cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 62 results. Next

A008306 Triangle T(n,k) read by rows: associated Stirling numbers of first kind (n >= 2, 1 <= k <= floor(n/2)).

Original entry on oeis.org

1, 2, 6, 3, 24, 20, 120, 130, 15, 720, 924, 210, 5040, 7308, 2380, 105, 40320, 64224, 26432, 2520, 362880, 623376, 303660, 44100, 945, 3628800, 6636960, 3678840, 705320, 34650, 39916800, 76998240, 47324376, 11098780, 866250, 10395
Offset: 2

Views

Author

Keywords

Comments

Also, T(n,k) is the number of derangements (permutations with no fixed points) of {1..n} with k cycles.
The sum of the n-th row is the n-th subfactorial: A000166(n). - Gary Detlefs, Jul 14 2010

Examples

			Rows 2 through 7 are:
    1;
    2;
    6,   3;
   24,  20;
  120, 130,  15;
  720, 924, 210;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.

Crossrefs

Cf. A000166, A106828 (another version), A079510 (rearranged triangle), A235706 (specializations).
Diagonals: A000142, A000276, A000483.
Diagonals give reversed rows of A111999.

Programs

  • Haskell
    a008306 n k = a008306_tabf !! (n-2) !! (k-1)
    a008306_row n = a008306_tabf !! (n-2)
    a008306_tabf = map (fst . fst) $ iterate f (([1], [2]), 3) where
       f ((us, vs), x) =
         ((vs, map (* x) $ zipWith (+) ([0] ++ us) (vs ++ [0])), x + 1)
    -- Reinhard Zumkeller, Aug 05 2013
  • Maple
    A008306 := proc(n,k) local j;
    add(binomial(j,n-2*k)*A008517(n-k,j),j=0..n-k) end;
    seq(print(seq(A008306(n,k),k=1..iquo(n,2))),n=2..12):
    # Peter Luschny, Apr 20 2011
  • Mathematica
    t[0, 0] = 1; t[n_, 0] = 0; t[n_, k_] /; k > n/2 = 0; t[n_, k_] := t[n, k] = (n - 1)*(t[n - 1, k] + t[n - 2, k - 1]); A008306 = Flatten[ Table[ t[n, k], {n, 2, 12}, {k, 1, Quotient[n, 2]}]] (* Jean-François Alcover, Jan 25 2012, after David Callan *)
  • PARI
    { A008306(n,k) = (-1)^(n+k) * sum(i=0,k, (-1)^i * binomial(n,i) * stirling(n-i,k-i,1) ); } \\ Max Alekseyev, Sep 08 2018
    

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * binomial(n,i) * |stirling1(n-i,k-i)| = (-1)^(n+k) * Sum_{i=0..k} (-1)^i * binomial(n,i) * A008275(n-i,k-i). - Max Alekseyev, Sep 08 2018
E.g.f.: 1 + Sum_{1 <= 2*k <= n} T(n, k)*t^n*u^k/n! = exp(-t*u)*(1-t)^(-u).
Recurrence: T(n, k) = (n-1)*(T(n-1, k) + T(n-2, k-1)) for 1 <= k <= n/2 with boundary conditions T(0,0) = 1, T(n,0) = 0 for n >= 1, and T(n,k) = 0 for k > n/2. - David Callan, May 16 2005
E.g.f. for column k: B(A(x)) where A(x) = log(1/1-x)-x and B(x) = x^k/k!.
From Tom Copeland, Jan 05 2016: (Start)
The row polynomials of this signed array are the orthogonal NL(n,x;x-n) = n! Sum_{k=0..n} binomial(x,n-k)*(-x)^k/k!, the normalized Laguerre polynomials of order (x-n) as discussed in Gautschi (the Temme, Carlitz, and Karlin and McGregor references come from this paper) in regard to asymptotic expansions of the upper incomplete gamma function--Tricomi's Cinderella of special functions.
e^(x*t)*(1-t)^x = Sum_{n>=0} NL(n,x;x-n)*x^n/n!.
The first few are
NL(0,x) = 1
NL(1,x) = 0
NL(2,x) = -x
NL(3,x) = 2*x
NL(4,x) = -6*x + 3*x^2.
With D=d/dx, :xD:^n = x^n D^n, :Dx:^n = D^n x^n, and K(a,b,c), the Kummer confluent hypergeometric function, NL(n,x;y-n) = n!*e^x binomial(xD+y,n)*e^(-x) = n!*e^x Sum_{k=0..n} binomial(k+y,n) (-x)^k/k! = e^x x^(-y+n) D^n (x^y e^(-x)) = e^x x^(-y+n) :Dx:^n x^(y-n)*e^(-x) = e^x*x^(-y+n)*n!*L(n,:xD:,0)*x^(y-n)*e^(-x) = n! binomial(y,n)*K(-n,y-n+1,x) = n!*e^x*(-1)^n*binomial(-xD-y+n-1,n)*e^(-x). Evaluate these expressions at y=x after the derivative operations to obtain NL(n,x;x-n). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 16 2001

A134991 Triangle of Ward numbers T(n,k) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 10, 15, 1, 25, 105, 105, 1, 56, 490, 1260, 945, 1, 119, 1918, 9450, 17325, 10395, 1, 246, 6825, 56980, 190575, 270270, 135135, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025, 1, 1012, 74316, 1487200, 12122110, 47507460, 94594500, 91891800, 34459425
Offset: 1

Views

Author

Tom Copeland, Feb 05 2008

Keywords

Comments

This is the triangle of associated Stirling numbers of the second kind, A008299, read along the diagonals.
This is also a row-reversed version of A181996 (with an additional leading 1) - see the table on p. 92 in the Ward reference. A134685 is a refinement of the Ward table.
The first and second diagonals are A001147 and A000457 and appear in the diagonals of several OEIS entries. The polynomials also appear in Carlitz (p. 85), Drake et al. (p. 8) and Smiley (p. 7).
First few polynomials (with a different offset) are
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 3*t^2
P(4,t) = t + 10*t^2 + 15*t^3
P(5,t) = t + 25*t^2 + 105*t^3 + 105*t^4
These are the "face" numbers of the tropical Grassmannian G(2,n),related to phylogenetic trees (with offset 0 beginning with P(2,t)). Corresponding h-vectors are A008517. - Tom Copeland, Oct 03 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-(1+t) P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
Beginning with the second column, the rows give the faces of the Whitehouse simplicial complex with the fourth-order complex being three isolated vertices and the fifth-order being the Petersen graph with 10 vertices and 15 edges (cf. Readdy). - Tom Copeland, Oct 03 2014
Stratifications of smooth projective varieties which are fine moduli spaces for stable n-pointed rational curves. Cf. pages 20 and 30 of the Kock and Vainsencher reference and references in A134685. - Tom Copeland, May 18 2017
Named after the American mathematician Morgan Ward (1901-1963). - Amiram Eldar, Jun 26 2021

Examples

			Triangle begins:
  1
  1   3
  1  10   15
  1  25  105  105
  1  56  490 1260   945
  1 119 1918 9450 17325 10395
  ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, page 222.

Crossrefs

The same as A269939, with column k = 0 removed.
A reshaped version of the triangle of associated Stirling numbers of the second kind, A008299.
A181996 is the mirror image.
Columns k = 2, 3, 4 are A000247, A000478, A058844.
Diagonal k = n is A001147.
Diagonal k = n - 1 is A000457.
Row sums are A000311.
Alternating row sums are signed factorials (-1)^(n-1)*A000142(n).
Cf. A112493.

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; row[n_] := Table[t[k, k-n], {k, n+1, 2*n}]; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Apr 23 2014, after A008299 *)

Formula

E.g.f. for the polynomials is A(x,t) = (x-t)/(t+1) + T{ (t/(t+1)) * exp[(x-t)/(t+1)] }, where T(x) is the Tree function, the e.g.f. of A000169. The compositional inverse in x (about x = 0) is B(x) = x + -t * [exp(x) - x - 1]. Special case t = 1 gives e.g.f. for A000311. These results are a special case of A134685 with u(x) = B(x).
From Tom Copeland, Oct 26 2008: (Start)
Umbral-Sheffer formalism gives, for m a positive integer and u = t/(t+1),
[P(.,t)+Q(.,x)]^m = [m Q(m-1,x) - t Q(m,x)]/(t+1) + sum(n>=1) { n^(n-1)[u exp(-u)]^n/n! [n/(t+1)+Q(.,x)]^m }, when the series is convergent for a sequence of functions Q(n,x).
Check: With t=1; Q(n,x)=0^n, for n>=0; and Q(-1,x)=0, then [P(.,1)+Q(.,x)]^m = P(m,1) = A000311(m).
(End)
Let h(x,t) = 1/(dB(x)/dx) = 1/(1-t*(exp(x)-1)), an e.g.f. in x for row polynomials in t of A019538, then the n-th row polynomial in t of the table A134991, P(n,t), is given by ((h(x,t)*d/dx)^n)x evaluated at x=0, i.e., A(x,t) = exp(x*P(.,t)) = exp(x*h(u,t)*d/du) u evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t). - Tom Copeland, Sep 05 2011
The polynomials (1+t)/t*P(n,t) are the row polynomials of A112493. Let f(x) = (1+x)/(1-x*t). Then for n >= 0, P(n+1,t) is given by t/(1+t)*(f(x)*d/dx)^n(f(x)) evaluated at x = 0. - Peter Bala, Sep 30 2011
From Tom Copeland, Oct 04 2011: (Start)
T(n,k) = (k+1)*T(n-1,k) + (n+k+1)*T(n-1,k-1) with starting indices n=0 and k=0 beginning with P(2,t) (as suggested by a formula of David Speyer on MathOverflow).
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) with starting indices n=1 and k=1 of table (cf. Smiley above and Riordin ref.[10] therein).
P(n,t) = (1/(1+t))^n * Sum_{k>=1} k^(n+k-1)*(u*exp(-u))^k / k! with u=(t/(t+1)) for n>1; therefore, Sum_{k>=1} (-1)^k k^(n+k-1) x^k/k! = [1+LW(x)]^(-n) P{n,-LW(x)/[1+LW(x)]}, with LW(x) the Lambert W-Fct.
T(n,k) = Sum_{i=0..k} ((-1)^i binomial(n+k,i) Sum_{j=0..k-i} (-1)^j (k-i-j)^(n+k-i)/(j!(k-i-j)!)) from relation to A008299. (End)
The e.g.f. A(x,t) = -v * ( Sum_{j=>1} D(j-1,u) (-z)^j / j! ) where u = (x-t)/(1+t), v = 1+u, z = x/((1+t) v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = 1/((1+t)(v-A)) = 1/(1-t*(exp(A)-1)). - Tom Copeland, Oct 06 2011
The general results on the convolution of the refined partition polynomials of A134685, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
E.g.f.: C(u,t) = (u-t)/(1+t) - W( -((t*exp((u-t)/(1+t)))/(1+t)) ), where W is the principal value of the Lambert W-function. - Cheng Peng, Sep 11 2021
The function C(u,t) in the previous formula by Peng is precisely the function A(u,t) given in the initial 2008 formula of this section and the Oct 06 2011 formula from Copeland. As noted in A000169, Euler's tree function is T(x) = -LambertW(-x), where W(x) is the principal branch of Lambert's function, and T(x) is the e.g.f. of A000169. - Tom Copeland, May 13 2022

Extensions

Reference to A181996 added by N. J. A. Sloane, Apr 05 2012
Further edits by N. J. A. Sloane, Jan 24 2020

A201637 Triangle of second-order Eulerian numbers T(n,k) (n>=0, 0 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880, 0
Offset: 0

Views

Author

Peter Luschny, Nov 11 2012

Keywords

Comments

This version indexes the Eulerian numbers in the same way as Graham et al.'s Concrete Mathematics. This indexing is also used by Maple. The indexing as used by Riordan, Comtet and others, is given in A008517, which is the main entry for the second-order Eulerian numbers.

Examples

			... [0]  [1]    [2]     [3]     [4]     [5]     [6]    [7]  [8]
[0] [1]
[1] [1,   0]
[2] [1,   2,     0]
[3] [1,   8,     6,      0]
[4] [1,  22,    58,     24,      0]
[5] [1,  52,   328,    444,    120,      0]
[6] [1, 114,  1452,   4400,   3708,    720,      0]
[7] [1, 240,  5610,  32120,  58140,  33984,   5040,     0]
[8] [1, 494, 19950, 195800, 644020, 785304, 341136, 40320,  0]
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 256.

Crossrefs

Columns 2 and 3 respectively give A004301 and A006260.
T(2n,n) gives A290306.

Programs

  • Maple
    A201637 := (n,k) -> combinat[eulerian2](n,k):
    for n from 0 to 9 do seq(A201637(n,k),k=0..n) od;
    # Illustrating the connection with the Lambert W function:
    alias(W = LambertW): len := 9:
    w := W(-exp((x - 1)^2 * t - x)*x) + 1:
    ser := series((1 - 1/x)*(1 - 1/w), t, len + 1):
    egf := simplify(subs(W(-exp(-x)*x)=(-x), ser)):
    poly := n -> n!*coeff(egf, t, n):
    seq(seq(coeff(poly(n), x, k), k = 0..n), n = 0..len);  # Peter Luschny, Mar 15 2025
  • Mathematica
    t[0, 0] = 1; t[n_, m_] = Sum[(-1)^(n+k)*Binomial[2*n+1, k]*StirlingS1[2*n-m-k, n-m-k], {k, 0, n-m-1}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten
    (* Jean-François Alcover, Jun 28 2013 *)
    E2[n_, k_] /; k == 0 = 1; E2[n_, k_] /; k < 0 || k > n = 0;
    E2[n_, k_] := E2[n, k] = (2*n - 1 - k)*E2[n-1, k-1] + (k + 1)*E2[n-1, k];
    Table[E2[n, k], {n, 0, 8}, {k, 0, n}] // TableForm
    (* Peter Luschny, Aug 14 2022 *)
  • PARI
    for(n=0,10, for(m=0,n, print1(if(m==0 || n==0,1,sum(k=0,n-m-1, (-1)^(n+k)* binomial(2*n+1, k)*stirling(2*n-m-k, n-m-k,1))), ", "))) \\ G. C. Greubel, Oct 24 2017
  • Sage
    @CachedFunction
    def eulerian2(n, k):
        if k==0: return 1
        if k==n: return 0
        return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
    for n in (0..9): [eulerian2(n, k) for k in(0..n)]
    

Formula

T(n, k) = [x^k](n! * [t^n](1 - 1/x)*(1 - 1/w)), where w = W(-exp((x - 1)^2 * t - x)*x) + 1, and W(-exp(-x)*x) is substituted after expansion by (-x). (W is the Lambert W function.) - Peter Luschny, Mar 15 2025

Extensions

Terms a(52) onward added by G. C. Greubel, Oct 24 2017

A001297 Stirling numbers of the second kind S(n+3, n).

Original entry on oeis.org

0, 1, 15, 90, 350, 1050, 2646, 5880, 11880, 22275, 39325, 66066, 106470, 165620, 249900, 367200, 527136, 741285, 1023435, 1389850, 1859550, 2454606, 3200450, 4126200, 5265000, 6654375, 8336601, 10359090, 12774790, 15642600, 19027800
Offset: 0

Views

Author

Keywords

Examples

			a(2) = 1*1*1 + 1*1*2 + 1*2*2 + 2*2*2 = 15
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n+1)^2*(n+2)*(n+3)/48: n in [0..40]]; // Vincenzo Librandi, Sep 22 2017
  • Maple
    A001297:=-(1+8*z+6*z**2)/(z-1)**7; # Simon Plouffe in his 1992 dissertation, without the initial 0
  • Mathematica
    lst={};Do[f=StirlingS2[n+3, n];AppendTo[lst, f], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
    a[ n_] := n^2 (n + 1)^2 (n + 2) (n + 3) / 48; (* Michael Somos, Sep 04 2017 *)
    Table[StirlingS2[n+3,n],{n,0,30}] (* Harvey P. Dale, Dec 30 2019 *)
  • PARI
    {a(n) = n^2 * (n+1)^2 * (n+2) * (n+3) / 48}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number2(n+3,n) for n in range(0, 34)] # Zerinvary Lajos, May 16 2009
    

Formula

G.f.: x*(1 + 8*x + 6*x^2)/(1 - x)^7. - Paul Barry, Aug 05 2004
E.g.f. with offset -2: exp(x)*(1*(x^3)/3! + 11*(x^4)/4! + 25*(x^5)/5! + 15*(x^6)/6!). For the coefficients [1, 11, 25, 15] see triangle A112493. E.g.f.: 1/48*x*exp(x)*(x^5+22*x^4+152*x^3+384*x^2+312*x+48)/48. Above given e.g.f. differentiated twice.
a(n) = (binomial(n+4, n-1) - binomial(n+3, n-2))*(binomial(n+2, n-1) - binomial(n+1, n-2)). - Zerinvary Lajos, May 12 2006
a(n) = binomial(n+1, 2)*binomial(n+3, 4). - Vladimir Shevelev, Dec 18 2011
O.g.f.: D^3(x/(1-x)) = D^4(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A001303(-3-n) for all n in Z. - Michael Somos, Sep 04 2017
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k+2,k-1). - Wesley Ivan Hurt, Sep 21 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 16*Pi^2/3 - 464/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 260/9 - 4*Pi^2/3 - 64*log(2)/3. (End)
a(n) = Sum_{0<=i<=j<=k<=n} i*j*k. - Robert FERREOL, May 25 2022

Extensions

Initial zero added by N. J. A. Sloane, Jan 21 2008
Name corrected by Nathaniel Johnston, Apr 30 2011

A002538 Second-order Eulerian numbers <>.

Original entry on oeis.org

1, 8, 58, 444, 3708, 33984, 341136, 3733920, 44339040, 568356480, 7827719040, 115336085760, 1810992556800, 30196376985600, 532953524275200, 9927928075161600, 194677319705702400, 4008789120817152000, 86495828444928000000, 1951566265951948800000, 45958933902500720640000
Offset: 1

Views

Author

Keywords

Comments

Second-order Eulerian numbers <> count permutations of the multiset {1,1,2,2,...,n,n} with k ascents and the restriction that for any m <= n, all numbers between the two copies of m are less than m.
a(n) = number of edges in the Hasse diagram for the Bruhat order on permutations of [n+1]. - David Callan, Sep 03 2005
Proof. As explained on page 1 of the Stanley link, edges in the Hasse diagram of the (strong) Bruhat order on S_n are associated with pairs (pi,(i,j)) with pi in S_n and 1 <= i < j <= n, such that pi_i < pi_j and each entry of pi lying between pi_i and pi_j in POSITION does not lie between pi_i and pi_j in VALUE.
For example, pi = (3, 5, 1, 2, 4) gives edges for the (i,j) pairs (1,2), (1,5), (3,4), (4,5) but not, e.g., for (i,j) = (3,5) because 2 lies between pi_3=1 and pi_5=4 both in position and in value.
Let us count edges for a given pair (i,j). Consider the j-i+1 entries pi_i, pi_(i+1),...,pi_j. There are (j-i+1)! possible orderings for their values and (i,j) contributes an edge <=> the values of pi_i, pi_j are adjacent in this ordering with pi_i < pi_j.
There are (j-i)! such orderings (just coalesce the items pi_i, pi_j into a single item). The net result is that (i,j) contributes an edge 1/(j-i+1) of the time. So the total number of edges in the Hasse diagram is Sum_{1 <= i < j <= n} n!/(j-i+1) = (n+1)!(H_(n+1) - 2) + n! where H_n = 1 + 1/2 + 1/3 + ... + 1/n is the harmonic sum. QED - David Callan, Mar 07 2006
Number of reentrant corners along the lower contours of all deco polyominoes of height n+2. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. a(n) = Sum_{k>=1} k*A121579(n+2,k). - Emeric Deutsch, Aug 16 2006
a(n) is the total sum of the cycle maxima minus the cycle minima over all permutations of [n+1]. a(2) = 8 = 2+2+1+2+1+0: (123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3). - Alois P. Heinz, Dec 22 2023
a(n-1) is the number of parking functions of order n with exactly n-1 lucky cars, where a lucky car is a car which parks in the spot it prefers. - Kimberly P. Hadaway, Jun 20 2024

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second diagonal of A008517 and second column of A112007.
Cf. A121579.

Programs

  • Magma
    [n le 1 select n else (n+2)*Self(n-1) + n*Factorial(n): n in [1..30]]; // Vincenzo Librandi, Aug 11 2018
  • Maple
    egf:= (x+2*log(1-x))/(x-1)^3:
    a:= n-> n!*coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=1..21);  # Peter Luschny, Feb 12 2021
    # Alternative:
    a := n -> (n + 1)! * ((n + 2)*harmonic(n + 2) - 2*n - 3);
    seq(a(n), n = 1..22);  # Peter Luschny, Apr 09 2024
  • Mathematica
    Table[(-1)^(n + 1)* Sum[(-1)^(n - k) k (-1)^(n - k) StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 1, 16}] (* Zerinvary Lajos, Jul 08 2009 *)
    a[n_]:=(-1)*((2*n+3)*(n+1)!-Abs[StirlingS1[n+3,2]]);Flatten[Table[a[n],{n,1,21}]] (* Detlef Meya, Apr 09 2024 *)
  • PARI
    N=66; x='x+O('x^66); Vec(serlaplace((x+2*log(1-x))/(x-1)^3)) \\ Joerg Arndt, Apr 09 2016
    

Formula

From Vladeta Jovovic, Sep 15 2003: (Start)
a(n) = Sum_{k=1..n} k * |Stirling1(n+2, k+2)|.
E.g.f.: (x+2*log(1-x))/(x-1)^3. (End)
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at -1. - Ralf Stephan, Apr 16 2004
a(n) = (n+2)*a(n-1) + n*n!, n>=1, a(0):=0.
a(n) = (n+2)!*HarmonicSum(n+2) + (n+1)! - 2(n+2)! where HarmonicSum(n) = 1 + 1/2 + 1/3 + ... + 1/n. - David Callan, Mar 07 2006
a(n) = (n+1)!*((n+2)*h(n+2)-2*n-3) where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Mar 25 2011
Conjecture: a(n) + 2*(-n-2)*a(n-1) + (n^2+4*n+1)*a(n-2) - n*(n-1)*a(n-3) = 0. - R. J. Mathar, Oct 27 2014
a(n) = (-1)*((2*n + 3)*(n + 1)! - abs(Stirling1(n + 3, 2))). - Detlef Meya, Apr 09 2024

Extensions

More terms from Joerg Arndt, Apr 09 2016

A340556 E2(n, k), the second-order Eulerian numbers with E2(0, k) = δ_{0, k}. Triangle read by rows, E2(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 0

Views

Author

Peter Luschny, Feb 05 2021

Keywords

Comments

The second-order Eulerian number E2(n, k) is the number of Stirling permutations of order n with exactly k descents; here the last index is defined to be a descent. More formally, let Q_n denote the set of permutations of the multiset {1,1,2,2, ..., n,n} in which, for all j, all entries between two occurrences of j are larger than j, then E2(n, k) = card({s in Q_n with des(s) = k}), where des(s) = card({j: s(j) > s(j+1)}) is the number of descents of s.
Also the number of Riordan trapezoidal words of length n with k distinct letters (see Riordan 1976, p. 9).
Also the number of rooted plane trees on n + 1 vertices with k leaves (see Janson 2008, p. 543).
Let b(n) = (1/2)*Sum_{k=0..n-1} (-1)^k*E2(n-1, k+1) / C(2*n-1, k+1). Apparently b(n) = Bernoulli(n, 1) = -n*Zeta(1 - n) = Integral_{x=0..1}F_n(x) for n >= 1. Here F_n(x) are the signed Fubini polynomials (A278075). (See Rzadkowski and Urlinska, example 4.)

Examples

			Triangle starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1, 2;
  [3] 0, 1, 8,    6;
  [4] 0, 1, 22,   58,    24;
  [5] 0, 1, 52,   328,   444,     120;
  [6] 0, 1, 114,  1452,  4400,    3708,    720;
  [7] 0, 1, 240,  5610,  32120,   58140,   33984,    5040;
  [8] 0, 1, 494,  19950, 195800,  644020,  785304,   341136,   40320;
  [9] 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880.
To illustrate the generating function for row 3: The expansion of (1 - x)^7*(x*exp(-x) + 16*x^2*exp(-x)^2 + (243*x^3*exp(-x)^3)/2) gives the polynomial x + 8*x^2 + 6*x^3. The coefficients of this polynomial give row 3.
.
Stirling permutations of order 3 with exactly k descents: (When counting the descents one may assume an invisible '0' appended to the permutations.)
  T[3, k=0]:
  T[3, k=1]: 112233;
  T[3, k=2]: 331122; 223311; 221133; 133122; 122331; 122133; 113322; 112332;
  T[3, k=3]: 332211; 331221; 233211; 221331; 133221; 123321.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.

Crossrefs

Indexing the second-order Eulerian numbers comes in three flavors: A008517 (following Riordan and Comtet), A201637 (following Graham, Knuth, and Patashnik) and this indexing, extending the definition of Gessel and Stanley. (A008517 is the main entry of the numbers.) The corresponding triangles of the first-order Eulerian numbers are A008292, A173018, and A123125.
Row reversed: A163936 (with offset = 0).
Values: E2poly(n, 1) = A001147(n), E2poly(n, -1) ~ -A001662(n+1), E2poly(n, 2) = A112487(n), 2^n*E2poly(n, 1/2) = A000311(n+1), 2^n*E2poly(n, -1/2) = A341106(n).

Programs

  • Maple
    # Using the recurrence:
    E2 := proc(n, k) option remember;
    if k = 0 and n = 0 then return 1 fi; if n < 0 then return 0 fi;
    E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) end: seq(seq(E2(n, k), k = 0..n), n = 0..9);
    # Using the row generating function:
    E2egf := n -> (1-x)^(2*n+1)*add(k^(n+k)/k!*(x*exp(-x))^k, k=0..n);
    T := (n, k) -> coeftayl(E2egf(n), x=0, k): seq(print(seq(T(n, j),j=0..n)), n=0..7);
    # Using the built-in function:
    E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)):
    # Using the compositional inverse (series reversion):
    E2triangle := proc(N) local r, s, C; Order := N + 2;
    s := solve(y = series(x - t*(exp(x) - 1), x), x):
    r := n -> -n!*(t - 1)^(2*n - 1)*coeff(s, y, n); C := [seq(expand(r(n)), n = 1..N)];
    seq(print(seq(coeff(C[n+1], t, k), k = 0..n)), n = 0..N-1) end: E2triangle(10);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* Via row polynomials: *)
    E2poly[n_] := If[n == 0, 1,
      Expand[Simplify[x (x - 1)^(2 n) D[((1 - x)^(1 - 2 n) E2poly[n - 1]), x]]]];
    Table[CoefficientList[E2poly[n], x], {n, 0, 9}] // Flatten
    (* Series reversion *)
    Revert[gf_, len_] := Module[{S = InverseSeries[Series[gf, {x, 0, len + 1}], x]},
    Table[CoefficientList[(n + 1)! (1 - t)^(2 n + 1) Coefficient[S, x, n + 1], t],
    {n, 0, len}] // Flatten]; Revert[x + t - t Exp[x], 6]
  • PARI
    E2poly(n) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1)));
    { for(n = 0, 9, print(Vecrev(E2poly(n)))) }
    
  • PARI
    T(n, k) = sum(j=0, n-k, (-1)^(n-j)*binomial(2*n+1, j)*stirling(2*n-k-j+1, n-k-j+1, 1)); \\ Michel Marcus, Feb 11 2021
    
  • SageMath
    # See also link to notebook.
    @cached_function
    def E2(n, k):
        if n < 0: return 0
        if k == 0: return k^n
        return k * E2(n - 1, k) + (2*n - k) * E2(n - 1, k - 1)  # Peter Luschny, Mar 08 2025

Formula

E2(n, k) = E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) for n > 0 and 0 <= k <= n, and E2(0, 0) = 1; in all other cases E(n, k) = 0.
E2(n, k) = Sum_{j=0..n-k}(-1)^(n-j)*binomial(2*n+1, j)*Stirling1(2*n-k-j+1, n-k-j+1).
E2(n, k) = Sum_{j=0..k}(-1)^(k-j)*binomial(2*n + 1, k - j)*Stirling2(n + j, j).
Stirling1(x, x - n) = (-1)^n*Sum_{k=0..n} E2(n, k)*binomial(x + k - 1, 2*n).
Stirling2(x, x - n) = Sum_{k=0..n} E2(n, k)*binomial(x + n - k, 2*n).
E2poly(n, x) = Sum_{k=0..n} E2(n, k)*x^k, as row polynomials.
E2poly(n, x) = x*(x-1)^(2*n)*d_{x}((1-x)^(1-2*n)*E2poly(n-1)) for n>=1 and E2poly(0)=1.
E2poly(n, x) = (1 - x)^(2*n + 1)*Sum_{k=0..n}(k^(n + k)/k!)*(x*exp(-x))^k.
W(n, k) = [x^k] (1+x)^n*E2poly(n, x/(1 + x)) are the Ward numbers A269939.
E2(n, k) = [x^k] (1-x)^n*Wpoly(n, x/(1 - x)); Wpoly(n, x) = Sum_{k=0..n}W(n, k)*x^k.
W(n, k) = Sum_{j=0..k} E2(n, j)*binomial(n - j, n - k).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*W(n, j)*binomial(n - j, k - j).
The compositional inverse with respect to x of x - t*(exp(x) - 1) (see B. Drake):
T(n, k) = [t^k](n+1)!*(1-t)^(2*n+1)*[x^(n+1)] InverseSeries(x - t*(exp(x)-1), x).
AS1(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, j+1), where AS1(n, k) are the associated Stirling numbers of the first kind (A008306, A106828).
E2(n, k) = Sum_{j=0..n-k+1} (-1)^(n-k-j+1)*AS1(n+j, j)*binomial(n-j, n-k-j+1), for n >= 1.
AS2(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) for n >=1, where AS2(n, k) are the associated Stirling numbers of the second kind (A008299, A137375).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*AS2(n + j, j)*binomial(n - j, k - j).

A163936 Triangle related to the o.g.f.s. of the right-hand columns of A130534 (E(x,m=1,n)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The asymptotic expansions of the higher-order exponential integral E(x,m=1,n) lead to triangle A130524, see A163931 for information on E(x,m,n). The o.g.f.s. of the right-hand columns of triangle A130534 have a nice structure: gf(p) = W1(z,p)/(1-z)^(2*p-1) with p = 1 for the first right-hand column, p = 2 for the second right-hand column, etc. The coefficients of the W1(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. Our triangle is the same as A112007 with an extra right-hand column, see also the second Eulerian triangle A008517. The row sums of our triangle lead to A001147.
We observe that the row sums of the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4) for z=1 lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four left-hand columns of the triangle of the Bessel coefficients A001497 or, if one wishes, the right-hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next left- (right-) hand columns of A001497 (A001498). An interesting phenomenon.
If one assumes the triangle not (1,1) based but (0,0) based, one has T(n, k) = E2(n, n-k), where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 12 2021

Examples

			Triangle starts:
[ 1]      1;
[ 2]      1,       0;
[ 3]      2,       1,      0;
[ 4]      6,       8,      1,      0;
[ 5]     24,      58,     22,      1,      0;
[ 6]    120,     444,    328,     52,      1,     0;
[ 7]    720,    3708,   4400,   1452,    114,     1,   0;
[ 8]   5040,   33984,  58140,  32120,   5610,   240,   1,  0;
[ 9]  40320,  341136, 785304, 644020, 195800, 19950, 494,  1, 0;
The first few W1(z,p) polynomials are
W1(z,p=1) = 1/(1-z);
W1(z,p=2) = (1 + 0*z)/(1-z)^3;
W1(z,p=3) = (2 + 1*z + 0*z^2)/(1-z)^5;
W1(z,p=4) = (6 + 8*z + 1*z^2 + 0*z^3)/(1-z)^7.
		

Crossrefs

Row sums equal A001147.
A000142, A002538, A002539, A112008, A112485 are the first few left hand columns.
A000007, A000012, A005803(n+2), A004301, A006260 are the first few right hand columns.
Cf. A163931 (E(x,m,n)), A048994 (Stirling1) and A008517 (Euler).
Cf. A112007, A163937 (E(x,m=2,n)), A163938 (E(x,m=3,n)) and A163939 (E(x,m=4,n)).
Cf. A001497 (Bessel), A001498 (Bessel), A001147 (m=1), A001147 (m=2), A001879 (m=3) and A000457 (m=4), A001880 (m=5), A001881 (m=6) and A038121 (m=7).
Cf. A340556.

Programs

  • Maple
    with(combinat): a := proc(n, m): add((-1)^(n+k+1)*binomial(2*n-1, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9);  # Johannes W. Meijer, revised Nov 27 2012
  • Mathematica
    Table[Sum[(-1)^(n + k + 1)*Binomial[2*n - 1, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(sum(k=0,m-1,(-1)^(n+k+1)* binomial(2*n-1,k)*stirling(m+n-k-1,m-k, 1)), ", "))) \\ G. C. Greubel, Aug 13 2017
    
  • PARI
    \\ assuming offset = 0:
    E2poly(n,x) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1,x)));
    { for(n = 0, 9, print(Vec(E2poly(n,x)))) } \\ Peter Luschny, Feb 12 2021

Formula

a(n, m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(2*n-1,k)*Stirling1(m+n-k-1,m-k), for 1 <= m <= n.
Assuming offset = 0 the T(n, k) are the coefficients of recursively defined polynomials. T(n, k) = [x^k] x^n*E2poly(n, 1/x), where E2poly(n, x) = x*(x - 1)^(2*n)*d_{x}((1 - x)^(1 - 2*n)*E2poly(n - 1, x))) for n >= 1 and E2poly(0, x) = 1. - Peter Luschny, Feb 12 2021

A008788 a(n) = n^(n+2).

Original entry on oeis.org

0, 1, 16, 243, 4096, 78125, 1679616, 40353607, 1073741824, 31381059609, 1000000000000, 34522712143931, 1283918464548864, 51185893014090757, 2177953337809371136, 98526125335693359375, 4722366482869645213696
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x + 16*x^2 + 243*x^3 + 4096*x^4 + 78125*x^5 + 1679616*x^6 + ...
		

Crossrefs

Programs

Formula

E.g.f.(x): T*(1 + 2*T)*(1-T)^(-5); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
See A008517 and A134991 for similar e.g.f.s. and A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^2/dx^2 {x^2/(T(x)^2*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012

A094262 Triangle read by rows: T(n,k) is the number of rooted trees with k nodes which are disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 14, 61, 124, 131, 70, 15, 1, 30, 240, 890, 1830, 2226, 1600, 630, 105, 1, 62, 841, 5060, 16990, 35216, 47062, 40796, 22225, 6930, 945, 1, 126, 2772, 25410, 127953, 401436, 836976, 1196532, 1182195, 795718, 349020, 90090, 10395
Offset: 1

Views

Author

André F. Labossière, Jun 01 2004

Keywords

Comments

The original name for this sequence was "Triangle read by rows giving the coefficients of formulas generating each variety of S2(n,k) (Stirling numbers of 2nd kind). The p-th row (p>=1) contains T(i,p) for i=1 to 2*p-1, where T(i,p) satisfies Sum_{i=1..2*p-1} T(i,p) * C(n-p,i-1)".
The terms of the n-th diagonal sequence of the triangle of Stirling numbers of the second kind A008277, i.e., (Stirling2(N + n - 1,N)), N>=1, are given by a polynomial in N of degree 2*n - 2. This polynomial may be expressed as a linear combination of the falling factorial polynomials binomial(N - n,0), binomial(N - n,1), ... , binomial(N - n,2*n - 2). This table gives the coefficients in these expansions.
The formulas obtained are those for Stirling2(N+1,N) (A000217), Stirling2(N+2,N) (A001296), Stirling2(N+3,N) (A001297), Stirling2(N+4,N) (A001298), Stirling2(N+5,N) (A112494), Stirling2(N+6,N) (A144969) and so on.

Examples

			Row 5 contains 1,30,240,890,1830,2226,1600,630,105, so the formula generating Stirling2(n+4,n) numbers (A001298) will be the following: 1 + 30*(n-5) + 240*C(n-5,2) + 890*C(n-5,3) + 1830*C(n-5,4) + 2226*C(n-5,5) + 1600*C(n-5,6) + 630*C(n-5,7) + 105*C(n-5,8). For example, taking n = 9 gives Stirling2(13,9) = 359502.
Triangle starts:
  1;
  1,  2,   1;
  1,  6,  12,  10,    3;
  1, 14,  61, 124,  131,   70,   15;
  1, 30, 240, 890, 1830, 2226, 1600, 630, 105;
  ...
From _Peter Bala_, Jun 14 2016: (Start)
Connection with row polynomials of A134991:
  R(2,z) = (1 + z)^2*z
  R(3,z) = (1 + z)^2*(z + 3*z^2)
  R(4,z) = (1 + z)^4*(z + 10*z^2 + 15*z^3)
  R(5,z) = (1 + z)^5*(z + 25*z^2 + 105*z^3 + 105*z^4). (End)
From _Andrew Howroyd_, Mar 28 2025: (Start)
The T(3,3) = 12 trees up to relabeling have one of the following 3 forms:
     {}         {1}        {1}
    /  \       /   \        |
  {1} {2,3}   {2}  {3}     {2}
                            |
                           {3}
(End)
		

Crossrefs

Programs

  • Maple
    row_poly := n -> (1+z)^(n+1)*add(z^k*add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m,m), m=0..k), k=0..n): T_row := n -> seq(coeff(row_poly(n),z,j),j=1..2*n+1):
    seq(T_row(n),n=0..6); # Peter Luschny, Jun 15 2016
  • Mathematica
    Clear[T, q, u]; T[0] = q[1];T[n_] := Sum[m*(u^2*q[m] + 2*u*q[m+1] + q[m+2])*D[T[n-1], q[m]], {m, 1, 2*n+1}]; row[n_] := List @@ Expand[T[n-1]] /. {u -> 1, q[] -> 1}; Table[row[n], {n, 1, 7}] // Flatten (* _Jean-François Alcover, Jun 12 2015 *)
  • PARI
    T(n)={my(g=serreverse(log(((1+1/y)*x+1)/exp(x + O(x*x^n))))); [Vecrev(p/y) | p<-Vec(serlaplace(g))]}
    { my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 28 2025

Formula

Apparently, a raising operator for bivariate polynomials P(n,u,z) having these coefficients is R = (u+z)^2 * z * d/dz with P(0,u,z) = z. E.g., R P(1,u,z) = R^2 P(0,u,z) = R^2 z = u^4 z + 6 u^3 z^2 + 12 u^2 z^3 + 10 u z^4 + 3 z^5 = P(2,u,z). See the Kazarian link. - Tom Copeland, Jun 12 2015
Reverse polynomials seem to be generated by 1 + exp[t*(x+1+z)^2*(1+z)d/dz]z evaluated at z = 0. - Tom Copeland, Jun 13 2015
From Peter Bala, Jun 14 2016: (Start)
T(n,k) = k*T(n,k) + 2*(k - 1)*T(n,k-1) + (k - 2)*T(n,k-2).
n-th diagonal of A008277: Stirling2(N + n - 1,N) = Sum_{k = 1..2*n - 1} T(n,k)*binomial(N - n,k - 1) for N = 1,2,3,....
Row polynomials R(n,z) = Sum_{k >= 1} k^(n+k-1)*( z/(1 + z)*exp(-z/(1 + z)) )^k/k!, n = 1,2,..., follows from the formula given in A008277 for the o.g.f.'s of the diagonals of the Stirling numbers of the second kind.
Consequently, R(n+1,z) = (1 + z)^2*z*d/dz(R(n,z)) for n >= 1 as conjectured above by Copeland.
R(n,z) = (1 + z)^n*P(n,z) where P(n,z) are the row polynomials of A134991.
R(n,z) = (1 + z)^(2*n+1)*B(n,z/(1 + z)), where B(n,z) are the row polynomials of the triangle of second-order Eulerian numbers A008517 (see Barbero et al., Section 6, equation 27). (End)
Based on the comment of Bala the row polynomials have the explicit form R(n, z) = (1+z)^(n+1)*Sum_{k=0..n}(z^k*Sum_{m=0..k}((-1)^(m+k)*binomial(n+k, n+m)* Stirling2(n+m,m))). - Peter Luschny, Jun 15 2016
E.g.f. G(x,y) satisfies G(x,y) = y*(exp(x)*exp(G(x,y)) - G(x,y) - 1). - Andrew Howroyd, Mar 28 2025

Extensions

Edited and Name changed by Peter Bala, Jun 16 2016
Name changed by Andrew Howroyd, Mar 28 2025

A008791 a(n) = n^(n+5).

Original entry on oeis.org

0, 1, 128, 6561, 262144, 9765625, 362797056, 13841287201, 549755813888, 22876792454961, 1000000000000000, 45949729863572161, 2218611106740436992, 112455406951957393129, 5976303958948914397184, 332525673007965087890625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

E.g.f.(x): T*(1 + 52*T + 328*T^2 + 444*T^3 + 120*T^4)*(1-T)^(-11); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^5/dx^5 {x^5/(T(x)^5*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012
Previous Showing 21-30 of 62 results. Next