A104698
Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(k, j)*binomial(n-j+1, k+1).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 19, 8, 1, 6, 25, 44, 33, 10, 1, 7, 36, 85, 96, 51, 12, 1, 8, 49, 146, 225, 180, 73, 14, 1, 9, 64, 231, 456, 501, 304, 99, 16, 1, 10, 81, 344, 833, 1182, 985, 476, 129, 18, 1, 11, 100, 489, 1408, 2471, 2668, 1765, 704, 163, 20, 1, 12
Offset: 0
The Riordan triangle T begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
----------------------------------------------------
0: 1
1: 2 1
2: 3 4 1
3: 4 9 6 1
4: 5 16 19 8 1
5: 6 25 44 33 10 1
6: 7 36 85 96 51 12 1
7: 8 49 146 225 180 73 14 1
8: 9 64 231 456 501 304 99 16 1
9: 10 81 344 833 1182 985 476 129 18 1
10: 11 100 489 1408 2471 2668 1765 704 163 20 1
... reformatted and extended by _Wolfdieter Lang_, May 13 2025
From _Wolfdieter Lang_, May 13 2025: (Start)
Zumkeller recurrence (adapted for offset [0,0]): 19 = T(4, 2) = T(2, 1) + T(3, 1) + T(3,3) = 4 + 9 + 6 = 19.
A-sequence recurrence: 19 = T(4, 2) = 1*T(3. 1) + 2*T(3. 2) - 2*T(3, 3) = 9 + 12 - 2 = 19.
Z-sequence recurrence: 5 = T(4, 0) = 2*T(3, 0) - 1*T(3, 1) + 2*T(3, 2) - 6*T(3, 3) = 8 - 9 + 12 + 6 = 5.
Boas-Buck recurrence: 19 = T(4, 2) = (1/2)*((2 + 0)*T(2, 2) + (2 + 2*2)*T(3, 2)) = (1/2)*(2 + 36) = 19. (End)
-
a104698 n k = a104698_tabl !! (n-1) !! (k-1)
a104698_row n = a104698_tabl !! (n-1)
a104698_tabl = [1] : [2,1] : f [1] [2,1] where
f us vs = ws : f vs ws where
ws = zipWith (+) ([0] ++ us ++ [0]) $
zipWith (+) ([1] ++ vs) (vs ++ [0])
-- Reinhard Zumkeller, Jul 17 2015
-
A104698 := proc(n, k) add(binomial(k, j)*binomial(n-j+1, n-k-j), j=0..n-k) ; end proc:
seq(seq(A104698(n, k), k=0..n), n=0..15); # R. J. Mathar, Sep 04 2011
T := (n, k) -> binomial(n + 1, k + 1)*hypergeom([-k, k - n], [-n - 1], -1):
for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
T := proc(n, k) option remember; if k = 0 then n + 1 elif k = n then 1 else T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) fi end: # Peter Luschny, May 13 2025
-
u[1, ] = 1; v[1, ] = 1;
u[n_, x_] := u[n, x] = x u[n-1, x] + v[n-1, x] + 1;
v[n_, x_] := v[n, x] = 2 x u[n-1, x] + v[n-1, x] + 1;
Table[CoefficientList[u[n, x], x], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 10 2019, after Clark Kimberling *)
-
T(n,k)=sum(j=0,n-k,binomial(k,j)*binomial(n-j+1,k+1)) \\ Charles R Greathouse IV, Jan 16 2012
A145905
Square array read by antidiagonals: Hilbert transform of triangle A060187.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0
Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- S. Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) [From _Tom Copeland_, Nov 09 2008]
-
T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);
A047665
Expansion of (1/sqrt(1-6*x+x^2)-1/(1-x))/2.
Original entry on oeis.org
0, 1, 6, 31, 160, 841, 4494, 24319, 132864, 731281, 4048726, 22523359, 125797984, 704966809, 3961924126, 22321190911, 126027618304, 712917362209, 4039658528934, 22924714957471, 130271906898720, 741188107113961, 4221707080583086, 24070622500965631, 137369104574280960, 784622537295845041
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200 (corrected by Sean A. Irvine, Jan 18 2019)
- Y. Ding and R. R. X. Du, Counting Humps in Motzkin Paths, arXiv:1109.2661 [math.CO], 2011, Eq. (4.2).
- D. E. Knuth and N. J. A. Sloane, Correspondence, December 1999
- Matthew Roughan, Surreal Birthdays and Their Arithmetic, arXiv:1810.10373 [math.HO], 2018.
Cf.
A008288 (Delannoy numbers triangle).
-
seq(add(multinomial(n+k,n-k,k,k)/2,k=1..n),n=1..22); # Zerinvary Lajos, Oct 18 2006
a:=n->add(add(binomial(n,j)*binomial(n,k)*binomial(k,j), j=0..n),k=1..n): seq(a(n)/2, n=1..22); # Zerinvary Lajos, Jun 02 2007
-
Table[SeriesCoefficient[(1/Sqrt[1-6*x+x^2]-1/(1-x))/2,{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
x='x+O('x^66); Vec((1/sqrt(1-6*x+x^2)-1/(1-x))/2) \\ Joerg Arndt, May 04 2013
-
a = lambda n: (hypergeometric([-n, n+1], [1], -1)-1)/2
[simplify(a(n)) for n in (1..25)] # Peter Luschny, May 19 2015
A050146
a(n) = T(n,n), array T as in A050143.
Original entry on oeis.org
1, 1, 4, 18, 88, 450, 2364, 12642, 68464, 374274, 2060980, 11414898, 63521352, 354870594, 1989102444, 11180805570, 63001648608, 355761664002, 2012724468324, 11406058224594, 64734486343480, 367891005738690, 2093292414443164, 11923933134635298, 67990160422313808
Offset: 0
G.f. = 1 + x + 4*x^2 + 18*x^3 + 88*x^4 + 450*x^5 + 2364*x^6 + 12642*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra, 278 (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq., 7 (2004), 04.3.8.
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
-
a050146 n = if n == 0 then 1 else a035607 (2 * n - 2) (n - 1)
-- Reinhard Zumkeller, Nov 05 2013, Jul 20 2013
-
Flatten[{1,RecurrenceTable[{(n-3)*(n-1)*a[n-2]-3*(n-2)*(2*n-3)*a[n-1]+(n-2)*(n-1)*a[n]==0,a[1]==1,a[2]==4},a,{n,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)
a[ n_] := If[ n == 0, 1, Sum[ Binomial[n, k] Binomial[n + k - 2, k - 1], {k, n}]]; (* Michael Somos, Nov 25 2016 *)
a[ n_] := If[ n == 0, 1, n Hypergeometric2F1[1 - n, n, 2, -1]]; (* Michael Somos, Nov 25 2016 *)
-
taylor(-(x^4+sqrt(x^2-6*x+1)*(x^3-5*x^2+5*x+1)-8*x^3+16*x^2-6*x+1)/(x^3+sqrt(x^2-6*x+1)*(x^2-4*x-1)-7*x^2+7*x-1),x,0,10); /* Vladimir Kruchinin, Nov 25 2016 */
-
a(n)=if(n==0, 1, sum(k=1,n, binomial(n, k)*binomial(n+k-2, k-1)) ); \\ Joerg Arndt, May 04 2013
-
A050146 = lambda n : n*hypergeometric([1-n, n], [2], -1) if n>0 else 1
[round(A050146(n).n(100)) for n in (0..24)] # Peter Luschny, Sep 17 2014
A123562
Pascal-(1,-3,1) array, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, -3, -3, 1, 1, -5, -3, -5, 1, 1, -7, 1, 1, -7, 1, 1, -9, 9, 11, 9, -9, 1, 1, -11, 21, 17, 17, 21, -11, 1, 1, -13, 37, 11, 1, 11, 37, -13, 1, 1, -15, 57, -15, -39, -39, -15, 57, -15, 1, 1, -17, 81, -69, -87, -81, -87, -69, 81, -17, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, -1, 1;
1, -3, -3, 1;
1, -5, -3, -5, 1;
1, -7, 1, 1, -7, 1;
1, -9, 9, 11, 9, -9, 1;
1, -11, 21, 17, 17, 21, -11, 1;
1, -13, 37, 11, 1, 11, 37, -13, 1;
Cf. Pascal (1,m,1) array:
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
-
for(n=0,10, for(k=0,n, print1(sum(j=0,n, binomial(n-j,k)* binomial(k,j)*(-3)^j), ", "))) \\ G. C. Greubel, Oct 15 2017
A240876
Expansion of (1 + x)^11 / (1 - x)^12.
Original entry on oeis.org
1, 23, 265, 2047, 11969, 56695, 227305, 795455, 2485825, 7059735, 18474633, 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185, 3248227095, 5812626185, 10113604735, 17152640321, 28418229623, 46082942185, 73265596607, 114375683009
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 230 (paragraph 3.6.6).
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17.
- OEIS Wiki, Centered orthoplex numbers, see Table of formulas and values (row 11).
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Subsequence of the odd numbers,
A005408.
-
m:=30; R:=PowerSeriesRing(Integers(),m); Coefficients(R!((1+x)^11/(1-x)^12));
-
CoefficientList[Series[(1 + x)^11/(1 - x)^12, {x, 0, 30}], x]
LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,23,265,2047,11969,56695,227305,795455,2485825,7059735,18474633,45046719},30] (* Harvey P. Dale, Apr 15 2018 *)
-
makelist(coeff(taylor((1+x)^11/(1-x)^12, x, 0, n), x, n), n, 0, 30);
-
Vec((1+x)^11/(1-x)^12+O(x^30))
-
m = 30; L. = PowerSeriesRing(ZZ, m)
f = (1+x)^11/(1-x)^12
print(f.coefficients())
A089068
a(n) = a(n-1)+a(n-2)+a(n-3)+2 with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 3, 6, 12, 23, 43, 80, 148, 273, 503, 926, 1704, 3135, 5767, 10608, 19512, 35889, 66011, 121414, 223316, 410743, 755475, 1389536, 2555756, 4700769, 8646063, 15902590, 29249424, 53798079, 98950095, 181997600, 334745776, 615693473
Offset: 0
-
Join[{a=0,b=0,c=1},Table[d=a+b+c+2;a=b;b=c;c=d,{n,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n],{n,40}] (* or *) LinearRecurrence[{2,0,0,-1},{0,0,1,3},40] (* Harvey P. Dale, Sep 19 2011 *)
Definition based on arbitrarily set floating-point precision removed by
R. J. Mathar, Sep 30 2010
A143409
Square array read by antidiagonals: form the Euler-Seidel matrix for the sequence {k!} and then divide column k by k!.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 16, 11, 4, 1, 65, 49, 19, 5, 1, 326, 261, 106, 29, 6, 1, 1957, 1631, 685, 193, 41, 7, 1, 13700, 11743, 5056, 1457, 316, 55, 8, 1, 109601, 95901, 42079, 12341, 2721, 481, 71, 9, 1, 986410, 876809, 390454, 116125, 25946, 4645, 694, 89, 10, 1
Offset: 0
The Euler-Seidel matrix for the sequence {k!} begins
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....2.....6....24...120...720
1..|.....2.....3.....8....30...144...840
2..|.....5....11....38...174...984
3..|....16....49...212..1158
4..|....65...261..1370
5..|...326..1631
6..|..1957
...
Dividing the k-th column by k! gives
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....1.....1.....1.....1.....1
1..|.....2.....3.....4.....5.....6.....7
2..|.....5....11....19....29....41
3..|....16....49...106...193
4..|....65...261...685
5..|...326..1631
6..|..1957
...
Examples of series formula for 1/e:
Row 2: 1/e = 2*(1/5 - 1/(1!*5*11) + 1/(2!*11*19) - 1/(3!*19*29) + ...).
Column 4: 24/e = 9 - (0!/(1*6) + 1!/(6*41) + 2!/(41*316) + ...).
...
Displayed as a triangle:
0 | 1
1 | 2, 1
2 | 5, 3, 1
3 | 16, 11, 4, 1
4 | 65, 49, 19, 5, 1
5 | 326, 261, 106, 29, 6, 1
6 | 1957, 1631, 685, 193, 41, 7, 1
7 | 13700, 11743, 5056, 1457, 316, 55, 8, 1
Cf.
A008288,
A076571,
A086764,
A108625,
A143007,
A143410,
A143411,
A143413,
A001517 (main diagonal),
A028387 (row 2),
A000522 (column 0),
A001339 (column 1),
A082030 (column 2),
A095000 (column 3),
A095177 (column 4).
-
T := (n, k) -> 1/k!*add(binomial(n,j)*(k+j)!, j = 0..n):
for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
# Alternate:
T:= proc(n,k) option remember;
if n = 0 then return 1 fi;
(n+k)*procname(n-1,k) + procname(n-1,k-1);
end proc:
seq(seq(T(s-n,n),n=0..s),s=0..10); # Robert Israel, Jul 07 2017
# Or:
A143409 := (n,k) -> hypergeom([k+1, k-n], [], -1):
seq(seq(simplify(A143409(n,k)),k=0..n),n=0..9); # Peter Luschny, Oct 05 2017
-
T[n_, k_] := HypergeometricPFQ[{k+1,k-n}, {}, -1];
Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
A143683
Pascal-(1,8,1) array.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 19, 19, 1, 1, 28, 118, 28, 1, 1, 37, 298, 298, 37, 1, 1, 46, 559, 1540, 559, 46, 1, 1, 55, 901, 4483, 4483, 901, 55, 1, 1, 64, 1324, 9856, 21286, 9856, 1324, 64, 1, 1, 73, 1828, 18388, 67006, 67006, 18388, 1828, 73, 1, 1, 82, 2413, 30808, 164242, 304300, 164242, 30808, 2413, 82, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 10, 19, 28, 37, 46, 55, ... A017173;
1, 19, 118, 298, 559, 901, 1324, ...
1, 28, 298, 1540, 4483, 9856, 18388, ...
1, 37, 559, 4483, 21286, 67006, 164242, ...
1, 46, 901, 9856, 67006, 304300, 1004590, ...
1, 55, 1324, 18388, 164242, 1004590, 4443580, ...
Antidiagonal triangle begins as:
1;
1, 1;
1, 10, 1;
1, 19, 19, 1;
1, 28, 118, 28, 1;
1, 37, 298, 298, 37, 1;
1, 46, 559, 1540, 559, 46, 1;
1, 55, 901, 4483, 4483, 901, 55, 1;
Cf.Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7).
-
a143683 n k = a143683_tabl !! n !! k
a143683_row n = a143683_tabl !! n
a143683_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 8) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
-
A143683:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A143683(n,k,8): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 9], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 9).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
A001849
Crystal ball sequence for 7-dimensional cubic lattice.
Original entry on oeis.org
1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767, 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017, 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- Index entries for crystal ball sequences
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Comments