1, 2, 1, 5, 4, 1, 12, 14, 6, 1, 29, 44, 27, 8, 1, 70, 131, 104, 44, 10, 1, 169, 376, 366, 200, 65, 12, 1, 408, 1052, 1212, 810, 340, 90, 14, 1, 985, 2888, 3842, 3032, 1555, 532, 119, 16, 1, 2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1, 5741, 20892, 35223
Offset: 0
Fourth row polynomial (n=3): p(3,x)= 12+14*x+6*x^2+x^3
Triangle begins:
{1},
{2, 1},
{5, 4, 1},
{12, 14, 6, 1},
{29, 44, 27, 8, 1},
{70, 131,104, 44, 10, 1},
{169, 376, 366, 200, 65, 12, 1},
{408, 1052, 1212, 810, 340, 90, 14, 1},
{985, 2888, 3842, 3032, 1555, 532, 119, 16, 1},
{2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1},
{5741, 20892, 35223, 36248, 25235, 12432, 4396, 1104, 189, 20, 1},
The triangle (0, 2, 1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, ...) begins:
1
0, 1
0, 2, 1
0, 5, 4, 1
0, 12, 14, 6, 1
0, 29, 44, 27, 8, 1 - _Philippe Deléham_, Feb 19 2013
A090802
Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.
Original entry on oeis.org
1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0
{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
Cf.
A000142,
A001710,
A001715,
A001720,
A001787,
A001788,
A001789,
A001815,
A003472,
A010842,
A052771,
A052796,
A052849,
A054849,
A057711,
A066534,
A082569.
-
Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)
A133156
Irregular triangle read by rows: coefficients of U(n,x), Chebyshev polynomials of the second kind with exponents in decreasing order.
Original entry on oeis.org
1, 2, 4, -1, 8, -4, 16, -12, 1, 32, -32, 6, 64, -80, 24, -1, 128, -192, 80, -8, 256, -448, 240, -40, 1, 512, -1024, 672, -160, 10, 1024, -2304, 1792, -560, 60, -1, 2048, -5120, 4608, -1792, 280, -12, 4096, -11264, 11520, -5376, 1120, -84, 1
Offset: 0
The first few Chebyshev polynomials of the second kind are
1;
2x;
4x^2 - 1;
8x^3 - 4x;
16x^4 - 12x^2 + 1;
32x^5 - 32x^3 + 6x;
64x^6 - 80x^4 + 24x^2 - 1;
128x^7 - 192x^5 + 80x^3 - 8x;
256x^8 - 448x^6 + 240x^4 - 40x^2 + 1;
512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x;
...
From _Roger L. Bagula_ and _Gary W. Adamson_: (Start)
1;
2;
4, -1;
8, -4;
16, -12, 1;
32, -32, 6;
64, -80, 24, -1;
128, -192, 80, -8;
256, -448, 240, -40, 1;
512, -1024, 672, -160, 10;
1024, -2304, 1792, -560, 60, -1; (End)
From _Philippe Deléham_, Dec 27 2011: (Start)
Triangle (2, 0, 0, 0, 0, ...) DELTA (0, -1/2, 1/2, 0, 0, 0, 0, 0, ...) begins:
1;
2, 0;
4, -1, 0;
8, -4, 0, 0;
16, -12, 1, 0, 0;
32, -32, 6, 0, 0, 0;
64, -80, 24, -1, 0, 0, 0; (End)
- Tracale Austin, Hans Bantilan, Isao Jonas and Paul Kory, The Pfaffian Transformation, Journal of Integer Sequences, Vol. 12 (2009), page 25
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014. - From _Tom Copeland_, Oct 11 2014
- Pantelis A. Damianou, A Beautiful Sine Formula, Amer. Math. Monthly 121 (2014), no. 2, 120-135. MR3149030
- Caglar Koca and Ozgur B. Akan, Modelling 1D Partially Absorbing Boundaries for Brownian Molecular Communication Channels, arXiv:2402.15888 [q-bio.MN], 2024. See p. 9.
- Wikipedia, Chebyshev polynomials
-
t[n_, m_] = (-1)^m*Binomial[n - m, m]*2^(n - 2*m);
Table[Table[t[n, m], {m, 0, Floor[n/2]}], {n, 0, 10}];
Flatten[%] (* Roger L. Bagula, Dec 19 2008 *)
A054851
a(n) = 2^(n-7)*binomial(n,7). Number of 7D hypercubes in an n-dimensional hypercube.
Original entry on oeis.org
1, 16, 144, 960, 5280, 25344, 109824, 439296, 1647360, 5857280, 19914752, 65175552, 206389248, 635043840, 1905131520, 5588385792, 16066609152, 45364543488, 126012620800, 344876646400, 931166945280, 2483111854080
Offset: 7
- G. C. Greubel, Table of n, a(n) for n = 7..1000
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792, 1024,-256).
-
List([7..30], n-> 2^(n-7)*Binomial(n,7)); # G. C. Greubel, Aug 27 2019
-
[2^(n-7)*Binomial(n,7): n in [7..30]]; // G. C. Greubel, Aug 27 2019
-
seq(binomial(n+7,7)*2^n,n=0..21); # Zerinvary Lajos, Jun 23 2008
-
Table[2^(n-7)*Binomial[n,7], {n,7,30}] (* G. C. Greubel, Aug 27 2019 *)
-
vector(23, n, 2^(n-1)*binomial(n+6, 7)) \\ G. C. Greubel, Aug 27 2019
A075497
Stirling2 triangle with scaled diagonals (powers of 2).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 8, 28, 12, 1, 16, 120, 100, 20, 1, 32, 496, 720, 260, 30, 1, 64, 2016, 4816, 2800, 560, 42, 1, 128, 8128, 30912, 27216, 8400, 1064, 56, 1, 256, 32640, 193600, 248640, 111216, 21168, 1848, 72, 1
Offset: 1
Triangle begins:
[1];
[2,1];
[4,6,1]; p(3,x) = x*(4 + 6*x + x^2).
...;
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1
0, 1
0, 2, 1
0, 4, 6, 1
0, 8, 28, 12, 1
0, 16, 120, 100, 20, 1. - _Philippe Deléham_, Feb 13 2013
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 2 1 | | 2 1 ||0 1 ||0 1 |
| 4 6 1 | = | 4 4 1 ||0 2 1 ||0 0 1 | ...
| 8 28 12 1 | | 8 12 6 1 ||0 4 4 1 ||0 0 2 1 |
|16 120 100 20 1| |16 32 24 8 1||0 8 12 6 1 ||0 0 4 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - 2*x)) = P^2, where P denotes Pascal's triangle. See A038207. Cf. A143494. (End)
- Alois P. Heinz, Rows n = 1..141, flattened
- Peter Bala, The white diamond product of power series
- Peter Bala, Factorising (r,b)-Stirling arrays
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Roberto B. Corcino and Maribeth B. Montero, The (r, β)-Stirling Numbers in the Context of 0-1 Tableau, Jour. Math. Soc. of the Philippines, ISSN 0115-6926, Vol. 32, No. 1 (2009), pp. 45-52
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, First 10 rows.
- Toufik Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
- Emanuele Munarini, Characteristic, admittance and matching polynomials of an antiregular graph, Appl. Anal. Discrete Math 3 (1) (2009) 157-176.
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Aug 13 2015
# Alternatively, giving the triangle in the form displayed in the Example section:
gf := exp(x*exp(z)*sinh(z)):
X := n -> series(gf, z, n+2):
Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
-
Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
-
# uses[inverse_bell_transform from A265605]
multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
A132159
Lower triangular matrix T(n,j) for double application of an iterated mixed order Laguerre transform inverse to A132014. Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-2-n,x).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 18, 6, 1, 120, 96, 36, 8, 1, 720, 600, 240, 60, 10, 1, 5040, 4320, 1800, 480, 90, 12, 1, 40320, 35280, 15120, 4200, 840, 126, 14, 1, 362880, 322560, 141120, 40320, 8400, 1344, 168, 16, 1, 3628800, 3265920, 1451520, 423360, 90720, 15120
Offset: 0
First few rows of the triangle are
1;
2, 1;
6, 4, 1;
24, 18, 6, 1;
120, 96, 36, 8, 1;
- Nathaniel Johnston, Rows 0..100, flattened
- Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.
- P. Feinsilver, Lie algebras, representations, and analytic semigroups through dual vector fields
- Jay Goldman and James Haglund, Generalized rook polynomials, J. Combin. Theory A 91 (2000), 509-530.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Wikipedia, Appell sequence
- Wikipedia, Sheffer sequence
-
a132159 n k = a132159_tabl !! n !! k
a132159_row n = a132159_tabl !! n
a132159_tabl = map reverse a121757_tabl
-- Reinhard Zumkeller, Mar 06 2014
-
/* As triangle */ [[Binomial(n,k)*Factorial(n-k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 10 2016
-
T := proc(n,k) return binomial(n,k)*factorial(n-k+1): end: seq(seq(T(n,k),k=0..n),n=0..10); # Nathaniel Johnston, Sep 28 2011
-
nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x]/(1-x)^2,{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 15 2013 *)
-
flatten([[binomial(n,k)*factorial(n-k+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, May 19 2021
Formula 3) in comments corrected by
Tom Copeland, Apr 20 2014
A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
Comments