) is the k-th moment (about 0) of a gamma (Erlang) distribution with shape parameter n and rate parameter 1. - Geoffrey Critzer, Dec 24 2018

Examples

			Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as:
A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
Array starts:
n\k [0  1   2    3     4      5        6         7          8]
--------------------------------------------------------------
[0] [1, 0,  0,   0,    0,     0,       0,        0,         0]
[1] [1, 1,  2,   6,   24,   120,     720,     5040,     40320]
[2] [1, 2,  6,  24,  120,   720,    5040,    40320,    362880]
[3] [1, 3, 12,  60,  360,  2520,   20160,   181440,   1814400]
[4] [1, 4, 20, 120,  840,  6720,   60480,   604800,   6652800]
[5] [1, 5, 30, 210, 1680, 15120,  151200,  1663200,  19958400]
[6] [1, 6, 42, 336, 3024, 30240,  332640,  3991680,  51891840]
[7] [1, 7, 56, 504, 5040, 55440,  665280,  8648640, 121080960]
[8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200]
.
Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are:
   [0] 1;
   [1] 1, 0;
   [2] 1, 1,  0;
   [3] 1, 2,  2,   0;
   [4] 1, 3,  6,   6,    0;
   [5] 1, 4, 12,  24,   24,    0;
   [6] 1, 5, 20,  60,  120,  120,     0;
   [7] 1, 6, 30, 120,  360,  720,   720,     0;
   [8] 1, 7, 42, 210,  840, 2520,  5040,  5040,     0;
   [9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 355.

Crossrefs

Triangle giving terms only up to column k=n: A124320.
Row 0: A000007, row 1: A000142, row 3: A001710 (from k=1 onward, shifted two terms left).
Column 0: A000012, column 1: A001477, column 2: A002378, columns 3-7: A007531, A052762, A052787, A053625, A159083 (shifted 2 .. 6 terms left respectively, i.e. without the extra initial zeros), column 8: A239035.
Row sums of the triangle: A000522.
A(n, n) = A000407(n-1) for n>0.
2^n*A(1/2,n) = A001147(n).
Cf. also A007623, A008279 (falling factorial), A173333, A257505, A265890, A265892.

Programs

  • Maple
    for n from 0 to 8 do seq(pochhammer(n,k), k=0..8) od;
  • Mathematica
    Table[Pochhammer[n, k], {n, 0, 8}, {k, 0, 8}]
  • Sage
    for n in (0..8): print([rising_factorial(n,k) for k in (0..8)])
    
  • Scheme
    (define (A265609 n) (A265609bi (A025581 n) (A002262 n)))
    (define (A265609bi row col) (if (zero? col) 1 (* (+ row col -1) (A265609bi row (- col 1)))))
    ;; Antti Karttunen, Dec 19 2015

Formula

A(n,k) = Gamma(n+k)/Gamma(n) for n > 0 and n^k for n=0.
A(n,k) = Sum_{j=0..k} n^j*S1(k,j), S1(n,k) the Stirling cycle numbers A132393(n,k).
A(n,k) = (k-1)!/(Sum_{j=0..k-1} (-1)^j*binomial(k-1, j)/(j+n)) for n >= 1, k >= 1.
A(n,k) = (n+k-1)*A(n,k-1) for k >= 1, A(n,0) = 1. - Antti Karttunen, Dec 19 2015
E.g.f. for row k: 1/(1-x)^k. - Geoffrey Critzer, Dec 24 2018
A(n, k) = FallingFactorial(n + k - 1, k). - Peter Luschny, Mar 22 2022
G.f. for row n as a continued fraction of Stieltjes type: 1/(1 - n*x/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - ... ))))))). See Wall, Chapter XVIII, equation 92.5. Cf. A226513. - Peter Bala, Aug 27 2023

A368437 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y| + |y-z| = 2n+1-k, where (x,y,z) is a permutation of three distinct numbers taken from {0,1,...,n}, for n >= 2, k >= 2.

Original entry on oeis.org

4, 2, 4, 4, 12, 4, 4, 4, 12, 14, 20, 6, 4, 4, 12, 12, 28, 24, 28, 8, 4, 4, 12, 12, 24, 30, 44, 34, 36, 10, 4, 4, 12, 12, 24, 24, 48, 48, 60, 44, 44, 12, 4, 4, 12, 12, 24, 24, 40, 50, 72, 66, 76, 54, 52, 14, 4, 4, 12, 12, 24, 24, 40, 40, 72, 76, 96, 84, 92
Offset: 1

Views

Author

Clark Kimberling, Dec 25 2023

Keywords

Comments

Row n consists of 2n even positive integers having sum A007531(n+2) = (n+2)!/(n-1)!. The limiting row, (4, 4, 12, 12, 24, 24, 40, 40, ...) consists of repeated terms of (A046092(n+1)) = (4, 12, 24, 40, ...).

Examples

			Taking n = 2, the permutations of {x,y,z} of {0,1,2} with sums |x-y| + |y-z| = 2n+1-k, for k = 2,3, are as follows:
012: |0-1| + |1-2| = 2
021: |0-2| + |2-1| = 3
102: |1-0| + |0-2| = 3
120: |1-2| + |2-0| = 3
201: |2-0| + |0-1| = 3
210: |2-1| + |1-0| = 2
so that row 1 of the array is (4,2), representing four 2s and two 3s.
First eight rows:
  4  2
  4  4  12   4
  4  4  12  14  20   6
  4  4  12  12  28  24  28   8
  4  4  12  12  24  30  44  34  36  10
  4  4  12  12  24  24  48  48  60  44  44  12
  4  4  12  12  24  24  40  50  72  66  76  54  52  14
  4  4  12  12  24  24  40  40  72  76  96  84  92  64  60  16
		

Crossrefs

Programs

  • Mathematica
    t[n_] := t[n] = Permutations[-1 + Range[n + 1], {3}];
    a[n_, k_] :=  Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == 2n+1-k &];
    u = Table[Length[a[n, k]], {n, 2, 15}, {k, 2, 2 n - 1}];
    v = Flatten[u] (* sequence *)
    Column[u]      (* array *)

A279019 Least possible number of diagonals of simple convex polyhedron with n faces.

Original entry on oeis.org

0, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450
Offset: 4

Views

Author

Vladimir Letsko, Dec 03 2016

Keywords

Comments

Obviously, a pyramid has no diagonals. Hence minimum of diagonals of an arbitrary convex polyhedron having n faces is equal to 0.
Minimum number of diagonals among simple convex polyhedra having n faces is obtained from a polyhedron with two triangular faces, n-4 quadrangular faces and two (n-1)-sided faces. A polyhedron having 3 triangular faces, 3 pentagonal faces and 1 hexagonal face gives another example of a simple convex polyhedron with the least possible number of diagonals for n = 7. A polyhedron having 4 triangular faces and 4 hexagonal faces gives a similar example for n = 8.
Essentially the same as A103505 and A002378. - R. J. Mathar, Dec 05 2016

Crossrefs

Programs

  • Mathematica
    Table[(n-4)(n-5),{n,4,60}] (* or *) LinearRecurrence[{3,-3,1},{0,0,2},60] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    concat(vector(2), Vec(2*x^6 / (1 - x)^3 + O(x^60))) \\ Colin Barker, Dec 05 2016

Formula

a(n) = n^2 - 9*n + 20 = (n-4)*(n-5).
G.f.: -2*x^6/(x-1)^3. - R. J. Mathar, Dec 05 2016
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6. - Colin Barker, Dec 05 2016
E.g.f.: exp(x)*(20 - 8*x + x^2) - x^3/3 - 3*x^2 - 12*x - 20. - Stefano Spezia, Nov 24 2019
From Amiram Eldar, Jul 09 2023: (Start)
Sum_{n>=6} 1/a(n) = 1.
Sum_{n>=6} (-1)^n/a(n) = 2*log(2) - 1. (End)

A268944 T(n,k)=Number of length-n 0..k arrays with no repeated value unequal to the previous repeated value plus one mod k+1.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 63, 14, 7, 36, 120, 220, 159, 22, 8, 49, 210, 565, 788, 396, 30, 9, 64, 336, 1206, 2615, 2780, 969, 46, 10, 81, 504, 2275, 6834, 11950, 9684, 2349, 62, 11, 100, 720, 3928, 15239, 38322, 54045, 33404, 5640, 94, 12, 121, 990
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....63....220.....565.....1206......2275......3928.......6345.......9730
.14...159....788....2615.....6834.....15239.....30344......55503......95030
.22...396...2780...11950....38322....101192....232696.....482490.....923150
.30...969...9684...54045...213042....667065...1773384....4171869....8925990
.46..2349..33404..242365..1175850...4370261..13443064...35904789...85953830
.62..5640.114292.1079240..6450402..28480312.101433800..307754712..824720230
.94.13455.388444.4777225.35200458.184750699.762265720.2628421029.7887767350

Examples

			Some solutions for n=6 k=4
..2. .4. .3. .1. .4. .4. .1. .2. .2. .0. .4. .2. .0. .3. .2. .3
..1. .4. .3. .0. .1. .0. .2. .3. .4. .0. .0. .1. .3. .0. .2. .3
..1. .2. .2. .1. .3. .4. .4. .0. .2. .2. .2. .2. .0. .2. .3. .1
..2. .4. .4. .3. .4. .0. .1. .2. .4. .1. .1. .3. .1. .0. .4. .2
..3. .0. .2. .0. .2. .1. .2. .3. .1. .0. .0. .0. .1. .3. .0. .0
..2. .3. .0. .0. .4. .4. .0. .4. .2. .2. .1. .2. .4. .3. .2. .4
		

Crossrefs

Column 1 is A027383.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3)
k=3: a(n) = 5*a(n-1) -2*a(n-2) -12*a(n-3)
k=4: a(n) = 7*a(n-1) -7*a(n-2) -20*a(n-3)
k=5: a(n) = 9*a(n-1) -14*a(n-2) -30*a(n-3)
k=6: a(n) = 11*a(n-1) -23*a(n-2) -42*a(n-3)
k=7: a(n) = 13*a(n-1) -34*a(n-2) -56*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + n + 1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 3*n^2 + 2*n - 1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 6*n^3 + 3*n^2 - n + 2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 10*n^4 + 4*n^3 + n^2 + 4*n - 3
Previous Showing 21-30 of 103 results. Next