A115329
Expansion of e.g.f.: exp(x + 2*x^2).
Original entry on oeis.org
1, 1, 5, 13, 73, 281, 1741, 8485, 57233, 328753, 2389141, 15539261, 120661465, 866545993, 7140942173, 55667517781, 484124048161, 4046845186145, 36967280461093, 328340133863533, 3137853448906601, 29405064157989241
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x+2*x^2) ))); // G. C. Greubel, Jul 12 2024
-
a := n -> I^(1 - n)*2^((3*(n - 1))/2)*KummerU((1 - n)/2, 3/2, -1/8):
seq(simplify(a(n)), n=0..21); # Peter Luschny, Nov 21 2017
-
Range[0, 20]! CoefficientList[Series[Exp[(x + 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
-
a(n)=local(m=4);n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)),n)
-
[(-i*sqrt(2))^n*hermite(n, i/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024
More terms from
Karol A. Penson and P. Blasiak (blasiak(AT)lptl.jussieu.fr), Jun 03 2006
A080893
Expansion of e.g.f. exp(x*C(x)) = exp((1-sqrt(1-4*x))/2), where C(x) is the g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0
-
y[x_] := y[x] = 2(2x - 3)y[x - 1] + y[x - 2]; y[0] = 1; y[1] = 1; Table[y[n],{n,0,17}]
With[{nn=20},CoefficientList[Series[Exp[(1-Sqrt[1-4x])/2],{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Oct 30 2011 *)
-
{a(n) = if( n<1, n = 1 - n); n! * polcoeff( exp( (1 - sqrt(1 - 4*x + x * O(x^n))) / 2), n)} /* Michael Somos, Apr 07 2012 */
-
A080893 = lambda n: hypergeometric([-n+1, n], [], -1)
[simplify(A080893(n)) for n in (0..19)] # Peter Luschny, Oct 17 2014
A143405
Number of forests of labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, also row sums of A143395, A143396 and A143397.
Original entry on oeis.org
1, 1, 4, 17, 89, 552, 3895, 30641, 265186, 2497551, 25373097, 276105106, 3199697517, 39297401197, 509370849148, 6943232742493, 99217486649933, 1482237515573624, 23093484367004715, 374416757914118941, 6304680593346141746, 110063311977033807187
Offset: 0
a(2) = 4, because there are 4 forests for 2 labels: {1,2}, {1}{2}, {1}<-2, {2}<-1.
-
a:= n-> add(add(binomial(n, t)*Stirling2(t, k)*k^(n-t), t=k..n), k=0..n):
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*(2^j-1), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Oct 05 2019
-
CoefficientList[Series[Exp[Exp[t] (Exp[t] - 1)], {t, 0, 12}], t] Range[0, 12]! (* Emanuele Munarini, Sep 15 2016 *)
Table[Sum[Binomial[n, k] 2^k BellB[k] BellB[n - k, -1], {k, 0, n}], {n, 0, 12}] (* Emanuele Munarini, Sep 15 2016 *)
Table[Sum[BellY[n, k, 2^Range[n] - 1], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*stirling(n, k, 2)); \\ Seiichi Manyama, May 14 2022
A158954
Numerator of Hermite(n, 1/4).
Original entry on oeis.org
1, 1, -7, -23, 145, 881, -4919, -47207, 228257, 3249505, -13184999, -273145399, 887134513, 27109092817, -65152896535, -3101371292039, 4716976292161, 401692501673153, -239816274060743, -58083536514994775, -21631462857761839, 9271734379541402161
Offset: 0
Numerators of 1, 1/2, -7/4, -23/8, 145/16, 881/32, -4919/64, -47207/128, 228257/256, 3249505/512, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(1/2)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
-
A158954 := proc(n)
orthopoly[H](n,1/4) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n,1/4],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011 *)
-
a(n)=numerator(polhermite(n,1/4)) \\ Charles R Greathouse IV, Jan 29 2016
-
[2^n*hermite(n, 1/4) for n in range(31)] # G. C. Greubel, Jul 12 2024
A294363
E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0),
A294361 (k=1),
A294362 (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))
A118395
Expansion of e.g.f. exp(x + x^3).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 481, 2731, 10417, 91225, 681121, 3493711, 33597961, 303321877, 1938378625, 20282865331, 211375647841, 1607008257841, 18157826367937, 212200671085975, 1860991143630841, 22560913203079021, 289933758771407521, 2869267483843753147, 37116733726117707025
Offset: 0
-
[n le 3 select 1 else Self(n-1) + 3*(n-2)*(n-3)*Self(n-3): n in [1..26]]; // Vincenzo Librandi, Aug 25 2015
-
with(combstruct):seq(count(([S, {S=Set(Union(Z, Prod(Z, Z, Z)))}, labeled], size=n)), n=0..22); # Zerinvary Lajos, Mar 18 2008
-
CoefficientList[Series[E^(x+x^3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
T[n_, k_] := n!/(k!(n-3k)!);
a[n_] := Sum[T[n, k], {k, 0, Floor[n/3]}];
a /@ Range[0, 24] (* Jean-François Alcover, Nov 04 2020 *)
-
a(n)=n!*polcoeff(exp(x+x^3+x*O(x^n)),n)
-
N=33; x='x+O('x^N);
egf=exp(x+x^3);
Vec(serlaplace(egf))
/* Joerg Arndt, Sep 15 2012 */
-
a(n) = n!*sum(k=0, n\3, binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
-
def a(n):
if (n<3): return 1
else: return a(n-1) + 3*(n-1)*(n-2)*a(n-3)
[a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
A293840
E.g.f.: exp(Sum_{n>=1} A000009(n)*x^n).
Original entry on oeis.org
1, 1, 3, 19, 121, 1041, 10651, 121843, 1575729, 22970881, 366805171, 6365365491, 120044573353, 2430782532049, 52677233993931, 1217023986185491, 29799465317716321, 771272544315151233, 21044341084622337379, 603173026772647474771
Offset: 0
-
nmax = 20; CoefficientList[Series[E^Sum[PartitionsQ[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
A000321
H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.
Original entry on oeis.org
1, -1, -1, 5, 1, -41, 31, 461, -895, -6481, 22591, 107029, -604031, -1964665, 17669471, 37341149, -567425279, -627491489, 19919950975, 2669742629, -759627879679, 652838174519, 31251532771999, -59976412450835, -1377594095061119, 4256461892701199, 64623242860354751
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 209.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
-
Table[HermiteH[n, -1/2], {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
Table[(-2)^n HypergeometricU[-n/2, 1/2, 1/4], {n, 0, 25}] (* Benedict W. J. Irwin, Oct 17 2017 *)
-
N=66; x='x+O('x^N);
egf=exp(-x-x^2); Vec(serlaplace(egf))
/* Joerg Arndt, Mar 07 2013 */
-
vector(50, n, n--; sum(k=0, n/2, (-1)^(n-k)*k!*binomial(n, k)*binomial(n-k, k))) \\ Altug Alkan, Oct 22 2015
-
a(n) = polhermite(n, -1/2); \\ Michel Marcus, Oct 12 2016
-
from sympy import hermite
def a(n): return hermite(n, -1/2) # Indranil Ghosh, May 26 2017
A018191
a(n) = Sum_{k=0..n} binomial(n, k) * k! / floor(k/2)!.
Original entry on oeis.org
1, 2, 5, 16, 53, 206, 817, 3620, 16361, 80218, 401501, 2139512, 11641885, 66599846, 388962953, 2367284236, 14700573137, 94523836850, 619674301621, 4186249123808, 28809504493061, 203556335785342, 1463877667140065, 10777146970619636, 80686484464418233
Offset: 0
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
-
f:=n-> add(binomial(n,k)*k!/floor(k/2)!, k=0..n); [seq(f(n),n=1..40)]; # N. J. A. Sloane, Sep 25 2021
-
a[n_] := Sum[Binomial[n-1, k] k! / Floor[k/2]!, {k, 0, n}];
Array[a, 25] (* Jean-François Alcover, Aug 29 2019 *)
Table[n!*SeriesCoefficient[(1+x)*E^(x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
A293720
Expansion of e.g.f.: exp(x + 4*x^2).
Original entry on oeis.org
1, 1, 9, 25, 241, 1041, 10681, 60649, 658785, 4540321, 51972841, 415198521, 4988808529, 44847866545, 563683953561, 5586645006601, 73228719433921, 788319280278849, 10747425123292105, 124265401483446361, 1757874020223846321, 21640338257575264081
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x+4*x^2) ))); // G. C. Greubel, Jul 12 2024
-
CoefficientList[Series[E^(x + 4*x^2), {x,0,30}], x] * Range[0,30]! (* Vaclav Kotesovec, Oct 15 2017 *)
-
my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x+4*x^2)))
-
[(-2*i)^n*hermite(n, i/4) for n in range(31)] # G. C. Greubel, Jul 12 2024
Comments