cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 81 results. Next

A017005 a(n) = 7n + 2.

Original entry on oeis.org

2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107, 114, 121, 128, 135, 142, 149, 156, 163, 170, 177, 184, 191, 198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282, 289, 296, 303, 310, 317, 324, 331, 338, 345, 352, 359, 366, 373, 380
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (2+5*x)/(1-x)^2.
E.g.f.: exp(x)*(2 + 7*x). - Stefano Spezia, Mar 21 2021
a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Mar 22 2021

A008596 Multiples of 14.

Original entry on oeis.org

0, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196, 210, 224, 238, 252, 266, 280, 294, 308, 322, 336, 350, 364, 378, 392, 406, 420, 434, 448, 462, 476, 490, 504, 518, 532, 546, 560, 574, 588, 602, 616, 630, 644, 658, 672, 686, 700, 714, 728
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A033571(n) - A158186(n). - Reinhard Zumkeller, Mar 13 2009
From R. J. Mathar, Jun 23 2009: (Start)
a(n) = 14*n.
a(n) = 2*a(n-1) - a(n-2).
G.f.: 14*x/(x-1)^2. (End)
From Elmo R. Oliveira, Apr 08 2025: (Start)
E.g.f.: 14*x*exp(x).
a(n) = 2*A008589(n) = A135628(n)/2. (End)

A084968 Multiples of 7 coprime to 30.

Original entry on oeis.org

7, 49, 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 343, 371, 413, 427, 469, 497, 511, 539, 553, 581, 623, 637, 679, 707, 721, 749, 763, 791, 833, 847, 889, 917, 931, 959, 973, 1001, 1043, 1057, 1099, 1127, 1141, 1169, 1183, 1211, 1253, 1267, 1309
Offset: 1

Views

Author

Robert G. Wilson v, Jun 15 2003

Keywords

Comments

Numbers 7*k such that gcd(k,30) = 1.
Numbers congruent to 7, 49, 77, 91, 119, 133, 161, 203 modulo 210. - Jianing Song, Nov 18 2022

Examples

			77 is in the sequence because gcd(77, 30) = 1.
84 is not in the sequence because gcd(84, 3) = 6.
91 is in the sequence because gcd(91, 30) = 1.
		

Crossrefs

Subsequence of A008589.
Fourth row of A083140.
Cf. A084967 (5), A084969 (11), A084970 (13), A332799 (17), A332798 (19), A332797 (23), A007775 (7-rough numbers).

Programs

  • Maple
    q:= k-> igcd(k, 30)=1:
    select(q, [7*i$i=1..300])[];  # Alois P. Heinz, Feb 25 2020
  • Mathematica
    7Select[ Range[190], GCD[ #, 2*3*5] == 1 & ]
  • PARI
    is(n)=gcd(210,n)==7 \\ Charles R Greathouse IV, Aug 05 2013

Formula

G.f.: 7*x*(x^8 + 6*x^7 + 4*x^6 + 2*x^5 + 4*x^4 + 2*x^3 + 4*x^2 + 6*x + 1) / ((x-1)^2*(x+1)*(x^2+1)*(x^4+1)). - Colin Barker, Feb 24 2013
Lim_{n->oo} a(n)/n = A038111(4)/A038110(4) = 105/4. - Vladimir Shevelev, Jan 20 2015
a(n) = 7*A007775(n).
a(n+8) = a(n) + 210. - Jianing Song, Nov 18 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(23 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/105. - Amiram Eldar, Jul 15 2023

A109720 Periodic sequence {0,1,1,1,1,1,1} or n^6 mod 7.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Aug 09 2005

Keywords

Comments

This sequence also represents n^12 mod 7; n^18 mod 7; (exponents are = 0 mod 6).
Characteristic sequence for numbers n>=1 to be relatively prime to 7. - Wolfdieter Lang, Oct 29 2008
a(n+4), n>=0, (periodic 1,1,1,0,1,1,1) is also the characteristic sequence for mod m reduced positive odd numbers (i.e., gcd(2*n+1,m)=1, n>=0) for each modulus m from 7*A003591 = [7,14,28,49,56,98,112,196,...]. [Wolfdieter Lang, Feb 04 2012]

Crossrefs

Cf. A010876 = n mod 7; A053879 = n^2 mod 7; A070472 = m^3 mod 7; A070512 = n^4 mod 7; A070593 = n^5 mod 7.

Programs

Formula

a(n) = 0 if n=0 mod 7; a(n)= 1 else.
G.f. = (x+x^2+x^3+x^4+x^5+x^6)/(1-x^7)= -x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( (x-1)*(1+x+x^2+x^3+x^4+x^5+x^6) ).
a(n)=1-A082784(n); a(A047304(n))=1; a(A008589(n))=0; A033439(n) = SUM(a(k)*(n-k): 0<=k<=n). - Reinhard Zumkeller, Nov 30 2009
Multiplicative with a(p) = (if p=7 then 0 else 1), p prime. - Reinhard Zumkeller, Nov 30 2009
Dirichlet g.f. (1-7^(-s))*zeta(s). - R. J. Mathar, Mar 06 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A017053 a(n) = 7*n + 6.

Original entry on oeis.org

6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 370, 377, 384
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Mar 17 2023
G.f.: (6+x)/(1-x)^2. - Wesley Ivan Hurt, Dec 28 2023

A033582 a(n) = 7*n^2.

Original entry on oeis.org

0, 7, 28, 63, 112, 175, 252, 343, 448, 567, 700, 847, 1008, 1183, 1372, 1575, 1792, 2023, 2268, 2527, 2800, 3087, 3388, 3703, 4032, 4375, 4732, 5103, 5488, 5887, 6300, 6727, 7168, 7623, 8092, 8575, 9072, 9583, 10108, 10647, 11200, 11767, 12348, 12943, 13552, 14175
Offset: 0

Views

Author

Keywords

Comments

From Roberto E. Martinez II, Jan 07 2002: (Start)
Number of edges of the complete bipartite graph of order 8n, K_n,7n.
Number of edges of the complete tripartite graph of order 5n, K_n,n,3n. (End)

Crossrefs

Programs

Formula

Central terms of the triangle in A132111: a(n) = A132111(2*n,n). - Reinhard Zumkeller, Aug 10 2007
a(n) = 7*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 14*n + a(n-1) - 7 (with a(0) = 0). - Vincenzo Librandi, Aug 05 2010
G.f.: -7*x*(1+x)/(x-1)^3. - R. J. Mathar, Feb 06 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/42.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/84.
Product_{n>=1} (1 + 1/a(n)) = sqrt(7)*sinh(Pi/sqrt(7))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(7)*sin(Pi/sqrt(7))/Pi. (End)
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 7*exp(x)*x*(1 + x).
a(n) = n*A008589(n) = A195041(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A113807 Permutation of natural numbers generated by 7-rowed array shown below.

Original entry on oeis.org

1, 13, 2, 15, 12, 3, 27, 16, 11, 4, 29, 26, 17, 10, 5, 41, 30, 25, 18, 9, 6, 43, 40, 31, 24, 19, 8, 7, 55, 44, 39, 32, 23, 20, 14, 57, 54, 45, 38, 33, 22, 21, 69, 58, 53, 46, 37, 34, 28, 71, 68, 59, 52, 47, 36, 35, 83, 72, 67, 60, 51, 48, 42, 85, 82, 73, 66, 61, 50, 49
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

For such arrays A_k see the k-family of 2k-periodic sequences P_k defined in a comment on A203571. There the k residue classes mod n have been defined. The present array is A_7 if the last class, starting with 7, is taken as first class [0] after adding a 0 in front. Then one obtains a permutation of the nonnegative integers. However, each complete residue class also includes its negative members. - Wolfdieter Lang, Feb 02 2012

Examples

			1 13 15 27 29 41 43 55 57 69 71 83 85 ... (A113801)
2 12 16 26 30 40 44 54 58 68 72 82 86 ... (A113802)
3 11 17 25 31 39 45 53 59 67 73 81 87 ... (A113803)
4 10 18 24 32 38 46 52 60 66 74 80 88 ... (A113804)
5  9 19 23 33 37 47 51 61 65 75 70 89 ... (A113805)
6  8 20 22 34 36 48 50 62 64 76 78 90 ... (A113806)
7 14 21 28 35 42 49 56 63 70 77 84 91 ... (A008589)
		

Crossrefs

Extensions

A-numbers added for array rows by Wolfdieter Lang, Dec 15 2011
More terms from Ray Chandler, Dec 15 2011

A283078 a(n) = sigma(7*n).

Original entry on oeis.org

8, 24, 32, 56, 48, 96, 57, 120, 104, 144, 96, 224, 112, 171, 192, 248, 144, 312, 160, 336, 228, 288, 192, 480, 248, 336, 320, 399, 240, 576, 256, 504, 384, 432, 342, 728, 304, 480, 448, 720, 336, 684, 352, 672, 624, 576, 384, 992, 400, 744, 576, 784, 432, 960
Offset: 1

Views

Author

Seiichi Manyama, Feb 28 2017

Keywords

Examples

			For n = 3, the divisors of 3*7 are {1, 3, 7, 21}. Now, 1 + 3 + 7 + 21 = 32. So, a(3) = 32. - _Indranil Ghosh_, Feb 28 2017
		

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), this sequence (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008589.

Programs

Formula

From Amiram Eldar, Dec 16 2022: (Start)
a(n) = A000203(7*n) = A000203(A008589(n)).
Sum_{k=1..n} a(k) = (55*Pi^2/84) * n^2 + O(n*log(n)). (End)

A008603 Multiples of 21.

Original entry on oeis.org

0, 21, 42, 63, 84, 105, 126, 147, 168, 189, 210, 231, 252, 273, 294, 315, 336, 357, 378, 399, 420, 441, 462, 483, 504, 525, 546, 567, 588, 609, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 987, 1008, 1029, 1050, 1071, 1092
Offset: 0

Views

Author

Keywords

Comments

Sum of the numbers from 3*(n-1) to 3*(n+1). - Bruno Berselli, Oct 25 2018

Crossrefs

Programs

Formula

G.f.: 21*x/(1-x)^2. - Vincenzo Librandi, Jun 10 2013
From Elmo R. Oliveira, Apr 08 2025: (Start)
E.g.f.: 21*x*exp(x).
a(n) = A008585(A008589(n)) = A008589(A008585(n)). (End)
Previous Showing 11-20 of 81 results. Next