cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 71 results. Next

A263634 Irregular triangle read by rows: row n gives coefficients of n-th logarithmic polynomial L_n(x_1, x_2, ...) with monomials sorted into standard order.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -6, 12, -4, -3, 1, 24, -60, 20, 30, -5, -10, 1, -120, 360, -120, -270, 30, 120, 30, -6, -15, -10, 1, 720, -2520, 840, 2520, -210, -1260, -630, 42, 210, 140, 210, -7, -21, -35, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2015

Keywords

Comments

"Standard order" here means as produced by Maple's "sort" command.
From Petros Hadjicostas, May 27 2020: (Start)
According to the Maple help files for the "sort" command, polynomials in multiple variables are "sorted in total degree with ties broken by lexicographic order (this is called graded lexicographic order)."
Thus for example, x_1^2*x_3 = x_1*x_1*x_3 > x_1*x_2*x_2 = x_1*x_2^2, while x_1^2*x_4 = x_1*x_1*x_4 > x_1*x_2*x_3. (End)
Row sums are 0 (for n > 1). Numbers of terms in rows are partition numbers A000041.
From Tom Copeland, Nov 06 2015: (Start)
With the formal Taylor series f(x) = 1 + x[1] x + x[2] x^2/2! + ... , the partition polynomials of this entry give d[log(f(x))]/dx = L_1(x[1]) + L_2(x[1], x[2]) x + L_3(...) x^2/2! + ..., and the coefficients of the reduced polynomials with x[n] = t are signed A028246.
The raising operator R = x + d[log(f(D)]/dD = x + L_1(x[1]) + L_2[x[1], x[2]) D + L_3(x[1], x[2], x[3]) D^2/2! + ... with D = d/dx generates an Appell sequence of polynomials, given umbrally by P_n(x[1], ..., x[n]; x) = (x[.] + x)^n = Sum_{k=0..n} binomial(n,k) x[k] * x^(n-k) = R^n 1 with the e.g.f. f(t)*e^(x*t) = exp[t P.(x[1], ..., x[.]; x)]. P_0 = x[0] = 1.
The umbral compositional inverse Appell sequence is generated by R = x - d[log(f(D))]/dD with e.g.f. e^(x*t)/f(t) = exp[t IP.(x[1], ..., x[.]; x)], so umbrally IP_n(x[1], ..., x[n]; P.(x[1], ..., x[n]; x)) = x^n = P_n(x[1], ..., x[n]; IP.(x[1], ..., x[n]; x)). An unsigned array for the reduced IP_n(x[1], ..., x[n]; x) polynomials with IP_0 = x[0] = 1 and x[n] = -1 for n > 0 is A154921, for which f(t) = 2 - e^t. (End)
From Tom Copeland, Sep 08 2016: (Start)
The Appell formalism allows a matrix representation in the power basis x^n of the raising operator R that incorporates this array's partition polynomials L_n(x[1], ..., x[n]):
VP_(n+1) = VP_n * R = VP_n * XPS^(-1) * MX * XPS, where XPS is the matrix formed from multiplying the n-th diagonal of the Pascal matrix PS of A007318 by the indeterminate x[n], with x[0] = 1 for the main diagonal of ones, i.e., XPS[n,k] = PS[n,k] * x[n-k]; the matrix MX is A129185; the matrix XPS^(-1) is the inverse of XPS, which can be formed by multiplying the diagonals of the Pascal matrix by the partition polynomials IPT(n, x[1], ..., x[n]) of A133314, i.e., XPS^(-1)[n,k] = PS[n,k] * IPT(n-k, x[1], ...); and VP_n is the row vector in the power basis representing the Appell polynomial P_n(x) formed from the basic sequence of moments 1, x[1], x[2], ..., i.e., umbrally P_n(x) = (x[.] + x)^n = Sum_{k=0..n} binomial(n,k) * x[k] * x^(n-k).
Then R = XPS^(-1) * MX * XPS is the Pascal matrix PS with an additional first superdiagonal of ones and the other lower diagonals multiplied by the partition polynomials of this array, i.e., R[n,k] = PS[n,k] * L_{n+1-k}(x[1], ..., x[n+1-k]) except for the first superdiagonal of ones.
Consistently, VP_n = (1, 0, 0, ...) * R^n = (1, 0, 0, ...) * XPS^(-1) * MX^n * XPS = (1, 0, 0, ...) * MX^n * XPS = the n-th row vector of XPS, which is the vector representation of P_n(x) = (x[.] + x)^n with x[0] = 1.
See the Copeland link for the umbral representation R = exp[g.*D] * x * exp[h.*D] that reflects the matrix representations.
The Stirling partition polynomials of the first kind St1_n(a[1], a[2], ..., a[n]) of A036039, the Stirling partition polynomials of the second kind St2_n(b[1], b[2], ..., b[n]) of A036040, and the refined Lah polynomials Lah_n[c[1], c[2], ..., c[n]) of A130561 are Appell sequences in the respective distinguished indeterminates a[1], b[1], and c[1]. Comparing the formulas for their raising operators with that in this entry, L_n(x[1], x[2], ..., x[n]) evaluates to
A) (n-1)! * a[n] for x[n] = St1_n(a[1], a[2], ..., a[n]);
B) b[n] for x[n] = St2_n(b[1], b[2], ..., b[n]);
C) n! * c[n] for x[n] = Lah_n(c[1], c[2], ..., c[n]).
Conversely, from the respective e.g.f.s (added Sep 12 2016)
D) x[n] = St1_n(L_1(x[1])/0!, ..., L_n(x[1], ..., x[n])/(n-1)!);
E) x[n] = St2_n(L_1(x[1]), ..., L_n(x[1], ..., x[n]));
F) x[n] = Lah_n(L_1(x[1])/1!, ..., L_n(x[1], ..., x[n])/n!).
Given only the Appell sequence with no closed form for the e.g.f., the raising operator can be generated using this formalism, as has been partially done for A134264. (End)
For the Appell sequences above, the raising operator is related to the recursion P_(n+1)(x) = x * P_n(x) + Sum_{k=0..n} binomial(n,k) * L_(n-k+1)(x[1], ..., x[n+k-1]) * P_k(x). For a derivation and connections to formal cumulants (c_n = L_n(x[1], ...)) and moments (m_n = x[n]), see the Copeland link on noncrossing partitions. With x = 0, the recursion reduces to x[n+1] = Sum_{k = 0..n} binomial(n,k) * L_(n-k+1)(x[1], ..., x[n+k-1]) * x[k] with x[0] = 1. This array is a differently ordered version of A127671. - Tom Copeland, Sep 13 2016
With x[n] = x^(n-1), a signed version of A130850 is obtained. - Tom Copeland, Nov 14 2016
See p. 2 of Getzler for a relation to stable graphs called necklaces used in computations for Deligne-Mumford-Knudsen moduli spaces of stable curves of genus 1. - Tom Copeland, Nov 15 2019
For a relation to a combinatorial Faa di Bruno Hopf algebra related to functional composition, as presented by Connes and Moscovici, see Figueroa et al. - Tom Copeland, Jan 17 2020
From Tom Copeland, May 17 2020: (Start)
The e.g.f. of an Appell sequence is f(t) e^(x*t) with f(0) = 1. Given the Laguerre-Polya class function f(t) = e^(-a*t^2 + b*t) Product_m (1 - t/z_m) e^(t/z_m) with a = 0 for simplicity (more generally a >= 0) and b real and where the product runs over all the zeros z_m of f(t) with all zeros real and Sum_m 1/(z_m)^2 convergent, the raising operator of the Appell polynomials is R = x + b - Sum_{k > 0} c_(k+1) D^k with c_k = Sum_m (1/(z_m)^k), i.e., traces of powers of the reciprocals of the zeros. From R in earlier comments, b = L_1(x_1) and otherwise c_k = -L_k(x_1, ..., x_k).
The Laguerre / Turan / de Gua inequalities (Csordas and Williamson and Skovgaard) imply that all the zeros of each Appell polynomial are real and simple and its extrema are local maxima above the x-axis and local minima below and are located above or below the zeros of the next lower degree Appell polynomial. (End)
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)
Ignoring signs, these polynomials appear in Schröder in the set of equations (II) on p. 343 and in Stewart's translation on p. 31. - Tom Copeland, Aug 25 2021

Examples

			The first few polynomials are:
(1) x[1].
(2) -x[1]^2 + x[2].
(3) 2*x[1]^3 - 3*x[1]*x[2] + x[3].
(4) -6*x[1]^4 + 12*x[1]^2*x[2] - 4*x[1]*x[3] - 3*x[2]^2 + x[4].
(5) 24*x[1]^5 - 60*x[1]^3*x[2] + 20*x[1]^2*x[3] + 30*x[1]*x[2]^2 - 5*x[1]*x[4] - 10*x[2]*x[3] + x[5].
(6) -120*x[1]^6 + 360*x[1]^4*x[2] - 120*x[1]^3*x[3] - 270*x[1]^2*x[2]^2 + 30*x[1]^2*x[4] + 120*x[1]*x[2]*x[3] + 30*x[2]^3 - 6*x[1]*x[5] - 15*x[2]*x[4] - 10*x[3]^2 + x[6].
...
[1]    1
[2]   -1,    1
[3]    2,   -3,     1
[4]   -6,   12,    -4,    -3,   1
[5]   24,  -60,    20,    30,  -5,  -10,   1
[6] -120,  360,  -120,  -270,  30,  120,  30, -6, -15, -10, 1
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 140, 156, 308.

Crossrefs

Programs

  • Maple
    triangle := proc(numrows) local E, s, Q;
    E := add(x[i]*t^i/i!, i=1..numrows);
    s := series(log(1 + E), t, numrows+1);
    Q := k -> sort(expand(k!*coeff(s, t, k)));
    seq(print(coeffs(Q(k))), k=1..numrows) end:
    triangle(6); # updated by Peter Luschny, May 27 2020

Formula

G.f.: Log(1 + Sum_{i >= 1} x_i*t^i/i!) = Sum_{n >= 1} L_n(x_1, x_2, ...)*t^n/n!. [Comtet, p. 140, Eq. [5a]. - corrected by Tom Copeland, Sep 08 2016]
Conjecture: row polynomials are R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) - Sum_{j=1..n-1} binomial(n-2,j-1)*R(j,k)*R(n-j,1) for n > 1, k > 0 with R(1,k) = x_k for k > 0. - Mikhail Kurkov, Mar 30 2025

A004731 a(0) = 1; thereafter a(n) = denominator of (n-2)!! / (n-1)!!.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864, 300540195, 2147483648, 9917826435, 4294967296, 20419054425
Offset: 0

Views

Author

Keywords

Comments

Also numerator of rational part of Haar measure on Grassmannian space G(n,1).
Also rational part of numerator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A036039).
Let x(m) = x(m-2) + 1/x(m-1) for m >= 3, with x(1)=x(2)=1. Then the numerator of x(n+2) equals the denominator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. - Joseph E. Cooper III (easonrevant(AT)gmail.com), Nov 07 2010, as corrected in Cooper (2015).
Numerator of (n-1)/( (n-2)/( .../1)), with an empty fraction taken to be 1. - Flávio V. Fernandes, Jan 31 2025

Examples

			1, 1, (1/2)*Pi, 2, (3/4)*Pi, 8/3, (15/16)*Pi, 16/5, (35/32)*Pi, 128/35, (315/256)*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), 1/2*Pi^(1/2), 2/Pi^(1/2), 3/4*Pi^(1/2), 8/3/Pi^(1/2), 15/16*Pi^(1/2), 16/5/Pi^(1/2), ...
		

References

  • D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.

Crossrefs

Cf. A001803, A004730, A006882 (double factorials), A036069.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a004731 0 = 1
    a004731 n = a004731_list !! n
    a004731_list = map numerator ggs where
       ggs = 0 : 1 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
    -- Reinhard Zumkeller, Dec 08 2011
    
  • Maple
    if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
    f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
    #
    [1, seq(denom(doublefactorial(n-2)/doublefactorial(n-1)), n = 1..36)]; # Peter Luschny, Feb 09 2025
  • Mathematica
    Table[ Denominator[ (n-2)!! / (n-1)!! ], {n, 0, 31}] (* Jean-François Alcover, Jul 16 2012 *)
    Denominator[#[[1]]/#[[2]]&/@Partition[Range[-2,40]!!,2,1]] (* Harvey P. Dale, Nov 27 2014 *)
    Join[{1},Table[Numerator[(n/2-1/2)!/((n/2-1)!Sqrt[Pi])], {n,1,31}]] (* Peter Luschny, Feb 08 2025 *)
  • PARI
    f(n) = prod(i=0, (n-1)\2, n - 2*i); \\ A006882
    a(n) = if (n==0, 1, denominator(f(n-2)/f(n-1))); \\ Michel Marcus, Feb 08 2025
  • Python
    from sympy import gcd, factorial2
    def A004731(n):
        if n <= 1:
            return 1
        a, b = factorial2(n-2), factorial2(n-1)
        return b//gcd(a,b) # Chai Wah Wu, Apr 03 2021
    

Extensions

Name corrected by Michel Marcus, Feb 08 2025

A008298 Triangle of D'Arcais numbers.

Original entry on oeis.org

1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 144, 450, 215, 30, 1, 1440, 3394, 2475, 565, 45, 1, 5760, 30912, 28294, 9345, 1225, 63, 1, 75600, 293292, 340116, 147889, 27720, 2338, 84, 1, 524160, 3032208, 4335596, 2341332, 579369, 69552, 4074, 108, 1, 6531840, 36290736, 57773700, 38049920, 11744775, 1857513, 154350, 6630, 135, 1
Offset: 1

Views

Author

Keywords

Comments

Also the Bell transform of A038048(n+1) and the inverse Bell transform of A180563(n+1) (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Named after the Italian mathematician Francesco Flores D'Arcais (1849-1927). - Amiram Eldar, Jun 13 2021

Examples

			exp(Sum_{n>0} sigma(n)*u*x^n/n) = 1+u*x/1!+(3*u+u^2)*x^2/2!+(8*u+9*u^2+u^3)*x^3/3!+(42*u+59*u^2+18*u^3+u^4)*x^4/4!+...
Triangle starts:
      1:
      3,      1;
      8,      9,      1;
     42,     59,     18,      1;
    144,    450,    215,     30,     1;
   1440,   3394,   2475,    565,    45,    1;
   5760,  30912,  28294,   9345,  1225,   63,  1;
  75600, 293292, 340116, 147889, 27720, 2338, 84, 1;
  ...
T(4; u) = 4!*(binomial(u+3,4) + binomial(u+1,2)*binomial(u,1) + binomial(u+1,2) + binomial(u,1)^2 + binomial(u,1)) = 42*u+59*u^2+18*u^3+u^4.
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
  • F. D'Arcais, Développement en série, Intermédiaire Math., Vol. 20 (1913), pp. 233-234.

Crossrefs

Column k=1..3 give A038048, A059356, A059357.
Row sums give A053529.

Programs

  • Maple
    P := proc(n): if n=0 then 1 else P(n):= (1/n)*(add(x(n-k) * P(k), k=0..n-1)) fi; end: with(numtheory): x := proc(n): sigma(n) * x end: Q := proc(n): n!*P(n) end: T := proc(n, k): coeff(Q(n), x, k) end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, Jul 08 2016
  • Mathematica
    t[0][u_] = 1; t[n_][u_] := t[n][u] = Sum[(n-1)!/(n-k)!*DivisorSigma[1, k]*u*t[n-k][u], {k, 1, n}]; row[n_] := CoefficientList[ t[n][u], u] // Rest; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 03 2012, after Vladeta Jovovic *)
  • PARI
    row(n)={local(P(n)=if(n,sum(k=0,n-1,sigma(n-k)*x*P(k))/n,1)); Vecrev(P(n)*n!/x)} \\ T(n,k)=row(n)[k]. - M. F. Hasler, Jul 13 2016
    
  • PARI
    a(n) = if(n<1, 0, (n-1)!*sigma(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    print(bell_matrix(lambda n: A038048(n+1), 9)) # Peter Luschny, Jan 19 2016
    

Formula

G.f.: Sum_{1<=k<=n} T(n, k)*u^k*t^n/n! = ((1-t)*(1-t^2)*(1-t^3)...)^(-u).
Recurrence for degree n D'Arcais polynomials T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = Sum_{k=1..n} (n-1)!/(n-k)!*sigma(k)*u*T(n-k; u), T(0; u) = 1. - Vladeta Jovovic, Oct 11 2002
T(n; u) = n!*Sum_{pi} Product_{i=1..n} binomial(u+k(i)-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Oct 11 2002
E.g.f.: exp(Sum_{n>0} sigma(n)*u*x^n/n), where sigma(n)=A000203(n). - Vladeta Jovovic, Jan 10 2003
T(n, k) = coeff(n!*P(n), x^k), n >= 1 and 1 <= k <= n, with P(n) = (1/n)*Sum_{k=0..n-1} sigma(n-k)*P(k)*x for n >= 1 and P(n=0) = 1. See A036039. - Johannes W. Meijer, Jul 08 2016
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} sigma(i_j)/i_j. - Seiichi Manyama, Nov 09 2020.

Extensions

More terms from Vladeta Jovovic, Dec 28 2001

A090998 Decimal expansion of lim_{k -> +-oo} k^2*(1 - Gamma(1+i/k)) where i^2 = -1 and Gamma is the Gamma function.

Original entry on oeis.org

9, 8, 9, 0, 5, 5, 9, 9, 5, 3, 2, 7, 9, 7, 2, 5, 5, 5, 3, 9, 5, 3, 9, 5, 6, 5, 1, 5, 0, 0, 6, 3, 4, 7, 0, 7, 9, 3, 9, 1, 8, 3, 5, 2, 0, 7, 2, 8, 2, 1, 4, 0, 9, 0, 4, 4, 3, 1, 9, 5, 7, 8, 3, 6, 8, 6, 1, 3, 6, 6, 3, 2, 0, 4, 9, 4, 7, 8, 7, 7, 1, 7, 4, 7, 4, 4, 6, 0, 8, 4, 6, 2, 5, 7, 3, 7, 3, 4, 1, 3, 0, 3, 5, 2
Offset: 0

Views

Author

Benoit Cloitre, Feb 29 2004

Keywords

Comments

Limit_{k->oo} k*(1-Gamma(1+1/k)) = -Gamma'(1) = gamma = 0.577....
Decimal expansion of the higher-order exponential integral constant gamma(2,1). The higher-order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*Integral_{t=x..oo} (E(t,m-1,n)/t^n) dt for m >= 1 and n >= 1, with E(x,m=0,n) = exp(-x). The series expansions of the higher-order exponential integrals are dominated by the gamma(k,n) and the alpha(k,n) constants, see A163927. - Johannes W. Meijer and Nico Baken, Aug 13 2009

Examples

			G(2,1) = 0.9890559953279725553953956515...
		

Crossrefs

Cf. A163931 (E(x,m,n)), A163927 (alpha(k,n)), A001620 (gamma).
The structure of the G(k,n=1) formulas lead (replace gamma with G and Zeta with Z) to A036039. - Johannes W. Meijer and Nico Baken, Aug 13 2009
Cf. A081855.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (6*EulerGamma(R)^2 + Pi(R)^2)/12; // G. C. Greubel, Feb 01 2019
    
  • Maple
    ncol:=1; nmax:=5; kmax:=nmax; for n from 1 to nmax do G(0,n):=1 od: for n from 1 to nmax do for k from 1 to kmax do G(k,n):= expand((1/k)*((gamma-sum(p^(-1),p=1..n-1))* G(k-1,n)+sum((Zeta(k-i)-sum(p^(-(k-i)),p=1..n-1))*G(i,n),i=0..k-2))) od; od: for k from 0 to kmax do G(k,ncol):=G(k,ncol) od; # Johannes W. Meijer and Nico Baken, Aug 13 2009
  • Mathematica
    RealDigits[(6*EulerGamma^2 + Pi^2)/12, 10, 104][[1]] (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    default(realprecision, 100); (6*Euler^2 +Pi^2)/12 \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    numerical_approx((6*euler_gamma^2 + pi^2)/12, digits=100) # G. C. Greubel, Feb 01 2019

Formula

From Johannes W. Meijer and Nico Baken, Aug 13 2009: (Start)
G(2,1) = gamma(2,1) = gamma^2/2 + Pi^2/12.
G(k,n) = (1/k)*(gamma*G(k-1,n)) - (1/k)*Sum_{p=1..n-1} (p^(-1))* G(k-1,n) + (1/k) * Sum_{i=0..k-2} (Zeta(k-i) * G(i,n)) - (1/k)*Sum_{i=0..k-2}(Sum_{p=1..n-1} (p^(i-k)) * G(i,n)) with G(0,n) = 1 for k >= 0 and n >= 1.
G(k,n+1) = G(k,n) - G(k-1,n)/n.
GF(z,n) = GAMMA(n-z)/GAMMA(n).
(gamma - G(1,n)) = A001008(n-1)/A002805(n-1) for n >= 2. (End)
Equals A081855/2. - Hugo Pfoertner, Mar 12 2024

A133932 Coefficients of a partition transform for Lagrange inversion of -log(1 - u(.)*t), complementary to A134685 for an e.g.f.

Original entry on oeis.org

1, -1, 3, -2, -15, 20, -6, 105, -210, 40, 90, -24, -945, 2520, -1120, -1260, 420, 504, -120, 10395, -34650, 25200, 18900, -2240, -15120, -9072, 1260, 2688, 3360, -720, -135135, 540540, -554400, -311850, 123200, 415800, 166320, -50400, -56700, -120960, -75600, 18144, 20160, 25920, -5040
Offset: 1

Views

Author

Tom Copeland, Jan 27 2008

Keywords

Comments

Let f(t) = -log(1 - u(.)*t) = Sum_{n>=1} (u_n / n) * t^n.
If u_1 is not equal to 0, then the compositional inverse for f(t) is given by g(t) = Sum_{j>=1} P(n,t) where, with u_n denoted by (n'),
P(1,t) = (1')^(-1) * [ 1 ] * t
P(2,t) = (1')^(-3) * [ -1 (2') ] * t^2 / 2!
P(3,t) = (1')^(-5) * [ 3 (2')^2 - 2 (1')(3') ] * t^3 / 3!
P(4,t) = (1')^(-7) * [ -15 (2')^3 + 20 (1')(2')(3') - 6 (1')^2 (4') ] * t^4 / 4!
P(5,t) = (1')^(-9) * [ 105 (2')^4 - 210 (1') (2')^2 (3') + 40 (1')^2 (3')^2 + 90 (1')^2 (2') (4') - 24 (1')^3 (5') ] * t^5 / 5!
P(6,t) = (1')^(-11) * [ -945 (2')^5 + 2520 (1') (2')^3 (3') - 1120 (1')^2 (2') (3')^2 - 1260 (1')^2 (2')^2 (4') + 420 (1')^3 (3')(4') + 504 (1')^3 (2')(5') - 120 (1')^4 (6') ] * t^6 / 6!
See A134685 for more information.
From Tom Copeland, Sep 28 2016: (Start)
P(7,t) = (1')^(-13) * [ 10395 (2')^6 - 34650 (1')(2')^4(3') + (1')^2 [25200 (2')^2(3')^2 + 18900 (2')^3(4')] - (1')^3 [2240 (3')^3 + 15120 (2')(3')(4') + 9072 (2')^2(5')] + (1')^4 [1260 (4')^2 + 2688 (3')(5') + 3360 (2')(6')] - 720 (1')^5(7')] * t^7 / 7!
P(8,t) = (1')^(-15) * [ -135135 (2')^7 + 540540 (1')(2')^5(3') - (1')^2 [554400 (2')^3(3')^2 + 311850 (2')^4(4')] + (1')^3 [123200 (2')(3')^3 + 415800 (2')^2(3')(4') + 166320 (2')^3(5')] - (1')^4 [50400 (3')^2(4') + 56700 (2')(4')^2 + 120960 (2')(3')(5') + 75600 (2')^2(6')] + (1')^5 [18144 (4')(5') + 20160 (3')(6') + 25920 (2')(7')] - 5040 (1')^6(8')] * t^8 / 8! (End)

Examples

			From _Tom Copeland_, Sep 18 2014: (Start)
Let f(x) = log((1-ax)/(1-bx))/(b-a) = -log(1-u.*x) = x + (a+b)x^2/2 + (a^2+ab+b^2)x^3/3 + (a^3+a^2b+ab^2+a^3)x^4/4 + ... . with (u.)^n = u_n = h_(n-1)(a,b) the complete homogeneous polynomials in two indeterminates.
Then the inverse g(x) = (e^(ax)-e^(bx))/(a*e^(ax)-b*e^(bx)) = x - (a+b)x^2/2! + (a^2+4ab+b^2)x^3/3! - (a^3+11a^2b+11ab^2+b^3)x^4/4! + ... , where the bivariate polynomials are the Eulerian polynomials of A008292.
The inversion formula gives, e.g., P(3,x) = 3(u_2)^2 - 2u_3 = 3(h_1)^2 - 2h_2 = 3(a+b)^2 - 2(a^2 + ab + b^2) = a^2 + 4ab + b^2. (End)
		

Crossrefs

Cf. A145271 (A111999, A007318) = (reduced array, associated g(x)).

Programs

  • Mathematica
    rows[nn_] := {{1}}~Join~With[{s = InverseSeries[t (1 + Sum[u[k] t^k/(k+1), {k, nn}] + O[t]^(nn+1))]}, Table[(n+1)! Coefficient[s, t^(n+1) Product[u[w], {w, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n]]]}]];
    rows[7] // Flatten (* Andrey Zabolotskiy, Mar 08 2024 *)

Formula

The bracketed partitions of P(n,t) are of the form (u_1)^e(1) (u_2)^e(2) ... (u_n)^e(n) with coefficients given by (-1)^(n-1+e(1)) * [2*(n-1)-e(1)]! / [ 2^e(2) (e(2))! * 3^e(3) (e(3))! * ... n^e(n) * (e(n))! ].
From Tom Copeland, Sep 06 2011: (Start)
Let h(t) = 1/(df(t)/dt)
= 1/Ev[u./(1-u.t)]
= 1/((u_1) + (u_2)*t + (u_3)*t^2 + (u_4)*t^3 + ...),
where Ev denotes umbral evaluation.
Then for the partition polynomials of A133932,
n!*P(n,t) = ((t*h(y)*d/dy)^n) y evaluated at y=0,
and the compositional inverse of f(t) is
g(t) = exp(t*h(y)*d/dy) y evaluated at y=0.
Also, dg(t)/dt = h(g(t)). (End)
From Tom Copeland, Oct 20 2011: (Start)
With exp[x* PS(.,t)] = exp[t*g(x)] = exp[x*h(y)d/dy] exp(t*y) eval. at y=0, the raising/creation and lowering/annihilation operators defined by R PS(n,t)=PS(n+1,t) and L PS(n,t)= n*PS(n-1,t) are
R = t*h(d/dt) = t* 1/[(u_1) + (u_2)*d/dt + (u_3)*(d/dt)^2 + ...], and
L = f(d/dt) = (u_1)*d/dt + (u_2)*(d/dt)^2/2 + (u_3)*(d/dt)^3/3 + ....
Then P(n,t) = (t^n/n!) dPS(n,z)/dz eval. at z=0. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.) (End)
The bracketed partition polynomials of P(n,t) are also given by (d/dx)^(n-1) 1/[u_1 + u_2 * x/2 + u_3 * x^2/3 + ... + u_n * x^(n-1)/n]^n evaluated at x=0. - Tom Copeland, Jul 07 2015
From Tom Copeland, Sep 19 2016: (Start)
Equivalent matrix computation: Multiply the m-th diagonal (with m=1 the index of the main diagonal) of the lower triangular Pascal matrix A007318 by f_m = (m-1)! u_m = (d/dx)^m f(x) evaluated at x=0 to obtain the matrix UP with UP(n,k) = binomial(n,k) f_{n+1-k}, or equivalently, multiply the diagonals of A094587 by u_m. Then P(n,t) = (1, 0, 0, 0,..) [UP^(-1) * S]^(n-1) FC * t^n/n!, where S is the shift matrix A129185, representing differentiation in the basis x^n//n!, and FC is the first column of UP^(-1), the inverse matrix of UP. These results follow from A145271 and A133314.
With u_1 = 1, the first column of UP^(-1) with u_1 = 1 (with initial indices [0,0]) is composed of the row polynomials n! * OP_n(-u_2,...,-u_(n+1)), where OP_n(x[1],...,x[n]) are the row polynomials of A263633 for n > 0 and OP_0 = 1, which are related to those of A133314 as reciprocal o.g.f.s are related to reciprocal e.g.f.s; e.g., UP^(-1)[0,0] = 1, Up^(-1)[1,0] = -u_2, UP^(-1)[2,0] = 2! * (-u_3 + u_2^2) = 2! * OP_2(-u_2,-u_3).
Also, P(n,t) = (1, 0, 0, 0,..) [UP^(-1) * S]^n (0, 1, 0, ..)^T * t^n/n! in agreement with A139605. (End)
From Tom Copeland, Sep 20 2016: (Start)
Let PS(n,u1,u2,...,un) = P(n,t) / (t^n/n!), i.e., the square-bracketed part of the partition polynomials in the expansion for the inverse in the comment section, with u_k = uk.
Also let PS(n,u1=1,u2,...,un) = PB(n,b1,b2,...,bK,...) where each bK represents the partitions of PS, with u1 = 1, that have K components or blocks, e.g., PS(5,1,u2,...,u5) = PB(5,b1,b2,b3,b4) = b1 + b2 + b3 + b4 with b1 = -24 u5, b2 = 90 u2 u4 + 40 u3^2, b3 = -210 u2^2 u3, and b4 = 105 u2^4.
The relation between solutions of the inviscid Burgers's equation and compositional inverse pairs (cf. link and A086810) implies, for n > 2, PB(n, 0 * b1, 1 * b2, ..., (K-1) * bK, ...) = (1/2) * Sum_{k = 2..n-1} binomial(n+1,k) * PS(n-k+1, u_1=1, u_2, ..., u_(n-k+1)) * PS(k,u_1=1,u_2,...,u_k).
For example, PB(5,0 * b1, 1 * b2, 2 * b3, 3 * b4) = 3 * 105 u2^4 - 2 * 210 u2^2 u3 + 1 * 90 u2 u4 + 1 * 40 u3^2 - 0 * -24 u5 = 315 u2^4 - 420 u2^2 u3 + 90 u2 u4 + 40 u3^2 = (1/2) [2 * 6!/(4!*2!) * PS(2,1,u2) * PS(4,1,u2,...,u4) + 6!/(3!*3!) * PS(3,1,u2,u3)^2] = (1/2) * [ 2 * 6!/(4!*2!) * (-u2) (-15 u2^3 + 20 u2 u3 - 6 u4) + 6!/(3!*3!) * (3 u2^2 - 2 u3)^2].
Also, PB(n,0*b1,1*b2,...,(K-1)*bK,...) = d/dt t^(n-2)*PS(n,u1=1/t,u2,...,un)|{t=1} = d/dt (1/t)*PS(n,u1=1,t*u2,...,t*un)|{t=1}.
(End)
A recursion relation for computing each partition polynomial of this entry from the lower order polynomials and the coefficients of the refined Stirling polynomials of the first kind A036039 is presented in the blog entry "Formal group laws and binomial Sheffer sequences." - Tom Copeland, Feb 06 2018

Extensions

Terms ordered according to the reversed Abramowitz-Stegun ordering of partitions (with every k' replaced by (k-1)') by Andrey Zabolotskiy, Mar 08 2024

A049218 Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -8, 0, 1, 24, 0, -20, 0, 1, 0, 184, 0, -40, 0, 1, -720, 0, 784, 0, -70, 0, 1, 0, -8448, 0, 2464, 0, -112, 0, 1, 40320, 0, -52352, 0, 6384, 0, -168, 0, 1, 0, 648576, 0, -229760, 0, 14448, 0, -240, 0, 1, -3628800, 0, 5360256, 0, -804320, 0, 29568, 0, -330, 0, 1
Offset: 1

Views

Author

Keywords

Comments

|T(n,k)| gives the sum of the M_2 multinomial numbers (A036039) for those partitions of n with exactly k odd parts. E.g.: |T(6,2)| = 144 + 40 = 184 from the partitions of 6 with exactly two odd parts, namely (1,5) and (3,3), with M_2 numbers 144 and 40. Proof via the general Jabotinsky triangle formula for |T(n,k)| using partitions of n into k parts and their M_3 numbers (A036040). Then with the special e.g.f. of the (unsigned) k=1 column, f(x):= arctanh(x), only odd parts survive and the M_3 numbers are changed into the M_2 numbers. For the Knuth reference on Jabotinsky triangles see A039692. - Wolfdieter Lang, Feb 24 2005 [The first two sentences have been corrected thanks to the comment by José H. Nieto S. given below. - Wolfdieter Lang, Jan 16 2012]
|T(n,k)| gives the number of permutations of {1,2,...,n} (degree n permutations) with the number of odd cycles equal to k. E.g.: |T(5,3)|= 20 from the 20 degree 5 permutations with cycle structure (.)(.)(...). Proof: Use the cycle index polynomial for the symmetric group S_n (see the M_2 array A036039 or A102189) together with the partition interpretation of |T(n,k)| given above. - Wolfdieter Lang, Feb 24 2005 [See the following José H. Nieto S. correction. - Wolfdieter Lang, Jan 16 2012]
The first sentence of the above comment is inexact, it should be "|T(n,k)| gives the number of degree n permutations which decompose into exactly k odd cycles". The number of degree n permutations with k odd cycles (and, possibly, other cycles of even length) is given by A060524. - José H. Nieto S., Jan 15 2012
The unsigned triangle with e.g.f. exp(x*arctanh(z)) is the associated Jabotinsky type triangle for the Sheffer type triangle A060524. See the comments there. - Wolfdieter Lang, Feb 24 2005
Also the Bell transform of the sequence (-1)^(n/2)*A005359(n) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle begins:
   1;
   0,   1;
  -2,   0,   1;
   0,  -8,   0,   1;
  24,   0, -20,   0,   1;
   0, 184,   0, -40,   0,   1;
  ...
O.g.f. for fifth subdiagonal: (24*t+16*t^2)/(1-t)^7 = 24*t + 184*t^2 + 784*t^3 + 2404*t^4 + ....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.

Crossrefs

Essentially same as A008309, which is the main entry for this sequence.
Row sums (unsigned) give A000246(n); signed row sums give A002019(n), n>=1. A137513.

Programs

  • Maple
    A049218 := proc(n,k)(-1)^((3*n+k)/2) *add(2^(j-k)*n!/j! *stirling1(j,k) *binomial(n-1,j-1),j=k..n) ; end proc: # R. J. Mathar, Feb 14 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n::odd, 0, (-1)^(n/2)*n!), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    t[n_, k_] := (-1)^((3n+k)/2)*Sum[ 2^(j-k)*n!/j!*StirlingS1[j, k]*Binomial[n-1, j-1], {j, k, n}]; Flatten[ Table[ t[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Dec 06 2011, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 12;
    M = BellMatrix[If[OddQ[#], 0, (-1)^(#/2)*#!]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    T(n,k)=polcoeff(serlaplace(atan(x)^k/k!), n)

Formula

E.g.f.: arctan(x)^k/k! = Sum_{n>=0} T(n, k) x^n/n!.
T(n,k) = ((-1)^((3*n+k)/2)*n!/2^k)*Sum_{i=k..n} 2^i*binomial(n-1,i-1)*Stirling1(i,k)/i!. - Vladimir Kruchinin, Feb 11 2011
E.g.f.: exp(t*arctan(x)) = 1 + t*x + t^2*x^2/2! + t*(t^2-2)*x^3/3! + .... The unsigned row polynomials are the Mittag-Leffler polynomials M(n,t/2). See A137513. The compositional inverse (with respect to x) (x-t/2*log((1+x)/(1-x)))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3!+ (24*t+16*t^2)/(1-t)^7*x^5/5! + .... The rational functions in t generate the (unsigned) diagonals of the table. See the Bala link. - Peter Bala, Dec 04 2011

Extensions

Additional comments from Michael Somos

A135002 Decimal expansion of 2/e.

Original entry on oeis.org

7, 3, 5, 7, 5, 8, 8, 8, 2, 3, 4, 2, 8, 8, 4, 6, 4, 3, 1, 9, 1, 0, 4, 7, 5, 4, 0, 3, 2, 2, 9, 2, 1, 7, 3, 4, 8, 9, 1, 6, 2, 2, 2, 6, 2, 0, 6, 3, 5, 3, 5, 6, 6, 9, 0, 1, 5, 6, 7, 3, 6, 0, 3, 3, 9, 4, 9, 2, 2, 9, 9, 1, 4, 8, 9, 7, 9, 9, 6
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

From Johannes W. Meijer, Jun 27 2016: (Start)
This constant is related to the values of zeta(2*n-1) of the Riemann zeta function and the Euler Mascheroni constant gamma. If we define Z(n) = (1/n) * (sum(zeta(2*n-2*k-1) * Z(k), k=0..n-2) + gamma * Z(n-1)), with Z(0) = 1, then limit(Z(n), n -> infinity) = 2/exp(1).
Similar formulas appear in A090998 and A112302.
The structure of the n! * Z(n) formulas leads to the multinomial coefficients A036039. (End).

Examples

			0.735758882342... = 2*A068985.
		

Crossrefs

Programs

Formula

Integral of log x from x = 1/e to e. - Charles R Greathouse IV, Apr 16 2015
Equals lim_{k->0} 2*(1 - k)^(1/k). - Ilya Gutkovskiy, Jun 27 2016
Equals Sum_{i>=0} ((-1)^i)(1-i)/i!. - Maciej Kaniewski, Sep 10 2017
Equals Sum_{i>=0} ((-1)^i)(i^2+2)/i!. - Maciej Kaniewski, Sep 12 2017
From Peter Bala, Mar 21 2022: (Start)
2/e = Integral_{x = 1..oo} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx;
2/e = - Integral_{x = 0..1} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx, both valid for n >= 2. (End)

A111786 Array used to obtain the complete symmetric function in n variables in terms of the elementary symmetric functions; irregular triangle T(n,k), read by rows, with n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 2, 1, -3, 1, 1, -2, -2, 3, 3, -4, 1, -1, 2, 2, 1, -3, -6, -1, 4, 6, -5, 1, 1, -2, -2, -2, 3, 6, 3, 3, -4, -12, -4, 5, 10, -6, 1, -1, 2, 2, 2, 1, -3, -6, -6, -3, -3, 4, 12, 6, 12, 1, -5, -20, -10, 6, 15, -7, 1, 1, -2, -2, -2, -2, 3, 6, 6, 3, 3, 6, 1, -4, -12, -12, -12, -12, -4, 5, 20, 10, 30, 5, -6, -30, -20, 7, 21, -8, 1, -1
Offset: 1

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

The unsigned numbers give A048996. They are not listed on pp. 831-832 of Abramowitz and Stegun (reference given in A103921). One could call these numbers M_0 (like M_1, M_2, M_3 given in A036038, A036039, A036040, resp.).
The sequence of row lengths is A000041(n) (partition numbers).
The sign is (-1)^(n + m(n,k)) with m(n,k) the number of parts of the k-th partition of n taken in the mentioned order. For m(n,k), see A036043.
The row sum is 1 for n = 1, and 0 otherwise. The unsigned row sum is 2^(n-1) = A000079(n-1) for n >= 1.
The complete symmetric polynomial is also h(n; a[1],...,a[n]) = Det(A_n) with the matrix elements of the n X n matrix A_n given by A_n(k, k+1) = 1 for 1 <= k < n, A(k, m) = a[k-m+1] for n >= k >= m >= 1, and 0 otherwise. [For an explanation of this statement, see the example for n = 4 below. See also p. 3 in MacMahon (1960).]

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
   1;
  -1,  1;
   1, -2,  1;
  -1,  2,  1, -3,  1;
   1, -2, -2,  3,  3, -4,  1;
  -1,  2,  2,  1, -3, -6, -1, 4, 6, -5, 1,
   ...
h(4; a[1],...,a[4])= -1*a[4] + 2*a[1]*a[3] + 1*a[2]^2 - 3*a[1]^2*a[2] + a[1]^4.
Consider variables x_1, x_2, x_3, x_4, and let a[1] = Sum_i x_i, a[2] = Sum_{i,j} x_i*x_j, a[3] = Sum_{i,j,k} x_i*x_j*x_k, and a[4] = x1*x2*x3*x4, where in all the sums no term is repeated twice.
Then h(4; a[1],...,a[4]) = Sum_i x_i^4 + Sum_{i,j} x_i^3*x_j + Sum_{i,j} x_i^2*x_j^2 + Sum_{i,j,k} x_i^2*x_j*x_k + Sum_{i,j,k,m} x_i*x_j*x_k*x_m, where again in all the sums no term is repeated twice. Thus, indeed, h is the complete symmetric polynomial in four variables x_1, x_2, x_3, x_4.
		

References

  • V. Krishnamurthy, Combinatorics, Ellis Horwood, Chichester, 1986, p. 55, eqs. (48) and (50).

Crossrefs

Formula

The complete symmetric row polynomials h(n; a[1], ..., a[n]):= sum k over partitions of n of T(n, k)* A[k], with A[k] := a[1]^e(k, 1) * a[2]^e(k, 2) * ... * a[n]^e(k, n) is the k-th partition of n, in Abramowitz-Stegun order (see A105805 for this reference), is [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)], for k = 1..p(n), where p(n) = A000041(n) (partition numbers).
G.f.: A(x) = 1/(1 + Sum_{j = 1..infinity} (-1)^j * a[j]).
T(n, k) is the coefficient of x^n and a[1]^e(k, 1) * a[2]^e(k, 2) * ... * a[n]^e(k, n) in A(x) if the k-th partition of n, counted using the Abramowitz-Stegun order, is [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] with e(k, j) >= 0 (and if e(k, j) = 0 then j^0 is not recorded).
T(n, k) = (-1)^(n + m(n, k)) * m(n, k)!/(Product_{j = 1..n} e(k, j)!), where m(n, k) := Sum_{j = 1..n} e(k, j), with [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] being the k-th partition of n in the mentioned order. Here m(n, k) is the number of parts of the k-th partition of n. For m(n,k), see A036043.

Extensions

Various sections edited by Petros Hadjicostas, Dec 15 2019

A181897 Triangle of refined rencontres numbers: T(n,k) is the number of permutations of n elements with cycle type k (k-th integer partition, defined by A194602).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 8, 3, 6, 1, 10, 20, 15, 30, 20, 24, 1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120, 1, 21, 70, 105, 210, 420, 504, 105, 630, 280, 840, 210, 504, 420, 720, 1, 28, 112, 210, 420, 1120, 1344, 420, 2520, 1120, 3360, 1680, 4032
Offset: 1

Views

Author

Tilman Piesk, Mar 31 2012

Keywords

Comments

T(n,k) tells how often k appears among the first n! entries of A198380, i.e., how many permutations of n elements have the cycle type denoted by k.
This triangle is a refinement of the rencontres numbers A008290, which tell only how many permutations of n elements actually move a certain number of elements. How many of these permutations have a certain cycle type is a more detailed question, answered by this triangle.
The rows are counted from 1, the columns from 0.
Row lengths: 1, 2, 3, 5, 7, 11, ... (partition numbers A000041).
Row sums: 1, 2, 6, 24, 120, 720, ... (factorial numbers A000142).
Row maxima: 1, 1, 3, 8, 30, 144, ... (A059171).
Distinct entries per row: 1, 1, 3, 4, 6, 7, ... (A073906).
It follows from the formula given by Carlos Mafra that the rows of the triangle correspond to the coefficients of the modified Bell polynomials. - Sela Fried, Dec 08 2021
For k>0, the k-th column of triangle T(n,k) is a scaled copy of binomial coefficients binomial(n,q) where q is the least value for which p(q) exceeds or equals k+1, with p() being the integer partitions counting function, A000041(q). E.g., for column 4, the relevant binomial coefficients have q=4 as p(4)=5; for column 5, we have q=5 as p(5)>6; for column 6, we have q=5 as p(5)=7. The scale factor for column k is given by A385081(k+1). This triangle gives coefficients for expressing the characteristic polynomial and determinant of a matrix solely in terms of traces; see extended comment, below, under "Links". - Gregory Gerard Wojnar, Jun 24 2025

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  2;
  1,  6,  8,  3,  6;
  1, 10, 20, 15, 30,  20,  24;
  1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120;
  ...
		

Crossrefs

Cf. A036039 and references therein for different ordering of terms within each row.

Programs

  • Mathematica
    Table[CoefficientRules[ n! CycleIndex[SymmetricGroup[n], s] // Expand][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Nov 09 2014 *)
    (* Alternative program *)
    partitionMultiplicities[aPartn_]:=Table[Count[aPartn,m],{m,Total[aPartn]}]
    partitionBase[aPartn_]:=Sum[m*aPartn[[m]],{m,Length[aPartn]}]
    partitionFactorial[aPartn_]:=Product[m^aPartn[[m]],{m,partitionBase[aPartn]}]
    partitionParts[aPartn_]:=Sum[aPartn[[m]],{m,Length[aPartn]}]
    A181897[aPartn_]:=Multinomial@@aPartn*partitionBase[aPartn]!/(partitionFactorial[aPartn]*partitionParts[aPartn]!)
    Grid[Table[Map[A181897,ReverseSort[Map[partitionMultiplicities,Partitions[n]],LexicographicOrder]],{n,2,12}]] (* Gregory Gerard Wojnar, Jun 24 2025 *)

Formula

T(n,1) = A000217(n).
T(n,2) = A007290(n).
Let m2, m3, ... count the appearances of 2, 3, ... in the cycle type. E.g., the cycle type 2, 2, 2, 3, 3, 4 implies m2=3, m3=2, m4=1. Then T(n;m2,m3,m4,...) = n!/((2^m2 3^m3 4^m4 ...) m1!m2!m3!m4! ...) where m1 = n - 2m2 - 3m3 - 4m4 - ... . - Carlos Mafra, Nov 25 2014

A274760 The multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The multinomial transform [MNL] transforms an input sequence b(n) into the output sequence a(n). Given the fact that the structure of the a(n) formulas, see the examples, lead to the multinomial coefficients A036039 the MNL transform seems to be an appropriate name for this transform. The multinomial transform is related to the exponential transform, see A274804 and the third formula. For the inverse multinomial transform [IML] see A274844.
To preserve the identity IML[MNL[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A036039 appear.
We observe that a(0) = 1 and that this term provides no information about any value of b(n), this notwithstanding we will start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the multinomial transform of a sequence. The first program uses the first formula which was found by Paul D. Hanna, see A158876, and Vladimir Kruchinin, see A215915. The second program uses properties of the e.g.f., see the sequences A158876, A213507, A244430 and A274539 and the third formula. The third program uses information about the inverse multinomial transform, see A274844.
Some MNL transform pairs are, n >= 1: A000045(n) and A244430(n-1); A000045(n+1) and A213527(n-1); A000108(n) and A213507(n-1); A000108(n-1) and A243953(n-1); A000142(n) and A158876(n-1); A000203(n) and A053529(n-1); A000110(n) and A274539(n-1); A000041(n) and A215915(n-1); A000035(n-1) and A177145(n-1); A179184(n) and A038205(n-1); A267936(n) and A000266(n-1); A267871(n) and A000090(n-1); A193356(n) and A088009(n-1).

Examples

			Some a(n) formulas, see A036039:
  a(0) = 1
  a(1) = 1*x(1)
  a(2) = 1*x(2) + 1*x(1)^2
  a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
  a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
  a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
  • Mathematica
    b[n_] := (2*n - 1)!!^2;
    a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)

Formula

a(n) = Sum_{k=1..n} ((n-1)!/(n-k)!)*b(k)*a(n-k), n >= 1 and a(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = n!*P(n), with P(n) = (1/n)*(Sum_{k=0..n-1} b(n-k)*P(k)), n >= 1 and P(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n) with b(n) = A001818(n) = ((2*n-1)!!)^2.
denom(a(n)/2^n) = A001316(n); numer(a(n)/2^n) = [1, 1, 5, 239, 8531, 2726207, ...].
Previous Showing 31-40 of 71 results. Next