cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 77 results. Next

A047201 Numbers not divisible by 5.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Keywords

Comments

Original name was: Numbers that are congruent to {1, 2, 3, 4} mod 5.
More generally the sequence of numbers not divisible by some fixed integer m>=2 is given by a(n,m) = n-1+floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
Complement of A008587. - Reinhard Zumkeller, Nov 30 2009

Crossrefs

Programs

Formula

G.f.: (x+2*x^2+3*x^3+4*x^4+4*x^5+3*x^6+2*x^7+x^8)/(1-x^4)^2 (not reduced). - Len Smiley
a(n) = 5+a(n-4).
G.f.: x*(1+x+x^2+x^3+x^4)/((1-x)*(1-x^4)).
a(n) = n-1+floor((n+3)/4). - Benoit Cloitre, Jul 11 2009
A011558(a(n))=1; A079998(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
a(n) = floor((15*n-1)/12). - Gary Detlefs, Mar 07 2010
a(n) = A225496(n) for n <= 42. - Reinhard Zumkeller, May 09 2013
From Wesley Ivan Hurt, Jun 22 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5), n>5.
a(n) = (10*n-5-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))/8. (End)
E.g.f.: 1 + (1/4)*(-cos(x) + (-3 + 5*x)*cosh(x) + sin(x) + (-2 + 5*x)*sinh(x)). - Stefano Spezia, Dec 01 2019
a(n) = floor((5*n-1)/4). - Wolfdieter Lang, Sep 30 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2-2/sqrt(5))*Pi/5 = A179290 * A019692 / 10. - Amiram Eldar, Dec 07 2021

Extensions

Comment from Lekraj Beedassy, Dec 17 2006 is now the current name. - Wesley Ivan Hurt, Jun 25 2015

A002329 Periods of reciprocals of integers prime to 10.

Original entry on oeis.org

1, 1, 6, 1, 2, 6, 16, 18, 6, 22, 3, 28, 15, 2, 3, 6, 5, 21, 46, 42, 16, 13, 18, 58, 60, 6, 33, 22, 35, 8, 6, 13, 9, 41, 28, 44, 6, 15, 96, 2, 4, 34, 53, 108, 3, 112, 6, 48, 22, 5, 42, 21, 130, 18, 8, 46, 46, 6, 42, 148, 75, 16, 78, 13, 66, 81, 166, 78, 18, 43
Offset: 1

Views

Author

Keywords

Comments

Nonzero terms of A084680.

References

  • J. W. L. Glaisher, On circulating decimals, Proc. Camb. Phil. Soc., 3 (1878), 185-206.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Reap[ Do[ If[ CoprimeQ[n, 10], Sow[ MultiplicativeOrder[10, n]]], {n, 1, 150}]][[2, 1]] (* Jean-François Alcover, Nov 07 2012 *)
  • PARI
    do(lim)=my(v=List()); for(n=1, lim, if(gcd(n, 10)==1, listput(v, znorder(Mod(10,n))))); Vec(v) \\ Charles R Greathouse IV, Jun 21 2017

Formula

a(n) = A084680(A045572(n)). - Jianing Song, Jun 15 2021

Extensions

a(1) = 1 inserted by Jinyuan Wang, Jun 14 2021

A017509 a(n) = 11*n + 10.

Original entry on oeis.org

10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 362, 373, 384, 395, 406, 417, 428, 439, 450, 461, 472, 483, 494, 505, 516, 527, 538, 549, 560, 571, 582
Offset: 0

Views

Author

Keywords

Comments

If k is any member of A045572, the sequence lists the numbers n such that (n^k+1)/11 is a nonnegative integer. See also A267541. - Bruno Berselli, Jan 16 2016

Crossrefs

Cf. A211013 (partial sums), A254322 (partial products).
Powers of the form (11*n+10)^m: this sequence (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10 + x)/(1-x)^2.
E.g.f.: (10 + 11*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)
a(n) = A008591(n+1) + A005408(n). - Leo Tavares, Oct 25 2022

A045798 Oddish numbers (prime to 10 and 10's digit is odd).

Original entry on oeis.org

11, 13, 17, 19, 31, 33, 37, 39, 51, 53, 57, 59, 71, 73, 77, 79, 91, 93, 97, 99, 111, 113, 117, 119, 131, 133, 137, 139, 151, 153, 157, 159, 171, 173, 177, 179, 191, 193, 197, 199, 211, 213, 217, 219, 231, 233, 237, 239, 251, 253, 257, 259
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Apr 27 2019: (Start)
Numbers congruent to {11, 13, 17, 19} mod 20.
Numbers k such that Kronecker(-20,k) = A289741(k) = -1. (End)

Crossrefs

Complement of A045797 with respect to A045572.

Programs

  • Haskell
    a045798 n = a045798_list !! (n-1)
    a045798_list = filter (odd . (`mod` 10) . (`div` 10)) a045572_list
    -- Reinhard Zumkeller, Dec 10 2011
    
  • Maple
    seq(seq(20*j + k, k = [11, 13, 17, 19]),j=0..100); # Robert Israel, Mar 27 2017
  • Mathematica
    Table[10n+{1,3,7,9},{n,1,31,2}]//Flatten (* Harvey P. Dale, Oct 01 2019 *)
  • PARI
    is(n)=gcd(n,10)==1 && n\10%2 \\ Charles R Greathouse IV, Feb 07 2017

Formula

Conjecture a(n) = a(n-1)+a(n-4)-a(n-5). G.f.: x*(11+2*x+4*x^2+2*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2)). - Colin Barker, Apr 14 2012
a(n) = 5n + O(1). - Charles R Greathouse IV, Feb 07 2017
a(n+4) = a(n) + 20. This confirms Barker's conjecture. - Robert Israel, Mar 27 2017

Extensions

More terms from Erich Friedman.

A045797 Evenish numbers (prime to 10 and 10's digit is even).

Original entry on oeis.org

1, 3, 7, 9, 21, 23, 27, 29, 41, 43, 47, 49, 61, 63, 67, 69, 81, 83, 87, 89, 101, 103, 107, 109, 121, 123, 127, 129, 141, 143, 147, 149, 161, 163, 167, 169, 181, 183, 187, 189, 201, 203, 207, 209, 221, 223, 227, 229, 241, 243, 247, 249, 261, 263, 267, 269, 281
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Apr 27 2019: (Start)
Numbers congruent to {1, 3, 7, 9} mod 20.
Numbers k such that Kronecker(-20,k) = A289741(k) = +1. (End)
First 20 terms are congruences of 3^k mod 100. - Dario Vuksan, Jan 09 2023

Crossrefs

Complement of A045798 with respect to A045572.

Programs

  • Haskell
    a045797 n = a045797_list !! (n-1)
    a045797_list = filter (even . (`mod` 10) . (`div` 10)) a045572_list
    -- Reinhard Zumkeller, Dec 10 2011
    
  • Mathematica
    Flatten[Table[10n+{1,3,7,9},{n,0,30,2}]] (* Harvey P. Dale, Dec 05 2012 *)
  • PARI
    is(n)=gcd(n,10)==1 && n\10%2==0 \\ Charles R Greathouse IV, Sep 24 2015

Formula

Conjecture a(n) = a(n-1)+a(n-4)-a(n-5). G.f.: x*(1+2*x+4*x^2+2*x^3+11*x^4) / ((1-x)^2*(1+x)*(1+x^2)). - Colin Barker, Apr 14 2012
The conjecture above is correct. - Jianing Song, Apr 27 2019
a(n) = 5n + O(1). - Charles R Greathouse IV, Jan 09 2023

Extensions

More terms from Erich Friedman
Offset changed by Reinhard Zumkeller, Dec 10 2011

A017401 a(n) = 11n + 1.

Original entry on oeis.org

1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 243, 254, 265, 276, 287, 298, 309, 320, 331, 342, 353, 364, 375, 386, 397, 408, 419, 430, 441, 452, 463, 474, 485, 496, 507, 518, 529, 540, 551, 562, 573, 584, 595, 606, 617, 628, 639, 650, 661
Offset: 0

Views

Author

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=11, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=-charpoly(A,x^(n-1)). - Milan Janjic, Feb 21 2010
Sequence lists all nonnegative solutions to x^k == 1 (mod 11), where k is a member of A045572. - Bruno Berselli, Jan 18 2016

Crossrefs

Programs

Formula

G.f.: (1+10*x)/(1-x)^2.
E.g.f.: exp(x)*(1 + 11*x). - Stefano Spezia, Oct 08 2022

A229829 Numbers coprime to 15.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 86, 88, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 119
Offset: 1

Views

Author

Gary Detlefs, Oct 01 2013

Keywords

Comments

A001651 INTERSECT A047201.
a(n) - 15*floor((n-1)/8) - 2*((n-1) mod 8) has period 8, repeating [1,0,0,1,0,1,1,0].
Numbers whose odd part is 7-rough: products of terms of A007775 and powers of 2 (terms of A000079). - Peter Munn, Aug 04 2020
The asymptotic density of this sequence is 8/15. - Amiram Eldar, Oct 18 2020

Crossrefs

Lists of numbers coprime to other semiprimes: A007310 (6), A045572 (10), A162699 (14), A160545 (21), A235933 (35).
Subsequence of: A001651, A047201.
Subsequences: A000079, A007775.

Programs

  • Magma
    [n: n in [1..120] | IsOne(GCD(n,15))]; // Bruno Berselli, Oct 01 2013
    
  • Maple
    for n from 1 to 500 do if n mod 3<>0 and n mod 5<>0 then print(n) fi od
  • Mathematica
    Select[Range[120], GCD[#, 15] == 1 &] (* or *) t = 70; CoefficientList[Series[(1 + x + 2 x^2 + 3 x^3 + x^4 + 3 x^5 + 2 x^6 + x^7 + x^8)/((1 - x)^2 (1 + x) (1 + x^2) (1 + x^4)) , {x, 0, t}], x] (* Bruno Berselli, Oct 01 2013 *)
    Select[Range[120],CoprimeQ[#,15]&] (* Harvey P. Dale, Oct 31 2013 *)
  • Sage
    [i for i in range(120) if gcd(i, 15) == 1] # Bruno Berselli, Oct 01 2013

Formula

a(n+8) = a(n) + 15.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor(2*phi*(f(n+1)+2)) -2*floor(phi*(f(n+1)+2)), where f(n) = (n-1) mod 8 and phi=(1+sqrt(5))/2.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor((2*f(n)+5)/5) -floor((f(n)+2)/3), where f(n) = (n-1) mod 8.
From Bruno Berselli, Oct 01 2013: (Start)
G.f.: x*(1 +x +2*x^2 +3*x^3 +x^4 +3*x^5 +2*x^6 +x^7 +x^8) / ((1-x)^2*(1+x)*(1+x^2)*(1+x^4)). -
a(n) = a(n-1) +a(n-8) -a(n-9) for n>9. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(7 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/15. - Amiram Eldar, Dec 13 2021

A045800 0-ish numbers (end in 01, 07, 43, 49).

Original entry on oeis.org

1, 7, 43, 49, 101, 107, 143, 149, 201, 207, 243, 249, 301, 307, 343, 349, 401, 407, 443, 449, 501, 507, 543, 549, 601, 607, 643, 649, 701, 707, 743, 749, 801, 807, 843, 849, 901, 907, 943, 949, 1001, 1007, 1043, 1049, 1101, 1107, 1143, 1149, 1201, 1207
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a045800 n = a045800_list !! (n-1)
    a045800_list = findIndices (`elem` [1,7,43,49]) $ cycle [0..99]
    -- Reinhard Zumkeller, Jan 23 2012
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,7,43,49,101},60] (* Harvey P. Dale, Jul 26 2015 *)

Formula

G.f.: x*(1+6*x+36*x^2+6*x^3+51*x^4)/(1-x-x^4+x^5). - Colin Barker, Jan 23 2012
a(n) = (50*n-8*i^(n*(n+1))-19*(-1)^n-75)/2, where i=sqrt(-1). - Bruno Berselli, Feb 22 2012

Extensions

More terms from Erich Friedman.

A045809 9-ish numbers (end in 13, 37, 59, 91).

Original entry on oeis.org

13, 37, 59, 91, 113, 137, 159, 191, 213, 237, 259, 291, 313, 337, 359, 391, 413, 437, 459, 491, 513, 537, 559, 591, 613, 637, 659, 691, 713, 737, 759, 791, 813, 837, 859, 891, 913, 937, 959, 991, 1013, 1037, 1059, 1091, 1113, 1137, 1159, 1191, 1213, 1237
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a045809 n = a045809_list !! (n-1)
    a045809_list = findIndices (`elem` [13,37,59,91]) $ cycle [0..99]
    -- Reinhard Zumkeller, Jan 23 2012
  • Mathematica
    CoefficientList[Series[(13 + 24*x + 22*x^2 + 32*x^3 + 9*x^4)/(1 - x - x^4 + x^5), {x, 0, 80}], x] (* Wesley Ivan Hurt, Jan 23 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{13,37,59,91,113},50] (* Harvey P. Dale, Feb 03 2024 *)

Formula

G.f.: x*(13+24*x+22*x^2+32*x^3+9*x^4)/(1-x-x^4+x^5). - Colin Barker, Jan 23 2012
a(n) = (50*n+4*i^(n*(n-1))+3*(-1)^n-25)/2, where i=sqrt(-1). - Bruno Berselli, Feb 22 2012

Extensions

More terms from Erich Friedman.

A065502 Positive numbers divisible by 2 or 5; 1/n not purely periodic after decimal point.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, 60, 62, 64, 65, 66, 68, 70, 72, 74, 75, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Len Smiley, Nov 25 2001

Keywords

Comments

Complement of A045572. - Reinhard Zumkeller, Nov 15 2009
Numbers that cannot be prefixed by a single digit to form a prime in decimal representation: A124665 is a subsequence. - Reinhard Zumkeller, Oct 22 2011
Up to 198, this is almost identical to "a(n) = n such that 3^n-1 is not squarefree", with the only exceptions being 39 and 117, which are not in this sequence. Why is that? - Felix Fröhlich, Oct 19 2014
The asymptotic density of this sequence is 3/5. - Amiram Eldar, Mar 09 2021

Crossrefs

Cf. A000035, A001622, A045572, A051628, A079998, A124665, A047229 (numbers divisible by 2 or 3).

Programs

  • Haskell
    a065502 n = a065502_list !! (n-1)
    a065502_list = filter ((> 1) . (gcd 10)) [1..]
    -- Reinhard Zumkeller, Oct 22 2011
  • Maple
    A065502 := proc(n)
         option remember;
         if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if (a mod 2) =0 or (a mod 5) =0 then
                    return a;
                end if;
            end do:
        end if;
    end proc; # R. J. Mathar, Jul 20 2012
  • Mathematica
    Select[Range[114], Mod[#, 2] == 0 || Mod[#, 5] == 0 &] (* T. D. Noe, Jul 13 2012 *)
    Select[ Range@ 114, MemberQ[{0, 2, 4, 5, 6, 8}, Mod[#, 10]] &] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    isok(m) = ! ((m%2) && (m%5)); \\ Michel Marcus, Mar 09 2021
    

Formula

A000035(a(n))*(1-A079998(a(n)))=0. - Reinhard Zumkeller, Nov 15 2009
G.f.: x*(2*x^4+x^2+2) / ((x-1)^2*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Jul 18 2013
a(n) = 10*floor(n/6)+s(n mod 6)-floor(((n-1)mod 6)/5), where s(n) = n+1+floor((n+1)/3). - Gary Detlefs, Oct 05 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/5 + log(phi)/sqrt(5), where phi is the golden ratio (A001622). - Amiram Eldar, Dec 28 2021

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 20 2009
Previous Showing 11-20 of 77 results. Next