cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A032085 Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.

Original entry on oeis.org

2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of induced subgraphs with odd number of edges in the path graph P(n) if n>0. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009
A common recurrence of the bisections A020522 and A006516 means a(n+4) = 6*a(n+2) - 8*a(n), n>1. - Yosu Yurramendi, Aug 07 2008
Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A005418, A016116. Essentially the same as A122746.
Row sums of triangle A034877.

Programs

Formula

"BHK" (reversible, identity, unlabeled) transform of 2, 0, 0, 0, ...
a(n) = 2^(n-1)-2^floor((n-1)/2), n > 1. - Vladeta Jovovic, Nov 11 2001
G.f.: 2*x+x^2/((1-2*x)*(1-2*x^2)). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
a(n) = A005418(n+1)-A016116(n+2), n>1. - Yosu Yurramendi, Aug 07 2008
a(n+1) = A077957(n) + 2*a(n), n>1. a(n+2) = A000079(n+1) + 2*a(n), n>1. - Yosu Yurramendi, Aug 10 2008
First differences: a(n+1)-a(n) = A007179(n) = A156232(n+2)/4, n>1. - Paul Curtz, Nov 16 2009
a(n) = 2*(a(n-1) bitwiseOR a(n-2)), n>3. - Pierre Charland, Dec 12 2010
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Wesley Ivan Hurt, Jul 03 2020

A099393 a(n) = 4^n + 2^n - 1.

Original entry on oeis.org

1, 5, 19, 71, 271, 1055, 4159, 16511, 65791, 262655, 1049599, 4196351, 16781311, 67117055, 268451839, 1073774591, 4295032831, 17180000255, 68719738879, 274878431231, 1099512676351, 4398048608255, 17592190238719
Offset: 0

Views

Author

Ralf Stephan, Oct 20 2004

Keywords

Comments

Number of occurrences of letter 2 in the (n+1)-st Peano word.
In binary representation, a leading one followed by n zeros then by n ones. - Reinhard Zumkeller, Feb 07 2006
The number of involutions in group G_n G_{n+1} = G_n(operation) D_8. For example, Q_8->1 involution; D_8->5 involutions - Roger L. Bagula, Aug 08 2007

Examples

			n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
		

Crossrefs

See the formula section for the relationships with A000120, A000217, A000225, A002378, A007582, A020522, A023416, A030101, A063376, A070939, A083420, A279396.

Programs

Formula

a(n) = A063376(n)-1.
a(n) = A020522(n) + A000225(n+1) = A083420(n) - A020522(n); A000120(a(n)) = n+1; A023416(a(n))=n; A070939(a(n)) = 2*n+1; 2*A020522(n)+1 = A030101(a(n)). - Reinhard Zumkeller, Feb 07 2006
a(n) = 2^(2*n-1) + 2*a(n-1) + 1. - Roger L. Bagula, Aug 08 2007
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) + 1/(1-2*x) - 1/(1-x).
E.g.f.: e^(4*x) + e^(2*x) - e^x. (End)
a(n) = A279396(n+4, 4). - Wolfdieter Lang, Jan 10 2017
a(n) = A002378(2^n) - 1 = 2*A000217(2^n) - 1 = 2*A007582(n) - 1. - Peter Munn, Nov 20 2022

A140690 A positive integer n is included if n written in binary can be subdivided into a number of runs all of equal-length, the first run from the left consisting of all 1's, the next run consisting of all 0's, the next run consisting of all 1's, the next run consisting of all 0's, etc.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 12, 15, 21, 31, 42, 51, 56, 63, 85, 127, 170, 204, 240, 255, 341, 455, 511, 682, 819, 992, 1023, 1365, 2047, 2730, 3276, 3640, 3855, 4032, 4095, 5461, 8191, 10922, 13107, 16256, 16383, 21845, 29127, 31775, 32767, 43690, 52428, 61680
Offset: 1

Views

Author

Leroy Quet, Jul 11 2008

Keywords

Comments

Also: numbers of the form (2^s-1)*[4^{s*(k+1)}-1]/(4^s-1) or 2^s(2^s-1)*[4^{s*(k+1)}-1]/(4^s-1), s>=1, k>=0. Subsequences are, with the possible exception of terms at n=0, A002450(n), A043291(n), A015565(2n), A093134(2n+1), A000225(n), A020522(n). [R. J. Mathar, Aug 04 2008]
From Emeric Deutsch, Jan 25 2018: (Start)
Also the indices of the compositions having equal parts.
We define the index of a composition to be the positive integer whose binary form has run-lengths (i.e. runs of 1's, runs of 0's, etc., from left to right) equal to the parts of the composition. Example: the composition [1,1,3,1] has index 46 since the binary form of 46 is 101110. The integer 992 is in the sequence since its binary form is 1111100000 and the composition [5,5] has equal parts. The integer 100 is not in the sequence since its binary form is 1100100 and the composition [2,2,1,2] does not have equal parts.
The command c(n) from the Maple program yields the composition having index n. (End)

Examples

			819 in binary is 1100110011. The runs of 0's and 1's are (11)(00)(11)(00)(11). Each run (alternating 1's and 0's) is the same length. So 819 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a140690 n = a140690_list !! (n-1)
    a140690_list = f $ singleton (1, 1, 2) where
       f s | k == 1 = m : f (insert (2*b-1, 1, 2*b) $ insert (b*m, k+1, b) s')
           | even k    = m : f (insert (b*m+b-1, k+1, b) s')
           | otherwise = m : f (insert (b*m, k+1, b) s')
           where ((m, k, b), s') = deleteFindMin s
    -- Reinhard Zumkeller, Feb 21 2014
  • Maple
    Runs := proc (L) local j, r, i, k: j := 1: r[j] := L[1]: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: A := {}: for n to 62000 do if nops(convert(c(n), set)) = 1 then A := `union`(A, {n}) else  end if end do: A; # most of the Maple program is due to W. Edwin Clark. - Emeric Deutsch, Jan 25 2018
  • Mathematica
    Select[Range[62000],Length[Union[Length/@Split[IntegerDigits[#,2]]]]==1&] (* Harvey P. Dale, Mar 22 2012 *)

Extensions

Terms beyond 42 from R. J. Mathar, Aug 04 2008

A171476 a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Binomial transform of A048473; second binomial transform of A151821; third binomial transform of A010684; fourth binomial transform of A084633 without second term 0; fifth binomial transform of A168589.
Inverse binomial transform of A081625; second inverse binomial transform of A081626; third inverse binomial transform of A081627.
Partial sums of A010036.
Essentially first differences of A006095.
a(n) = A109241(n) converted from binary to decimal. - Robert Price, Jan 19 2016
a(n) is the area enclosed by a Hilbert curve with unit length segments after n iterations, when the start and end points are joined. - Jennifer Buckley, Apr 23 2024

Crossrefs

Cf. A006516 (2^(n-1)*(2^n-1)), A020522 (4^n-2^n), A048473 (2*3^n-1), A151821 (powers of 2, omitting 2 itself), A010684 (repeat 1, 3), A084633 (inverse binomial transform of repeated odd numbers), A168589 ((2-3^n)*(-1)^n), A081625 (2*5^n-3^n), A081626 (2*6^n-4^n), A081627 (2*7^n-5^n), A010036 (sum of 2^n, ..., 2^(n+1)-1), A006095 (Gaussian binomial coefficient [n, 2] for q=2), A171472, A171473.

Programs

  • Magma
    [2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
  • Mathematica
    LinearRecurrence[{6,-8},{1,6},30] (* Harvey P. Dale, Aug 02 2020 *)
  • PARI
    m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
    

Formula

a(n) = Sum_{k=1..2^n-1} k.
a(n) = 2*4^n - 2^n.
G.f.: 1/((1-2*x)*(1-4*x)).
a(n) = A006516(n+1).
a(n) = 4*a(n-1) + 2^n for n > 0, a(0)=1. - Vincenzo Librandi, Jul 17 2011
a(n) = Sum_{k=0..n} 2^(n+k). - Bruno Berselli, Aug 07 2013
a(n) = A020522(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: exp(2*x)*(2*exp(2*x) - 1). - Stefano Spezia, Dec 10 2021

A059153 a(n) = 2^(n+2)*(2^(n+1)-1).

Original entry on oeis.org

4, 24, 112, 480, 1984, 8064, 32512, 130560, 523264, 2095104, 8384512, 33546240, 134201344, 536838144, 2147418112, 8589803520, 34359476224, 137438429184, 549754765312, 2199021158400, 8796088827904, 35184363700224, 140737471578112, 562949919866880
Offset: 0

Views

Author

Jonas Wallgren, Feb 02 2001

Keywords

Comments

A hierarchical sequence (S(W'2{2}c) - see A059126).
a(n) written in base 2: 100, 11000, 1110000, ..., i.e., (n+1) times 1 and (n+2) times 0 (see A163663). - Jaroslav Krizek, Aug 12 2009
Also, the number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 513", based on the 5-celled von Neumann neighborhood. - Robert Price, May 04 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    Table[2^(n + 2)*(2^(n + 1) - 1), {n, 0, 23}] (* and *) LinearRecurrence[{6, -8}, {4, 24}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
  • PARI
    a(n) = { 2^(n + 2)*(2^(n + 1) - 1) } \\ Harry J. Smith, Jun 25 2009

Formula

a(n) = A173787(2*n+3,n+2) = 4*A006516(n+1). - Reinhard Zumkeller, Feb 28 2010
From Colin Barker, Apr 28 2013: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: 4 / ((2*x-1)*(4*x-1)). (End)
a(n) = 2*A020522(n+1). - Hussam al-Homsi, Jun 06 2021
E.g.f.: 4*exp(2*x)*(2*exp(2*x) - 1). - Elmo R. Oliveira, Dec 10 2023

Extensions

Revised by Henry Bottomley, Jun 27 2005

A093069 a(n) = (2^n + 1)^2 - 2.

Original entry on oeis.org

7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407, 67125247, 268468223, 1073807359, 4295098367, 17180131327, 68720001023, 274878955519, 1099513724927, 4398050705407, 17592194433023, 70368760954879, 281475010265087, 1125899973951487
Offset: 1

Views

Author

Eric W. Weisstein, Mar 17 2004

Keywords

Comments

Cletus Emmanuel calls these "Kynea numbers".
Difference between the smallest digitally balanced number with 2n+4 binary digits and the largest digitally balanced number with 2n+2 binary digits (see A031443): 7 = 9-2 = 1001-10, 23 = 35-12 = 100011-1100, 79 = 135-56 = 10000111-111000 etc. - Juri-Stepan Gerasimov, Jun 01 2011

Examples

			G.f. = 7*x + 23*x^2 + 79*x^3 + 287*x^4 + 1087*x^5 + 4223*x^6 + 16639*x^7 + ...
		

Crossrefs

Cf. A091514 (primes of the form (2^n + 1)^2 - 2).
Cf. A244663.

Programs

  • Magma
    [(2^n+1)^2-2 : n in [1..30]]; // Wesley Ivan Hurt, Jul 08 2014
  • Maple
    A093069:=n->(2^n+1)^2-2: seq(A093069(n), n=1..30);
  • Mathematica
    a[ n_] := If[ n < 1, 0, 4^n + 2^(n + 1) - 1]; (* Michael Somos, Jul 08 2014 *)
    CoefficientList[Series[(7 - 26*x + 16*x^2)/((1 - x)*(2*x - 1)*(4*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 08 2014 *)
    LinearRecurrence[{7,-14,8},{7,23,79},30] (* Harvey P. Dale, Aug 25 2025 *)
  • PARI
    vector(100, n, (2^n+1)^2-2) \\ Colin Barker, Jul 08 2014
    
  • PARI
    Vec(-(16*x^2-26*x+7)/((x-1)*(2*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Jul 08 2014
    

Formula

a(n) = 4^n+2^(n+1)-1.
G.f.: -x*(7-26*x+16*x^2) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Jun 01 2011
a(n) = A092431(n+2) - A020522(n+1). - R. J. Mathar, Jun 01 2011
E.g.f.: -exp(x) + 2*exp(2*x) + exp(4*x) - 2. - Stefano Spezia, Dec 09 2019

Extensions

More terms from Colin Barker, Jul 08 2014

A138147 Concatenation of n digits 1 and n digits 0.

Original entry on oeis.org

10, 1100, 111000, 11110000, 1111100000, 111111000000, 11111110000000, 1111111100000000, 111111111000000000, 11111111110000000000, 1111111111100000000000, 111111111111000000000000, 11111111111110000000000000, 1111111111111100000000000000, 111111111111111000000000000000
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

Also, a(n) = binary representation of A020522(n), for n>0 (see example).

Examples

			n ... A020522(n) ..... a(n)
1 ....... 2 ........... 10
2 ...... 12 .......... 1100
3 ...... 56 ......... 111000
4 ..... 240 ........ 11110000
5 ..... 992 ....... 1111100000
6 .... 4032 ...... 111111000000
7 ... 16256 ..... 11111110000000
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 136, Ex. 4.2.2. - N. J. A. Sloane, Jul 27 2012

Crossrefs

Programs

  • Magma
    [(10^(2*n) - 10^n)/9: n in [1..30]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,0]]],{n,15}] (* Harvey P. Dale, Nov 20 2011 *)
  • PARI
    Vec(10*x/((10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = (10^(2*n) - 10^n)/9 = A002275(n)*10^n. - Omar E. Pol, Apr 16 2008
a(n) = 10*A109241(n-1). - Omar E. Pol, Nov 08 2008
From Colin Barker, Sep 16 2013: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2).
G.f.: 10*x/((10*x-1)*(100*x-1)). (End)
From Elmo R. Oliveira, Jun 13 2025: (Start)
E.g.f.: exp(10*x)*(exp(90*x) - 1)/9.
a(n) = A276352(n)/9. (End)

A161168 a(n) = 2^n + 4^n.

Original entry on oeis.org

2, 6, 20, 72, 272, 1056, 4160, 16512, 65792, 262656, 1049600, 4196352, 16781312, 67117056, 268451840, 1073774592, 4295032832, 17180000256, 68719738880, 274878431232, 1099512676352, 4398048608256, 17592190238720, 70368752566272
Offset: 0

Views

Author

Zerinvary Lajos, Jun 04 2009

Keywords

Comments

Essentially a duplicate of A063376 and A028402.
a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 110, 10100, 1001000, 100010000, ..., i.e., number 1, (n-1) times 0, number 1, n times 0 (see A163664). a(n) is a bisection of A005418. - Jaroslav Krizek, Aug 14 2009
Central terms of the triangle in A173786. - Reinhard Zumkeller, Feb 28 2010
For n > 0 let 2^(n+1) be the length of the even leg of a primitive Pythagorean triangle (PPT); then the odd leg is constrained to have a length of 4^n-1 and the hypotenuse to have a length of 4^n+1. The resulting triangle has a semiperimeter of 4^n + 2^n. - Frank M Jackson, Dec 28 2017
a(n) is also the number of distinct planar embeddings of the (2n+7)-triangular snake graph. - Eric W. Weisstein, May 21 2024

Crossrefs

Programs

  • Magma
    [ 2^n+4^n: n in [0..25] ];
    
  • Maple
    A161168:=n->2^n+4^n: seq(A161168(n), n=0..40); # Wesley Ivan Hurt, Jul 24 2017
  • Mathematica
    a[n_]:=4^n+2^n; Array[a,24] (* Frank M Jackson, Dec 28 2017 *)
  • PARI
    a(n)=2^n+4^n \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    first(n) = Vec(2*(1 - 3*x)/((1 - 2*x)*(1 - 4*x)) + O(x^n)) \\ Iain Fox, Dec 28 2017
  • Sage
    [2^n + 4^n for n in range(0,25)]
    
  • Sage
    [sigma(4,n)-1for n in range(0,25)]
    

Formula

a(n) = 6*a(n-1) - 8*a(n-2); a(0)=2, a(1)=6. - Vincenzo Librandi, Dec 27 2010
G.f.: -2*(3*x-1) / ((2*x-1)*(4*x-1)). - Colin Barker, Mar 19 2013
E.g.f.: e^(2*x) + e^(4*x). - Iain Fox, Dec 28 2017
a(n) = 2*A007582(n). - R. J. Mathar, Feb 26 2018

A265736 Row sums of triangle A265705.

Original entry on oeis.org

0, 2, 8, 12, 29, 38, 46, 56, 107, 126, 144, 164, 177, 198, 218, 240, 407, 446, 484, 524, 557, 598, 638, 680, 691, 734, 776, 820, 857, 902, 946, 992, 1583, 1662, 1740, 1820, 1893, 1974, 2054, 2136, 2187, 2270, 2352, 2436, 2513, 2598, 2682, 2768, 2727, 2814
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 15 2015

Keywords

Comments

a(A000225(n)) = A020522(n).

Crossrefs

Programs

  • Haskell
    a265736 = sum . a265705_row

A216648 Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n).

Original entry on oeis.org

2, 12, 52, 56, 212, 216, 232, 240, 852, 856, 872, 880, 920, 936, 944, 976, 992, 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, 3752, 3760, 3792, 3808, 3888, 3920, 3936, 4000, 4032, 13652, 13656, 13672, 13680, 13720, 13736, 13744, 13776
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Comments

There is a simple bijection between the elements of row n and the rooted trees with n nodes. Each matching pair (1,0) in the binary string representation encodes a node, each totally balanced substring encodes a list of subtrees.

Examples

			856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0).  The encoded rooted tree is:
.    o
.   /|\
.  o o o
.      |
.      o
Triangle T(n,k) begins:
2;
12;
52,     56;
212,   216,  232,  240;
852,   856,  872,  880,  920,  936,  944,  976,  992;
3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ...
Triangle T(n,k) in binary:
10;
1100;
110100,       111000;
11010100,     11011000,     11101000,     11110000;
1101010100,   1101011000,   1101101000,   1101110000,   1110011000, ...
110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ...
		

Crossrefs

First column gives: A080675.
Last elements of rows give: A020522.
Row lengths are: A000081.
Subsequence of A057547, A081292.

Programs

  • Maple
    F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
          parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
    g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
          [seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose](
          [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0
          while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r
        end:
    T:= proc(n) option remember; map(b, F(n))[] end:
    seq(T(n), n=1..7);

Formula

T(n,k) = A216649(n-1,k)*2 + 2^(2*n-1) for n>1.
Previous Showing 11-20 of 42 results. Next