cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 110 results. Next

A137914 Decimal expansion of arccos(1/3).

Original entry on oeis.org

1, 2, 3, 0, 9, 5, 9, 4, 1, 7, 3, 4, 0, 7, 7, 4, 6, 8, 2, 1, 3, 4, 9, 2, 9, 1, 7, 8, 2, 4, 7, 9, 8, 7, 3, 7, 5, 7, 1, 0, 3, 4, 0, 0, 0, 9, 3, 5, 5, 0, 9, 4, 8, 3, 9, 0, 5, 5, 5, 4, 8, 3, 3, 3, 6, 6, 3, 9, 9, 2, 3, 1, 4, 4, 7, 8, 2, 5, 6, 0, 8, 7, 8, 5, 3, 2, 5, 1, 6, 2, 0, 1, 7, 0, 8, 6, 0, 9, 2, 1, 1, 3, 8, 9, 4
Offset: 1

Views

Author

Rick L. Shepherd, Feb 22 2008

Keywords

Comments

Dihedral angle in radians of regular tetrahedron.
Arccos(1/3) is the central angle of a cube, made by the center and two neighboring vertices. - Clark Kimberling, Feb 10 2009
Also the complementary tetrahedral angle, Pi-A156546, and therefore related to the magic angle (Pi-2*A195696). - Stanislav Sykora, Jan 23 2014
Polar angle (or apex angle) of the cone that subtends exactly one third of the full solid angle. - Stanislav Sykora, Feb 20 2014
Also the acute angle in the rhombi and isosceles trapezoids in the trapezo-rhombic dodecahedron. - Eric W. Weisstein, Jan 09 2019
Also the angle between the tangent lines to the curves y = sin(x) at y = cos(x) at the points of intersection. - David Radcliffe, Jan 17 2023

Examples

			1.2309594173407746821349291782479873757103400093550948390555483336639923144...
		

Crossrefs

Cf. A137915 (same in degrees), A019670, A195695, A195696, A238238, Platonic solids dihedral angles: A156546 (octahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arccos(1/3); // G. C. Greubel, Aug 20 2018
  • Mathematica
    RealDigits[ArcCos[1/3], 10, 120][[1]] (* Harvey P. Dale, Jul 06 2018 *)
    RealDigits[ArcSec[3], 10, 120][[1]] (* Eric W. Weisstein, Jan 09 2019 *)
  • PARI
    acos(1/3)
    

Formula

arccos(1/3) = arctan(2*sqrt(2)) = 2*arcsin(sqrt(3)/3) = arcsin(2*sqrt(2)/3).
Equals sqrt(2)*Sum_{k>=0} (-1)^k/(2^k*(2*k+1)). - Davide Rotondo, Jun 07 2025
Equals 2*A195695. - Hugo Pfoertner, Jun 07 2025

A073000 Decimal expansion of arctangent of 1/2.

Original entry on oeis.org

4, 6, 3, 6, 4, 7, 6, 0, 9, 0, 0, 0, 8, 0, 6, 1, 1, 6, 2, 1, 4, 2, 5, 6, 2, 3, 1, 4, 6, 1, 2, 1, 4, 4, 0, 2, 0, 2, 8, 5, 3, 7, 0, 5, 4, 2, 8, 6, 1, 2, 0, 2, 6, 3, 8, 1, 0, 9, 3, 3, 0, 8, 8, 7, 2, 0, 1, 9, 7, 8, 6, 4, 1, 6, 5, 7, 4, 1, 7, 0, 5, 3, 0, 0, 6, 0, 0, 2, 8, 3, 9, 8, 4, 8, 8, 7, 8, 9, 2, 5, 5, 6, 5, 2, 9
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The angle at which you must shoot a cue ball on a standard pool table so that it will strike all four sides and return to its origin. [Barrow] - Robert G. Wilson v, Nov 29 2015

Examples

			Arctan(1/2)
=0.463647609000806116214256231461214402028537054286120263810933088720197864165... radians
=26°.56505117707798935157219372045329467120421429964522102798601631528806582148474...
=26°33'.9030706246793610943316232271976802722528579787132616791609789172839492890...
=26°33'54".184237480761665659897393631860816335171478722795700749658735037036957...
complement = 63°.43494882292201064842780627954670532879578570035477897201398368471...
supplement = 153°.4349488229220106484278062795467053287957857003547789720139836847...
		

References

  • John D. Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton & Co., NY & London, 2008.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 242.

Crossrefs

Programs

  • Maple
    evalf(arctan(0.5)) ; # R. J. Mathar, Aug 22 2013
  • Mathematica
    RealDigits[ ArcTan[1/2], 10, 110] [[1]]
  • PARI
    default(realprecision,2000); atan(1/2) \\ Anders Hellström, Nov 30 2015

Formula

Equals Pi/2 - A105199 = A019669-A105199. - R. J. Mathar, Aug 21 2013
From Peter Bala, Feb 04 2015: (Start)
Arctan(1/2) = 1/2*Sum_{k >= 0} (-1)^k/((2*k + 1)*4^k).
Define a pair of integer sequences A(n) = 4^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} (-1)^k/((2*k + 1)*4^k). Both sequences satisfy the same second order recurrence equation u(n) = (12*n + 10)*u(n-1) + 16*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 2*arctan(1/2) = 1 - 2/(24 + 16*3^2/(34 + 16*5^2/(46 + ... + 16*(2*n - 1)^2/((12*n + 10) + ...)))). See A002391, A105531 and A002162 for similar expansions.
Arctan(1/2) = 2/5 * Sum_{k >= 0} (4/5)^k/((2*k + 1)*binomial(2*k,k)).
Define a pair of integer sequences C(n) = 5^n*(2*n + 1)!/n! and D(n) = C(n)*Sum_{k = 0..n} (4/5)^k/((2*k + 1)*binomial(2*k,k)). Both sequences satisfy the same second order recurrence equation u(n) = (24*n + 10)*u(n-1) - 40*n*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 5/2*arctan(1/2) = 1 + 4/(30 - 240/(58 - 600/(82 - ... - 40*n*(2*n - 1)/((24*n + 10) - ... )))).
Arctan(1/2) = 2/25 * Sum_{k >= 0} (24*k + 17)*(4/5)^(2*k)/( (4*k + 1)*(4*k + 3)*binomial(4*k,2*k) ).
Arctan(1/2) = 2/125 * Sum_{k >= 0} (1116*k^2 + 1446*k + 433)*(4/5)^(3*k)/( (6*k + 1)*(6*k + 3)*(6*k + 5)*binomial(6*k,3*k) ). (End)
Equals Integral_{x = 0..oo} exp(-2*x)*sin(x)/x dx. - Peter Bala, Nov 05 2019
Equals 2 * arccot(phi^3), where phi is the golden ratio (A001622). - Amiram Eldar, Jul 06 2023
Equals Sum_{n >= 1} i/(n*P(n, 2*i)*P(n-1, 2*i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A098443(n)*A098443(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(2))^n ). - Peter Bala, Mar 16 2024

A014493 Odd triangular numbers.

Original entry on oeis.org

1, 3, 15, 21, 45, 55, 91, 105, 153, 171, 231, 253, 325, 351, 435, 465, 561, 595, 703, 741, 861, 903, 1035, 1081, 1225, 1275, 1431, 1485, 1653, 1711, 1891, 1953, 2145, 2211, 2415, 2485, 2701, 2775, 3003, 3081, 3321, 3403, 3655, 3741, 4005, 4095, 4371, 4465, 4753, 4851
Offset: 1

Views

Author

Keywords

Comments

Odd numbers of the form n*(n+1)/2.
For n such that n(n+1)/2 is odd see A042963 (congruent to 1 or 2 mod 4).
Even central polygonal numbers minus 1. - Omar E. Pol, Aug 17 2011
Odd generalized hexagonal numbers. - Omar E. Pol, Sep 24 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 68.

Crossrefs

Programs

  • GAP
    List([1..50], n -> (2*n-1)*(2*n-1-(-1)^n)/2); # G. C. Greubel, Feb 09 2019
    
  • Magma
    [(2*n-1)*(2*n-1-(-1)^n)/2: n in [1..50]]; // Vincenzo Librandi, Aug 18 2011
    
  • Maple
    [(2*n-1)*(2*n-1-(-1)^n)/2$n=1..50]; # Muniru A Asiru, Mar 10 2019
  • Mathematica
    Select[ Table[n(n + 1)/2, {n, 93}], OddQ[ # ] &] (* Robert G. Wilson v, Nov 05 2004 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,3,15,21,45},50] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    a(n)=(2*n-1)*(2*n-1-(-1)^n)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    def A014493(n): return ((n<<1)-1)*(n-(n&1^1)) # Chai Wah Wu, Feb 12 2023
  • Sage
    [(2*n-1)*(2*n-1-(-1)^n)/2 for n in (1..50)] # G. C. Greubel, Feb 09 2019
    

Formula

From Ant King, Nov 17 2010: (Start)
a(n) = (2*n-1)*(2*n - 1 - (-1)^n)/2.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
G.f.: x*(1 + 2*x + 10*x^2 + 2*x^3 + x^4)/((1+x)^2*(1-x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = A000217(A042963(n)). - Reinhard Zumkeller, Feb 14 2012, Oct 04 2004
a(n) = A193868(n) - 1. - Omar E. Pol, Aug 17 2011
Let S = Sum_{n>=0} x^n/a(n), then S = Q(0) where Q(k) = 1 + x*(4*k+1)/(4*k + 3 - x*(2*k+1)*(4*k+3)^2/(x*(2*k+1)*(4*k+3) + (4*k+5)*(2*k+3)/Q(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 27 2013
E.g.f.: (2*x^2+x+1)*cosh(x)+x*(2*x-1)*sinh(x)-1. - Ilya Gutkovskiy, Apr 24 2016
Sum_{n>=1} 1/a(n) = Pi/2 (A019669). - Robert Bilinski, Jan 20 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2). - Amiram Eldar, Mar 06 2022

Extensions

More terms from Erich Friedman

A156648 Decimal expansion of Product_{k>=1} (1 + 1/k^2).

Original entry on oeis.org

3, 6, 7, 6, 0, 7, 7, 9, 1, 0, 3, 7, 4, 9, 7, 7, 7, 2, 0, 6, 9, 5, 6, 9, 7, 4, 9, 2, 0, 2, 8, 2, 6, 0, 6, 6, 6, 5, 0, 7, 1, 5, 6, 3, 4, 6, 8, 2, 7, 6, 3, 0, 2, 7, 7, 4, 7, 8, 0, 0, 3, 5, 9, 3, 5, 5, 7, 4, 4, 7, 3, 2, 4, 1, 1, 1, 0, 2, 2, 0, 7, 3, 2, 1, 3, 2, 5, 5, 9, 2, 6, 5, 9, 0, 3, 2, 3, 0, 2, 3, 5, 2, 8, 7, 5
Offset: 1

Views

Author

R. J. Mathar, Feb 12 2009

Keywords

Comments

Consider the value at s = 2 of the partition zeta functions zeta_{type}(s), where the defining sum runs over partitions into 'type' parts, where 'type' is 'even', 'prime' or 'distinct'. (For the precise definitions see R. Schneider's dissertation.) Then
zeta_{even}(2) = Pi/2 = A019669;
zeta_{prime}(2) = Pi^2/6 = A013661;
zeta_{distinct}(2) = sinh(Pi)/Pi, this constant. - Peter Luschny, Aug 11 2021
For m>0, Product_{k>=1} (1 + m/k^2) = sinh(Pi*sqrt(m)) / (Pi*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			3.676077910374977720695697492028260666507156346827630277478003593557447324111... = (1+1)*(1+1/4)*(1+1/9)*(1+1/16)*(1+1/25)*...
		

References

  • Reinhold Remmert, Classical topics in complex function theory, Vol. 172 of Graduate Texts in Mathematics, p. 12, Springer, 1997.

Crossrefs

Programs

Formula

Equals sinh(Pi)/Pi.
Equals 1/A090986. - R. J. Mathar, Mar 05 2009
Binomial(2, 1+i) = 1/(i!*(-i)!) (where x! means Gamma(x+1)). - Robert G. Wilson v, Feb 23 2015
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(2*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{k>=1} (1+2/(k*(k+2))). - Amiram Eldar, Aug 16 2020

A156546 Decimal expansion of the central angle of a regular tetrahedron.

Original entry on oeis.org

1, 9, 1, 0, 6, 3, 3, 2, 3, 6, 2, 4, 9, 0, 1, 8, 5, 5, 6, 3, 2, 7, 7, 1, 4, 2, 0, 5, 0, 3, 1, 5, 1, 5, 5, 0, 8, 4, 8, 6, 8, 2, 9, 3, 9, 0, 0, 2, 0, 0, 1, 0, 9, 8, 1, 9, 1, 9, 3, 9, 6, 2, 5, 8, 6, 4, 3, 8, 2, 4, 0, 9, 1, 8, 0, 7, 9, 5, 2, 9, 1, 0, 7, 7, 4, 7, 8, 3, 2, 0, 5, 1, 7, 1, 2, 5, 6, 1, 4, 6, 8, 4, 3, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2009

Keywords

Comments

If O is the center of a regular tetrahedron ABCD, then the central angle AOB is this number; exact value is Pi - arccos(1/3).
The (minimal) central angle of the other four regular polyhedra are as follows:
- cube: A137914,
- octahedron: A019669,
- dodecahedron: A156547,
- icosahedron: A105199.
Dihedral angle of two adjacent faces of the octahedron. - R. J. Mathar, Mar 24 2012
Best known as "tetrahedral angle" theta (e.g., in chemistry). Its Pi complement (i.e., Pi - theta) is the dihedral angle between adjacent faces in regular tetrahedron. - Stanislav Sykora, May 31 2012
Also twice the magic angle (A195696). - Stanislav Sykora, Nov 14 2013

Examples

			Pi - arccos(1/3) = 1.910633236249018556..., or, in degrees, 109.471220634490691369245999339962435963006843100... = A247412
		

Crossrefs

Cf. Platonic solids dihedral angles: A137914 (tetrahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Start with vertices (1,1,1), (1,-1,-1,), (-1,1,-1), and (1,-1,1) and apply the formula for cosine of the angle between two vectors.
Equals 2* A195696. - R. J. Mathar, Mar 24 2012
Equals A000796 - A137914 = A247412 / A072097 - R. J. Mathar, Feb 18 2025

A197723 Decimal expansion of (3/2)*Pi.

Original entry on oeis.org

4, 7, 1, 2, 3, 8, 8, 9, 8, 0, 3, 8, 4, 6, 8, 9, 8, 5, 7, 6, 9, 3, 9, 6, 5, 0, 7, 4, 9, 1, 9, 2, 5, 4, 3, 2, 6, 2, 9, 5, 7, 5, 4, 0, 9, 9, 0, 6, 2, 6, 5, 8, 7, 3, 1, 4, 6, 2, 4, 1, 6, 8, 8, 8, 4, 6, 1, 7, 2, 4, 6, 0, 9, 4, 2, 9, 3, 1, 3, 4, 9, 7, 9, 4, 2, 0, 5, 2, 2, 3, 8, 0, 1, 3, 1, 7, 5, 6, 0, 1, 9, 7, 3, 2, 2
Offset: 1

Views

Author

Alonso del Arte, Oct 17 2011

Keywords

Comments

As radians, this is equal to 270 degrees or 300 gradians.
Multiplying a number by -i (with i being the imaginary unit sqrt(-1)) is equivalent to rotating it by this number of radians on the complex plane.
Named 'Pau' by Randall Munroe, as a humorous compromise between Pi and Tau. - Orson R. L. Peters, Jan 08 2017
(3*Pi/2)*a^2 is the area of the cardioid whose polar equation is r = a*(1+cos(t)) and whose Cartesian equation is (x^2+y^2-a*x)^2 = a^2*(x^2+y^2). The length of this cardioid is 8*a. See the curve at the Mathcurve link. - Bernard Schott, Jan 29 2020

Examples

			4.712388980384689857693965074919254326296...
		

Crossrefs

Programs

Formula

2*Pi - Pi/2 = Pi + Pi/2.
Equals Integral_{t=0..Pi} (1+cos(t))^2 dt. - Bernard Schott, Jan 29 2020
Equals -4 + Sum_{k>=1} (k+1)*2^k/binomial(2*k,k). - Amiram Eldar, Aug 19 2020

A019679 Decimal expansion of Pi/12.

Original entry on oeis.org

2, 6, 1, 7, 9, 9, 3, 8, 7, 7, 9, 9, 1, 4, 9, 4, 3, 6, 5, 3, 8, 5, 5, 3, 6, 1, 5, 2, 7, 3, 2, 9, 1, 9, 0, 7, 0, 1, 6, 4, 3, 0, 7, 8, 3, 2, 8, 1, 2, 5, 8, 8, 1, 8, 4, 1, 4, 5, 7, 8, 7, 1, 6, 0, 2, 5, 6, 5, 1, 3, 6, 7, 1, 9, 0, 5, 1, 7, 4, 1, 6, 5, 5, 2, 3, 3, 6, 2, 3, 5, 4, 4, 5, 1, 7, 6, 4, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Equals cone's volume (radius = 1/2, height = 1) and semi-sphere's volume (radius = 1/2). - Eric Desbiaux, Dec 08 2008
Decimal expansion of least x > 0 having cos(4x) = (cos 3x)^2. See A197476. - Clark Kimberling, Oct 15 2011
Multiplied by 10, decimal expansion of 5*Pi/6. - Alonso del Arte, Aug 19 2013
Volume between a cylinder and the inscribed sphere of diameter 1. - Omar E. Pol, Sep 25 2013

Examples

			Pi/12 = 0.2617993877991494365385536152732919070164307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.

Crossrefs

Programs

Formula

A003881 - A019673. - Omar E. Pol, Sep 25 2013
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^6) dx. - Peter Bala, Oct 27 2019
Equals Sum_{k>=0} binomial(2*k,k)/((2*k+1)*4^(2*k+1)). - Amiram Eldar, May 30 2021
Constant divided by 10 = Pi/120 = 0.0261799387... = Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)) (using the Eisenstein summation convention Sum_{n = -oo..oo} = lim_{N -> oo} Sum_{n = -N..N}). Note that 22/7 - Pi = 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)). - Peter Bala, Nov 28 2021

A096444 Decimal expansion of (Pi - 1)/2.

Original entry on oeis.org

1, 0, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3, 3, 9, 9, 1, 0, 7
Offset: 1

Views

Author

N. J. A. Sloane, Aug 16 2004

Keywords

Comments

From Bernard Schott, Apr 19 2021: (Start)
The series Sum_{k>=1} sin(k)/k and also Sum_{k>=1} cos(k)/k (A121225) are called Fresnel series.
The series Sum_{k>=1} |sin(k)/k| is divergent. (End)

Examples

			1.0707963267948966...
		

References

  • Xavier Merlin, Methodix Analyse, Ellipses, 1997, p. 117.

Crossrefs

Programs

Formula

Equals Sum_{k >= 1} sin(k)/k. (This follows from the identity x = Pi - 2 Sum_{k >= 1} sin(k*x)/k, as observed by Euler in 1744.)
Equals A019669 minus 1/2. - R. J. Mathar, Dec 15 2008
Equals Sum_{k >= 1} (sin(k)/k)^2. (Interestingly, Sum_{k >= 1} sin(k)/k = Sum_{k >= 1} (sin(k)/k)^2, a series whose terms sum to the sum of the square of each term.) - Dimitri Papadopoulos, Mar 11 2015
Equals arctan(sin(1)/(1-cos(1))). - Amiram Eldar, Jun 06 2021

Extensions

More terms from Robert G. Wilson v, Aug 17 2004
Better definition from Eric W. Weisstein, Aug 18 2004

A256853 Decimal expansion of the area of a unit 9-gon.

Original entry on oeis.org

6, 1, 8, 1, 8, 2, 4, 1, 9, 3, 7, 7, 2, 9, 0, 0, 1, 2, 7, 2, 1, 3, 7, 4, 4, 0, 5, 9, 6, 1, 9, 7, 6, 3, 6, 1, 4, 9, 4, 1, 7, 1, 3, 3, 4, 8, 1, 3, 4, 3, 5, 8, 0, 9, 8, 3, 8, 6, 8, 6, 4, 2, 5, 5, 6, 6, 9, 7, 7, 1, 0, 7, 1, 2, 3, 3, 5, 8, 4, 6, 6, 4, 7, 6, 6, 3, 5, 9, 5, 5, 3, 3, 8, 9, 0, 7, 9, 1, 8, 4, 0, 9, 9, 0, 2
Offset: 1

Views

Author

Stanislav Sykora, Apr 12 2015

Keywords

Comments

From Michal Paulovic, May 09 2024: (Start)
This constant multiplied by the square of the side length of a regular enneagon equals the area of that enneagon.
9^2 divided by this constant equals 36 * tan(Pi/9) = 13.10292843... which is the perimeter and the area of an equable enneagon with its side length 4 * tan(Pi/9) = 1.45588093... . (End)

Examples

			6.181824193772900127213744059619763614941713348134358098386864...
		

Crossrefs

Cf. A000796, A019669, A019670, A019673, A019676, A019685, A019968, A120011 (p=3), A102771 (p=5), A104956 (p=6), A178817 (p=7), A090488 (p=8), A178816 (p=10), A256854 (p=11), A178809 (p=12).

Programs

  • Maple
    evalf(9 / (4 * tan(Pi/9)), 100); # Michal Paulovic, May 09 2024
  • Mathematica
    RealDigits[(9/4)*Cot[Pi/9], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    p=9; a=(p/4)*cotan(Pi/p)        \\ Use realprecision in excess

Formula

Equals (p/4)*cot(Pi/p), with p = 9.
From Michal Paulovic, May 09 2024: (Start)
Equals 9 * sqrt(2 / (1 - sin(5 * A000796 / 18)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019669 / 9)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019670 / 6)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019673 / 3)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019676 / 2)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(50 * A019685)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * Pi / 18)) - 1) / 4.
Equals 9 * sqrt(4 / (2 - i^(4/9) - i^(-4/9)) - 1) / 4.
Equals 9 * sqrt(1 / (8 - (-32 + sqrt(-3072))^(1/3) - (-32 - sqrt(-3072))^(1/3)) - 1/16). (End)
Largest of the 6 real-valued roots of 4096*x^6 -186624*x^4 +1154736*x^2 -177147 =0. - R. J. Mathar, Aug 29 2025

A122952 Decimal expansion of 3*Pi.

Original entry on oeis.org

9, 4, 2, 4, 7, 7, 7, 9, 6, 0, 7, 6, 9, 3, 7, 9, 7, 1, 5, 3, 8, 7, 9, 3, 0, 1, 4, 9, 8, 3, 8, 5, 0, 8, 6, 5, 2, 5, 9, 1, 5, 0, 8, 1, 9, 8, 1, 2, 5, 3, 1, 7, 4, 6, 2, 9, 2, 4, 8, 3, 3, 7, 7, 6, 9, 2, 3, 4, 4, 9, 2, 1, 8, 8, 5, 8, 6, 2, 6, 9, 9, 5, 8, 8, 4, 1, 0, 4, 4, 7, 6, 0, 2, 6, 3, 5, 1, 2, 0, 3, 9, 4, 6, 4, 4
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Area of the unit cycloid with cusp at the origin, whose parametric formula is x = t - sin(t) and y = 1 - cos(t).
The arc length Integral_{theta=0..2*Pi} sqrt(2(1-cos(theta))) (d theta) = 8.
3*Pi is also the surface area of a sphere whose diameter equals the square root of 3. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013
3*Pi is also the area of the nephroid (an epicycloid with two cusps) whose Cartesian parametrization is: x = (1/2) * (3*cos(t) - cos(3t)) and y = (1/2) * (3*sin(t) - sin(3t)). The length of this nephroid is 12. See the curve at the Mathcurve link. - Bernard Schott, Feb 01 2020

Examples

			9.424777960769379715387930149838508652591508198125317462924833776...
		

References

  • Anton, Bivens & Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY 2002, p. 490.
  • William H. Beyer, Editor, CRC St'd Math. Tables, 27th Edition, CRC Press, Inc., Boca Raton, FL, 1984, p. 214.

Crossrefs

Programs

Previous Showing 11-20 of 110 results. Next