cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 129 results. Next

A126890 Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 30 2006

Keywords

Comments

T(n,k) + T(n,n-k) = A014105(n);
row sums give A059270; Sum_{k=0..n-1} T(n,k) = A000578(n);
central terms give A007742; T(2*n+1,n) = A016754(n);
T(n,0) = A000217(n);
T(n,1) = A000096(n) for n > 0;
T(n,2) = A055998(n) for n > 1;
T(n,3) = A055999(n) for n > 2;
T(n,4) = A056000(n) for n > 3;
T(n,5) = A056115(n) for n > 4;
T(n,6) = A056119(n) for n > 5;
T(n,7) = A056121(n) for n > 6;
T(n,8) = A056126(n) for n > 7;
T(n,10) = A101859(n-1) for n > 9;
T(n,n-3) = A095794(n-1) for n > 2;
T(n,n-2) = A045943(n-1) for n > 1;
T(n,n-1) = A000326(n) for n > 0;
T(n,n) = A005449(n).

Examples

			From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
   0;
   1,  2;
   3,  5,  7;
   6,  9, 12, 15;
  10, 14, 18, 22, 26;
  15, 20, 25, 30, 35, 40;
  21, 27, 33, 39, 45, 51, 57;
  28, 35, 42, 49, 56, 63, 70, 77; (End)
		

References

  • Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.

Crossrefs

Cf. A110449.

Programs

  • Haskell
    a126890 n k = a126890_tabl !! n !! k
    a126890_row n = a126890_tabl !! n
    a126890_tabl = map fst $ iterate
       (\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)

Formula

T(n,k) = T(n,k-1) + n, for k <= n. - Philippe Deléham, Oct 03 2011

A130518 a(n) = Sum_{k=0..n} floor(k/3). (Partial sums of A002264.)

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570
Offset: 0

Views

Author

Hieronymus Fischer, Jun 01 2007

Keywords

Comments

Complementary with A130481 regarding triangular numbers, in that A130481(n) + 3*a(n) = n(n+1)/2 = A000217(n).
Apart from offset, the same as A062781. - R. J. Mathar, Jun 13 2008
Apart from offset, the same as A001840. - Michael Somos, Sep 18 2010
The sum of any three consecutive terms is a triangular number. - J. M. Bergot, Nov 27 2014

Crossrefs

Programs

Formula

G.f.: x^3 / ((1-x^3)*(1-x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = (1/2)*floor(n/3)*(2*n - 1 - 3*floor(n/3)) = A002264(n)*(2n - 1 - 3*A002264(n))/2.
a(n) = (1/2)*A002264(n)*(n - 1 + A010872(n)).
a(n) = round(n*(n-1)/6) = round((n^2-n-1)/6) = floor(n*(n-1)/6) = ceiling((n+1)*(n-2)/6). - Mircea Merca, Nov 28 2010
a(n) = a(n-3) + n - 2, n > 2. - Mircea Merca, Nov 28 2010
a(n) = A214734(n, 1, 3). - Renzo Benedetti, Aug 27 2012
a(3n) = A000326(n), a(3n+1) = A005449(n), a(3n+2) = 3*A000217(n) = A045943(n). - Philippe Deléham, Mar 26 2013
a(n) = (3*n*(n-1) - (-1)^n*((1+i*sqrt(3))^(n-2) + (1-i*sqrt(3))^(n-2))/2^(n-3) - 2)/18, where i=sqrt(-1). - Bruno Berselli, Nov 30 2014
Sum_{n>=3} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 17 2022

A059845 a(n) = n*(3*n + 11)/2.

Original entry on oeis.org

0, 7, 17, 30, 46, 65, 87, 112, 140, 171, 205, 242, 282, 325, 371, 420, 472, 527, 585, 646, 710, 777, 847, 920, 996, 1075, 1157, 1242, 1330, 1421, 1515, 1612, 1712, 1815, 1921, 2030, 2142, 2257, 2375, 2496, 2620, 2747, 2877, 3010, 3146, 3285, 3427, 3572, 3720
Offset: 0

Views

Author

Jason Earls, Mar 10 2001

Keywords

Comments

Maximum dimension of Euclidean spaces which suffice for every smooth compact Riemannian n-manifold to be realizable as a sub-manifold. - comment edited by Gene Ward Smith, Jan 15 2017

Crossrefs

The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = 3*n + a(n-1) + 4 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
G.f.: x*(7 - 4*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 14*x)*exp(x). - G. C. Greubel, Jul 17 2017

A076140 Triangular numbers T(k) that are three times another triangular number: T(k) such that T(k) = 3*T(m) for some m.

Original entry on oeis.org

0, 3, 45, 630, 8778, 122265, 1702935, 23718828, 330360660, 4601330415, 64088265153, 892634381730, 12432793079070, 173166468725253, 2411897769074475, 33593402298317400, 467895734407369128, 6516946879404850395, 90769360577260536405, 1264254101202242659278
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

This is a subsequence of A045943. - Michel Marcus, Apr 26 2014

Examples

			a(3) = 630 because 630 = T(35) and 630/3 = 210 = T(20).
		

Crossrefs

Subsequence of A000217.
The m values are in A061278 and the k values are in A001571.
Cf. A045943.

Programs

  • Mathematica
    Join[{0}, CoefficientList[Series[3/(1 - 15x + 15x^2 - x^3), {x, 0, 20}], x]]  (* Harvey P. Dale, Apr 02 2011 *)
    triNums = Accumulate[Range[0, 9999]]; Select[triNums, MemberQ[triNums, #/3] &] (* Alonso del Arte, Mar 24 2020 *)
  • PARI
    concat(0, Vec(-3*x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

a(n) = (3/288)*(-24 + (12 - 6*sqrt(3))*(7 - 4*sqrt(3))^n + (12 + 6*sqrt(3))*(7 + 4*sqrt(3))^n).
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002: (Start)
a(0) = 0, a(1) = 3, a(2) = 45; a(n) = 15*(a(n-1) -a (n-2)) + a(n-3) for n >= 3.
G.f.: (3*x)/(1 - 15*x + 15*x^2 - x^3). (End)
a(n) = 3*A076139(n) = 3/2*A217855(n) = 3/4*A123480(n) = 3/8*A045899(n). - Peter Bala, Dec 31 2012
a(0) = 0, a(n) = 14 * a(n - 1) - a(n - 2) + 3 for n > 0. - Vladimir Pletser, Mar 23 2020
a(n) = ((2+sqrt(3))*(7+4*sqrt(3))^n + ((2-sqrt(3))*(7-4*sqrt(3))^n))/16 - 1/4 = ((2+sqrt(3))^(2n+1) + ((2-sqrt(3))^(2n+1)))/16 - 1/4. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A124080 10 times triangular numbers: a(n) = 5*n*(n + 1).

Original entry on oeis.org

0, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550, 660, 780, 910, 1050, 1200, 1360, 1530, 1710, 1900, 2100, 2310, 2530, 2760, 3000, 3250, 3510, 3780, 4060, 4350, 4650, 4960, 5280, 5610, 5950, 6300, 6660, 7030, 7410, 7800, 8200, 8610, 9030, 9460, 9900, 10350
Offset: 0

Views

Author

Zerinvary Lajos, Nov 24 2006

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n >= 5, a(n-4) is equal to the number of 5-subsets of X having exactly three elements in common with Y. Y is a 5-subset of an n-set X then, for n >= 6, a(n-6) is the number of (n-5)-subsets of X having exactly two elements in common with Y. - Milan Janjic, Dec 28 2007
Also sequence found by reading the line from 0, in the direction 0, 10, ... and the same line from 0, in the direction 0, 30, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Axis perpendicular to A195148 in the same spiral. - Omar E. Pol, Sep 18 2011

Crossrefs

Programs

  • Magma
    [ 5*n*(n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    [seq(10*binomial(n,2),n=1..51)];
    seq(n*(n+1)*5, n=0..39); # Zerinvary Lajos, Mar 06 2007
  • Mathematica
    10*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,10,30},50] (* Harvey P. Dale, Jul 21 2011 *)
  • PARI
    a(n)=5*n*(n+1) \\ Charles R Greathouse IV, Sep 28 2015

Formula

a(n) = 10*C(n,2), n >= 1.
a(n) = A049598(n) - A002378(n). - Zerinvary Lajos, Mar 06 2007
a(n) = 5*n*(n + 1), n >= 0. - Zerinvary Lajos, Mar 06 2007
a(n) = 5*n^2 + 5*n = 10*A000217(n) = 5*A002378(n) = 2*A028895(n). - Omar E. Pol, Dec 12 2008
a(n) = 10*n + a(n-1) (with a(0) = 0). - Vincenzo Librandi, Nov 12 2009
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 10, a(2) = 30. - Harvey P. Dale, Jul 21 2011
a(n) = A062786(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A131242(10*n+9). - Philippe Deléham, Mar 27 2013
From G. C. Greubel, Aug 22 2017: (Start)
G.f.: 10*x/(1 - x)^3.
E.g.f.: 5*x*(x + 2)*exp(x). (End)
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2)-1)/5. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(5/Pi)*cos(3*Pi/(2*sqrt(5))).
Product_{n>=1} (1 + 1/a(n)) = (5/Pi)*cos(Pi/(2*sqrt(5))). (End)

A140672 a(n) = n*(3*n + 13)/2.

Original entry on oeis.org

0, 8, 19, 33, 50, 70, 93, 119, 148, 180, 215, 253, 294, 338, 385, 435, 488, 544, 603, 665, 730, 798, 869, 943, 1020, 1100, 1183, 1269, 1358, 1450, 1545, 1643, 1744, 1848, 1955, 2065, 2178, 2294, 2413, 2535, 2660, 2788, 2919, 3053
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Magma
    [(3*n^2 + 13*n)/2 : n in [0..80]]; // Wesley Ivan Hurt, Dec 27 2023
  • Mathematica
    Table[n (3 n + 13)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 8, 19}, 50] (* Harvey P. Dale, Dec 16 2011 *)
  • PARI
    a(n)=n*(3*n+13)/2 \\ Charles R Greathouse IV, Sep 24 2015
    

Formula

a(n) = (3*n^2 + 13*n)/2.
a(n) = 3*n + a(n-1) + 5 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=8, a(2)=19; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 16 2011
G.f.: x*(8 - 5*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 +16*x)*exp(x). - G. C. Greubel, Jul 17 2017

A152773 3 times heptagonal numbers: a(n) = 3*n*(5*n-3)/2.

Original entry on oeis.org

0, 3, 21, 54, 102, 165, 243, 336, 444, 567, 705, 858, 1026, 1209, 1407, 1620, 1848, 2091, 2349, 2622, 2910, 3213, 3531, 3864, 4212, 4575, 4953, 5346, 5754, 6177, 6615, 7068, 7536, 8019, 8517, 9030, 9558, 10101, 10659, 11232, 11820, 12423, 13041, 13674, 14322, 14985
Offset: 0

Views

Author

Omar E. Pol, Dec 13 2008

Keywords

Comments

Also the number of 6-cycles in the (n+5)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jun 25 2017

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=15: see Comments lines of A226492.
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A045943 (4-cycles), A028896 (5-cycles).

Programs

Formula

a(n) = (15*n^2 - 9*n)/2 = 3*A000566(n).
a(n) = a(n-1) + 15*n - 12 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+4*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(0)=0, a(1)=3, a(2)=21, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 08 2012
a(n) = n + A226489(n). - Bruno Berselli, Jun 11 2013
Sum_{n>=1} 1/a(n) = tan(Pi/10)*Pi/9 - sqrt(5)*log(phi)/9 + 5*log(5)/18, where phi is the golden ratio (A001622). - Amiram Eldar, May 20 2023
E.g.f.: 3*exp(x)*x*(2 + 5*x)/2. - Elmo R. Oliveira, Dec 24 2024

A049777 Triangular array read by rows: T(m,n) = n + n+1 + ... + m = (m+n)(m-n+1)/2.

Original entry on oeis.org

1, 3, 2, 6, 5, 3, 10, 9, 7, 4, 15, 14, 12, 9, 5, 21, 20, 18, 15, 11, 6, 28, 27, 25, 22, 18, 13, 7, 36, 35, 33, 30, 26, 21, 15, 8, 45, 44, 42, 39, 35, 30, 24, 17, 9, 55, 54, 52, 49, 45, 40, 34, 27, 19, 10, 66, 65, 63, 60, 56, 51, 45, 38, 30, 21, 11, 78, 77, 75, 72, 68, 63, 57, 50
Offset: 1

Views

Author

Keywords

Comments

Triangle read by rows, T(n,k) = A000217(n) - A000217(k), 0 <= k < n. - Philippe Deléham, Mar 07 2013
Subtriangle of triangle in A049780. - Philippe Deléham, Mar 07 2013
No primes and all composite numbers (except 2^x) are generated after the first two columns of the square array for this sequence. In other words, no primes and all composites except 2^x are generated when m-n >= 2. - Bob Selcoe, Jun 18 2013
Diagonal sums in the square array equal partial sums of squares (A000330). - Bob Selcoe, Feb 14 2014
From Bob Selcoe, Oct 27 2014: (Start)
The following apply to the triangle as a square array read by rows unless otherwise specified (see Table link);
Conjecture: There is at least one prime in interval [T(n,k), T(n,k+1)]. Since T(n,k+1)/T(n,k) decreases to (k+1)/k as n increases, this is true for k=1 ("Bertrand's Postulate", first proved by P. Chebyshev), k=2 (proved by El Bachraoui) and k=3 (proved by Loo).
Starting with T(1,1), The falling diagonal of the first 2 numbers in each column (read by column) are the generalized pentagonal numbers (A001318). That is, the coefficients of T(1,1), T(2,1), T(2,2), T(3,2), T(3,3), T(4,3), T(4,4) etc. are the generalized pentagonal numbers. These are A000326 and A005449 (Pentagonal and Second pentagonal numbers: n*(3*n+1)/2, respectively), interweaved.
Let D(n,k) denote falling diagonals starting with T(n,k):
Treating n as constant: pentagonal numbers of the form n*k + 3*k*(k-1)/2 are D(n,1); sequences A000326, 005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542 are formed by n = 1 through 12, respectively.
Treating k as constant: D(1,k) are (3*n^2 + (4k-5)*n + (k-1)*(k-2))/2. When k = 2(mod3), D(1,k), is same as D(k+1,1) omitting the first (k-2)/3 numbers in the sequences. So D(1,2) is same as D(3,1); D(1,5) is same as D(6,1) omitting the 6; D(1,8) is same as D(9,1) omitting the 9 and 21; etc.
D(1,3) and D(1,4) are sequences A095794 and A140229, respectively.
(End)

Examples

			Rows: {1}; {3,2}; {6,5,3}; ...
Triangle begins:
   1;
   3,  2;
   6,  5,  3;
  10,  9,  7,  4;
  15, 14, 12,  9,  5;
  21, 20, 18, 15, 11,  6;
  28, 27, 25, 22, 18, 13,  7;
  36, 35, 33, 30, 26, 21, 15,  8;
  45, 44, 42, 39, 35, 30, 24, 17,  9;
  55, 54, 52, 49, 45, 40, 34, 27, 19, 10; ...
		

Crossrefs

Row sums = A000330.
Cf. A001318 (generalized pentagonal numbers).
Cf. A000326, 005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542 (pentagonal numbers of form n*k + 3*k*(k-1)/2).

Programs

  • Magma
    /* As triangle */ [[(m+n)*(m-n+1) div 2: n in [1..m]]: m in [1.. 15]]; // Vincenzo Librandi, Oct 27 2014
  • Mathematica
    Flatten[Table[(n+k) (n-k+1)/2,{n,15},{k,n}]] (* Harvey P. Dale, Feb 27 2012 *)
  • PARI
    {T(n,k) = if( k<1 || nMichael Somos, Oct 06 2007 */
    

Formula

Partial sums of A002260 row terms, starting from the right; e.g., row 3 of A002260 = (1, 2, 3), giving (6, 5, 3). - Gary W. Adamson, Oct 23 2007
Sum_{k=0..n-1} (-1)^k*(2*k+1)*A000203(T(n,k)) = (-1)^(n-1)*A000330(n). - Philippe Deléham, Mar 07 2013
Read as a square array: T(n,k) = k*(k+2n-1)/2. - Bob Selcoe, Oct 27 2014

A140675 a(n) = n*(3*n + 19)/2.

Original entry on oeis.org

0, 11, 25, 42, 62, 85, 111, 140, 172, 207, 245, 286, 330, 377, 427, 480, 536, 595, 657, 722, 790, 861, 935, 1012, 1092, 1175, 1261, 1350, 1442, 1537, 1635, 1736, 1840, 1947, 2057, 2170, 2286, 2405, 2527, 2652, 2780, 2911, 3045, 3182
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    Table[(n(3n+19))/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,11,25},50] (* Harvey P. Dale, Apr 26 2018 *)
  • PARI
    a(n)=n*(3*n+19)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (3*n^2 + 19*n)/2.
a(n) = 3*n + a(n-1) + 8 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(11 - 8*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 22*x)*exp(x). - G. C. Greubel, Jul 17 2017
Previous Showing 31-40 of 129 results. Next