A032085
Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.
Original entry on oeis.org
2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528
Offset: 1
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- C. G. Bower, Transforms (2)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1022
- S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
-
[2] cat [2^(n-1)-2^Floor((n-1)/2) : n in [2..40]]; // Wesley Ivan Hurt, Jul 03 2020
-
Join[{2}, LinearRecurrence[{2, 2, -4}, {1, 2, 6}, 29]] (* Jean-François Alcover, Oct 11 2017 *)
-
a(n)=([0,1,0; 0,0,1; -4,2,2]^(n-1)*[2;1;2])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
A099393
a(n) = 4^n + 2^n - 1.
Original entry on oeis.org
1, 5, 19, 71, 271, 1055, 4159, 16511, 65791, 262655, 1049599, 4196351, 16781311, 67117055, 268451839, 1073774591, 4295032831, 17180000255, 68719738879, 274878431231, 1099512676351, 4398048608255, 17592190238719
Offset: 0
n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
- Vincenzo Librandi, Table of n, a(n) for n = 0..170
- A. M. Cohen and D. E. Taylor, On a Certain Lie Algebra Defined By a Finite Group, American Mathematical Monthly, volume 114, number 7, August-September 2007, pages 633-638. Also preprint. a(n) = t_n in proof of theorem 6.2.
- Sergey Kitaev and Toufik Mansour, The Peano curve and counting occurrences of some patterns, arXiv:math/0210268 [math.CO], 2002. Section 3 lemma 1, d_2^n = a(n-1).
- Sergey Kitaev, Toufik Mansour, and Patrice Séébold, Generating the Peano curve and counting occurrences of some patterns, Journal of Automata, Languages and Combinatorics, volume 9, number 4, 2004, pages 439-455. Also at ResearchGate. Section 4, |P_n|_r = a(n-1).
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
See the formula section for the relationships with
A000120,
A000217,
A000225,
A002378,
A007582,
A020522,
A023416,
A030101,
A063376,
A070939,
A083420,
A279396.
-
[4^n + 2^n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
-
LinearRecurrence[{7,-14,8},{1,5,19},30] (* Harvey P. Dale, Sep 06 2015 *)
-
a(n)=4^n+2^n-1; \\ Charles R Greathouse IV, Sep 24 2015
-
def A099393(n): return ((1<Chai Wah Wu, Mar 10 2025
A140690
A positive integer n is included if n written in binary can be subdivided into a number of runs all of equal-length, the first run from the left consisting of all 1's, the next run consisting of all 0's, the next run consisting of all 1's, the next run consisting of all 0's, etc.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 12, 15, 21, 31, 42, 51, 56, 63, 85, 127, 170, 204, 240, 255, 341, 455, 511, 682, 819, 992, 1023, 1365, 2047, 2730, 3276, 3640, 3855, 4032, 4095, 5461, 8191, 10922, 13107, 16256, 16383, 21845, 29127, 31775, 32767, 43690, 52428, 61680
Offset: 1
819 in binary is 1100110011. The runs of 0's and 1's are (11)(00)(11)(00)(11). Each run (alternating 1's and 0's) is the same length. So 819 is in the sequence.
-
import Data.Set (singleton, deleteFindMin, insert)
a140690 n = a140690_list !! (n-1)
a140690_list = f $ singleton (1, 1, 2) where
f s | k == 1 = m : f (insert (2*b-1, 1, 2*b) $ insert (b*m, k+1, b) s')
| even k = m : f (insert (b*m+b-1, k+1, b) s')
| otherwise = m : f (insert (b*m, k+1, b) s')
where ((m, k, b), s') = deleteFindMin s
-- Reinhard Zumkeller, Feb 21 2014
-
Runs := proc (L) local j, r, i, k: j := 1: r[j] := L[1]: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: A := {}: for n to 62000 do if nops(convert(c(n), set)) = 1 then A := `union`(A, {n}) else end if end do: A; # most of the Maple program is due to W. Edwin Clark. - Emeric Deutsch, Jan 25 2018
-
Select[Range[62000],Length[Union[Length/@Split[IntegerDigits[#,2]]]]==1&] (* Harvey P. Dale, Mar 22 2012 *)
A171476
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.
Original entry on oeis.org
1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0
Cf.
A006516 (2^(n-1)*(2^n-1)),
A020522 (4^n-2^n),
A048473 (2*3^n-1),
A151821 (powers of 2, omitting 2 itself),
A010684 (repeat 1, 3),
A084633 (inverse binomial transform of repeated odd numbers),
A168589 ((2-3^n)*(-1)^n),
A081625 (2*5^n-3^n),
A081626 (2*6^n-4^n),
A081627 (2*7^n-5^n),
A010036 (sum of 2^n, ..., 2^(n+1)-1),
A006095 (Gaussian binomial coefficient [n, 2] for q=2),
A171472,
A171473.
-
[2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
LinearRecurrence[{6,-8},{1,6},30] (* Harvey P. Dale, Aug 02 2020 *)
-
m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
A059153
a(n) = 2^(n+2)*(2^(n+1)-1).
Original entry on oeis.org
4, 24, 112, 480, 1984, 8064, 32512, 130560, 523264, 2095104, 8384512, 33546240, 134201344, 536838144, 2147418112, 8589803520, 34359476224, 137438429184, 549754765312, 2199021158400, 8796088827904, 35184363700224, 140737471578112, 562949919866880
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
A093069
a(n) = (2^n + 1)^2 - 2.
Original entry on oeis.org
7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407, 67125247, 268468223, 1073807359, 4295098367, 17180131327, 68720001023, 274878955519, 1099513724927, 4398050705407, 17592194433023, 70368760954879, 281475010265087, 1125899973951487
Offset: 1
G.f. = 7*x + 23*x^2 + 79*x^3 + 287*x^4 + 1087*x^5 + 4223*x^6 + 16639*x^7 + ...
- Michael De Vlieger, Table of n, a(n) for n = 1..1660
- Amelia Carolina Sparavigna, Binary Operators of the Groupoids of OEIS A093112 and A093069 Numbers(Carol and Kynea Numbers), Department of Applied Science and Technology, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Eric Weisstein's World of Mathematics, Near-Square Prime
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Cf.
A091514 (primes of the form (2^n + 1)^2 - 2).
-
[(2^n+1)^2-2 : n in [1..30]]; // Wesley Ivan Hurt, Jul 08 2014
-
A093069:=n->(2^n+1)^2-2: seq(A093069(n), n=1..30);
-
a[ n_] := If[ n < 1, 0, 4^n + 2^(n + 1) - 1]; (* Michael Somos, Jul 08 2014 *)
CoefficientList[Series[(7 - 26*x + 16*x^2)/((1 - x)*(2*x - 1)*(4*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 08 2014 *)
LinearRecurrence[{7,-14,8},{7,23,79},30] (* Harvey P. Dale, Aug 25 2025 *)
-
vector(100, n, (2^n+1)^2-2) \\ Colin Barker, Jul 08 2014
-
Vec(-(16*x^2-26*x+7)/((x-1)*(2*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Jul 08 2014
A138147
Concatenation of n digits 1 and n digits 0.
Original entry on oeis.org
10, 1100, 111000, 11110000, 1111100000, 111111000000, 11111110000000, 1111111100000000, 111111111000000000, 11111111110000000000, 1111111111100000000000, 111111111111000000000000, 11111111111110000000000000, 1111111111111100000000000000, 111111111111111000000000000000
Offset: 1
n ... A020522(n) ..... a(n)
1 ....... 2 ........... 10
2 ...... 12 .......... 1100
3 ...... 56 ......... 111000
4 ..... 240 ........ 11110000
5 ..... 992 ....... 1111100000
6 .... 4032 ...... 111111000000
7 ... 16256 ..... 11111110000000
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 136, Ex. 4.2.2. - N. J. A. Sloane, Jul 27 2012
-
[(10^(2*n) - 10^n)/9: n in [1..30]]; // Vincenzo Librandi, Apr 26 2011
-
Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,0]]],{n,15}] (* Harvey P. Dale, Nov 20 2011 *)
-
Vec(10*x/((10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A161168
a(n) = 2^n + 4^n.
Original entry on oeis.org
2, 6, 20, 72, 272, 1056, 4160, 16512, 65792, 262656, 1049600, 4196352, 16781312, 67117056, 268451840, 1073774592, 4295032832, 17180000256, 68719738880, 274878431232, 1099512676352, 4398048608256, 17592190238720, 70368752566272
Offset: 0
Original entry on oeis.org
0, 2, 8, 12, 29, 38, 46, 56, 107, 126, 144, 164, 177, 198, 218, 240, 407, 446, 484, 524, 557, 598, 638, 680, 691, 734, 776, 820, 857, 902, 946, 992, 1583, 1662, 1740, 1820, 1893, 1974, 2054, 2136, 2187, 2270, 2352, 2436, 2513, 2598, 2682, 2768, 2727, 2814
Offset: 0
A216648
Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n).
Original entry on oeis.org
2, 12, 52, 56, 212, 216, 232, 240, 852, 856, 872, 880, 920, 936, 944, 976, 992, 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, 3752, 3760, 3792, 3808, 3888, 3920, 3936, 4000, 4032, 13652, 13656, 13672, 13680, 13720, 13736, 13744, 13776
Offset: 1
856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0). The encoded rooted tree is:
. o
. /|\
. o o o
. |
. o
Triangle T(n,k) begins:
2;
12;
52, 56;
212, 216, 232, 240;
852, 856, 872, 880, 920, 936, 944, 976, 992;
3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ...
Triangle T(n,k) in binary:
10;
1100;
110100, 111000;
11010100, 11011000, 11101000, 11110000;
1101010100, 1101011000, 1101101000, 1101110000, 1110011000, ...
110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ...
Last elements of rows give:
A020522.
-
F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
[seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose](
[$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
end:
b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0
while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r
end:
T:= proc(n) option remember; map(b, F(n))[] end:
seq(T(n), n=1..7);
Comments