1, 0, 2, -1, 0, 4, 0, -4, 0, 8, 1, 0, -12, 0, 16, 0, 6, 0, -32, 0, 32, -1, 0, 24, 0, -80, 0, 64, 0, -8, 0, 80, 0, -192, 0, 128, 1, 0, -40, 0, 240, 0, -448, 0, 256, 0, 10, 0, -160, 0, 672, 0, -1024, 0, 512, -1, 0, 60, 0, -560, 0, 1792, 0, -2304, 0, 1024, 0, -12, 0, 280, 0, -1792, 0, 4608, 0, -5120, 0, 2048, 1, 0, -84, 0, 1120, 0, -5376, 0, 11520, 0, -11264, 0, 4096
Offset: 0
Triangle begins:
1;
0, 2;
-1, 0, 4;
0, -4, 0, 8;
1, 0, -12, 0, 16;
...
E.g., fourth row (n=3) {0,-4,0,8} corresponds to polynomial U(3,x) = -4*x + 8*x^3.
A130321
Triangle, (2^0, 2^1, 2^2, ...) in every column.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 16, 8, 4, 2, 1, 32, 16, 8, 4, 2, 1, 64, 32, 16, 8, 4, 2, 1, 128, 64, 32, 16, 8, 4, 2, 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1
Offset: 0
The triangle T(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 2 1
3: 8 4 2 1
4: 16 8 4 2 1
5: 32 16 8 4 2 1
6: 64 32 16 8 4 2 1
7: 128 64 32 16 8 4 2 1
8: 256 128 64 32 16 8 4 2 1
9: 512 256 128 64 32 16 8 4 2 1
10: 1024 512 256 128 64 32 16 8 4 2 1
... Reformatted. - _Wolfdieter Lang_, Jan 10 2015
-
a130321 n k = a130321_tabl !! n !! k
a130321_row n = a130321_tabl !! n
a130321_tabl = iterate (\row -> (2 * head row) : row) [1]
-- Reinhard Zumkeller, Feb 27 2013
-
T[n_, m_] := 2^(n-m);
Table[T[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
A238363
Coefficients for the commutator for the logarithm of the derivative operator [log(D),x^n D^n]=d[(xD)!/(xD-n)!]/d(xD) expanded in the operators :xD:^k.
Original entry on oeis.org
1, -1, 2, 2, -3, 3, -6, 8, -6, 4, 24, -30, 20, -10, 5, -120, 144, -90, 40, -15, 6, 720, -840, 504, -210, 70, -21, 7, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10
Offset: 1
The first few row polynomials are
p(1,x)= 1
p(2,x)= -1 + 2x
p(3,x)= 2 - 3x + 3x^2
p(4,x)= -6 + 8x - 6x^2 + 4x^3
p(5,x)= 24 -30x +20x^2 -10x^3 + 5x^4
...........
For n=3: z!/(z-3)!=z^3-3z^2+2z=St1(3,z) with derivative 3z^2-6z+2, and
3·St2(2,x)-6·St2(1,x)+2=3(x^2+x)-6x+2=3x^2-3x+2=p(3,x). To see the relation to the operator formalism, note that (xD)^k=St2(k,:xD:) and (xD)!/(xD-k)!=[St2(·,:xD:)]!/[St2(·,:xD:)-k]!= :xD:^k.
The triangle a(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
1: 1
2: -1 2
3: 2 -3 3
4: -6 8 -6 4
5: 24 -30 20 -10 5
6: -120 144 -90 40 -15 6
7: 720 -840 504 -210 70 -21 7
8: -5040 5760 -3360 1344 -420 112 -28 8
9: 40320 -45360 25920 -10080 3024 -756 168 -36 9
10: -362880 403200 -226800 86400 -25200 6048 -1260 240 -45 10
... formatted by _Wolfdieter Lang_, Mar 01 2014
-----------------------------------------------------------------------
- Tom Copeland, Riemann zeta function at positive integers and an Appell sequence of polynomials, 2012.
- Tom Copeland, Goin' with the Flow: Logarithm of the Derivative Operator, 2014.
- Tom Copeland, Bernoulli, Blissard, and Lie meet Stirling and the simplices: State number operators and normal ordering, 2014.
- Tom Copeland, Compositional inverse operators and Sheffer sequences, 2016.
-
a[n_, k_] := (-1)^(n-k-1)*n!/((n-k)*k!); Table[a[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 09 2015 *)
A002409
a(n) = 2^n*C(n+6,6). Number of 6D hypercubes in an (n+6)-dimensional hypercube.
Original entry on oeis.org
1, 14, 112, 672, 3360, 14784, 59136, 219648, 768768, 2562560, 8200192, 25346048, 76038144, 222265344, 635043840, 1778122752, 4889837568, 13231325184, 35283533824, 92851404800, 241413652480, 620777963520, 1580162088960
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Herbert Izbicki, Über Unterbaeume eines Baumes, Monatshefte für Mathematik, Vol. 74 (1970), pp. 56-62.
- Herbert Izbicki, Über Unterbaeume eines Baumes, Monatshefte für Mathematik, Vol. 74 (1970), pp. 56-62.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128).
-
[2^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
-
A002409:=-1/(2*z-1)**7; # Simon Plouffe in his 1992 dissertation
seq(binomial(n+6,6)*2^n,n=0..22); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-2x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {14,-84,280,-560,672,-448,128},{1,14,112,672,3360,14784,59136},40] (* Harvey P. Dale, Jan 24 2022 *)
A038231
Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).
Original entry on oeis.org
1, 4, 1, 16, 8, 1, 64, 48, 12, 1, 256, 256, 96, 16, 1, 1024, 1280, 640, 160, 20, 1, 4096, 6144, 3840, 1280, 240, 24, 1, 16384, 28672, 21504, 8960, 2240, 336, 28, 1, 65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1, 262144, 589824, 589824, 344064, 129024, 32256, 5376, 576, 36, 1
Offset: 0
Triangle begins:
1;
4, 1;
16, 8, 1;
64, 48, 12, 1;
256, 256, 96, 16, 1;
1024, 1280, 640, 160, 20, 1;
4096, 6144, 3840, 1280, 240, 24, 1;
16384, 28672, 21504, 8960, 2240, 336, 28, 1;
65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1;
- Indranil Ghosh, Rows 0..125 of triangle, flattened
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
-
Flat(List([0..10], n-> List([0..n], k-> 4^(n-k)*Binomial(n, k) ))); # G. C. Greubel, Jul 20 2019
-
[4^(n-k)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 20 2019
-
for i from 0 to 10 do seq(binomial(i, j)*4^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 4^(n-1)); # Peter Luschny, Oct 09 2022
-
Table[4^(n-k)*Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 20 2019 *)
-
T(n,k) = 4^(n-k)*binomial(n, k); \\ G. C. Greubel, Jul 20 2019
-
[[4^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
A039683
Signed double Pochhammer triangle: expansion of x(x-2)(x-4)..(x-2n+2).
Original entry on oeis.org
1, -2, 1, 8, -6, 1, -48, 44, -12, 1, 384, -400, 140, -20, 1, -3840, 4384, -1800, 340, -30, 1, 46080, -56448, 25984, -5880, 700, -42, 1, -645120, 836352, -420224, 108304, -15680, 1288, -56, 1, 10321920, -14026752, 7559936, -2153088, 359184, -36288, 2184, -72, 1
Offset: 1
Triangle starts:
{1},
{2,1},
{8,6,1},
{48,44,12,1},
...
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned triangle [1/(1-2x),log(1/sqrt(1-2x))] has production matrix:
2, 1,
4, 4, 1,
8, 12, 6, 1,
16, 32, 24, 8, 1,
32, 80, 80, 40, 10, 1,
64, 192, 240, 160, 60, 12, 1
which is A007318^{2} beheaded. (End)
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, Addendum to Mathemagical Forests.
- P. Feijão, F. V. Martinez, and A. Thévenin, On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance, BMC Bioinformatics 16:Suppl19 (2015), S1. doi:10.1186/1471-2105-16-S19-S1
- Lisa Glaser, Causal set actions in various dimensions, J. Phys.: Conf. Ser. 306 (2011), 012041.
- Wolfdieter Lang, First 9 rows and comment.
- Peter Luschny, The Bell transform
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres relies aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
First column (unsigned triangle) is (2(n-1))!! = 1, 2, 8, 48, 384...=
A000165(n-1) and the row sums (unsigned) are (2n-1)!! = 1, 3, 15, 105, 945... =
A001147(n-1).
-
Table[ Rest@ CoefficientList[ Product[ z-k, {k, 0, 2p-2, 2} ], z ], {p, 6} ]
-
# uses[bell_transform from A264428]
# Unsigned values and an additional first column (1,0,0,...).
def A039683_unsigned_row(n):
a = sloane.A000165
dblfact = a.list(n)
return bell_transform(n, dblfact)
[A039683_unsigned_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015
A054849
a(n) = 2^(n-5)*binomial(n,5). Number of 5D hypercubes in an n-dimensional hypercube.
Original entry on oeis.org
1, 12, 84, 448, 2016, 8064, 29568, 101376, 329472, 1025024, 3075072, 8945664, 25346048, 70189056, 190513152, 508035072, 1333592064, 3451650048, 8820883456, 22284337152, 55710842880, 137950658560, 338606161920
Offset: 5
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (12, -60, 160, -240, 192, -64).
-
List([5..30], n-> 2^(n-5)*Binomial(n,5)); # G. C. Greubel, Aug 27 2019
-
[2^(n-5)*Binomial(n,5): n in [5..30]]; // G. C. Greubel, Aug 27 2019
-
seq(binomial(n+5,5)*2^n,n=0..22); # Zerinvary Lajos, Jun 13 2008
-
Table[2^(n-5)*Binomial[n,5], {n,5,30}] (* G. C. Greubel, Aug 27 2019 *)
-
vector(25, n, 2^(n-1)*binomial(n+4,5)) \\ G. C. Greubel, Aug 27 2019
-
[lucas_number2(n, 2, 0)*binomial(n,5)/32 for n in range(5, 28)] # Zerinvary Lajos, Mar 10 2009
Previous
Showing 21-30 of 100 results.
Next
Comments