cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 62 results. Next

A050376 "Fermi-Dirac primes": numbers of the form p^(2^k) where p is prime and k >= 0.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Every number n is a product of a unique subset of these numbers. This is sometimes called the Fermi-Dirac factorization of n (see A182979). Proof: In the prime factorization n = Product_{j>=1} p(j)^e(j) expand every exponent e(j) as binary number and pick the terms of this sequence corresponding to the positions of the ones in binary (it is clear that both n and n^2 have the same number of factors in this sequence, and that each factor appears with exponent 1 or 0).
Or, a(1) = 2; for n>1, a(n) = smallest number which cannot be obtained as the product of previous terms. This is evident from the unique factorization theorem and the fact that every number can be expressed as the sum of powers of 2. - Amarnath Murthy, Jan 09 2002
Except for the first term, same as A084400. - David Wasserman, Dec 22 2004
The least number having 2^n divisors (=A037992(n)) is the product of the first n terms of this sequence according to Ramanujan.
According to the Bose-Einstein distribution of particles, an unlimited number of particles may occupy the same state. On the other hand, according to the Fermi-Dirac distribution, no two particles can occupy the same state (by the Pauli exclusion principle). Unique factorizations of the positive integers by primes (A000040) and over terms of A050376 one can compare with two these distributions in physics of particles. In the correspondence with this, the factorizations over primes one can call "Bose-Einstein factorizations", while the factorizations over distinct terms of A050376 one can call "Fermi-Dirac factorizations". - Vladimir Shevelev, Apr 16 2010
The numbers of the form p^(2^k), where p is prime and k >= 0, might thus be called the "Fermi-Dirac primes", while the classic primes might be called the "Bose-Einstein primes". - Daniel Forgues, Feb 11 2011
In the theory of infinitary divisors, the most natural name of the terms is "infinitary primes" or "i-primes". Indeed, n is in the sequence, if and only if it has only two infinitary divisors. Since 1 and n are always infinitary divisors of n>1, an i-prime has no other infinitary divisors. - Vladimir Shevelev, Feb 28 2011
{a(n)} is the minimal set including all primes and closed with respect to squaring. In connection with this, note that n and n^2 have the same number of factors in their Fermi-Dirac representations. - Vladimir Shevelev, Mar 16 2012
In connection with this sequence, call an integer compact if the factors in its Fermi-Dirac factorization are pairwise coprime. The density of such integers equals (6/Pi^2)*Product_{prime p} (1+(Sum_{i>=1} p^(-(2^i-1))/(p+1))) = 0.872497... It is interesting that there exist only 7 compact factorials listed in A169661. - Vladimir Shevelev, Mar 17 2012
The first k terms of the sequence solve the following optimization problem:
Let x_1, x_2,..., x_k be integers with the restrictions: 2<=x_1A064547(Product{i=1..k} x_i) >= k. Let the goal function be Product_{i=1..k} x_i. Then the minimal value of the goal function is Product_{i=1..k} a(i). - Vladimir Shevelev, Apr 01 2012
From Joerg Arndt, Mar 11 2013: (Start)
Similarly to the first comment, for the sequence "Numbers of the form p^(3^k) or p^(2*3^k) where p is prime and k >= 0" one obtains a factorization into distinct factors by using the ternary expansion of the exponents (here n and n^3 have the same number of such factors).
The generalization to base r would use "Numbers of the form p^(r^k), p^(2*r^k), p^(3*r^k), ..., p^((r-1)*r^k) where p is prime and k >= 0" (here n and n^r have the same number of (distinct) factors). (End)
The first appearance of this sequence as a multiplicative basis in number theory with some new notions, formulas and theorems may have been in my 1981 paper (see the Abramovich reference). - Vladimir Shevelev, Apr 27 2014
Numbers n for which A064547(n) = 1. - Antti Karttunen, Feb 10 2016
Lexicographically earliest sequence of distinct nonnegative integers such that no term is a product of 2 or more distinct terms. Removing the distinctness requirement, the sequence becomes A000040 (the prime numbers); and the equivalent sequence where the product is of 2 distinct terms is A026416 (without its initial term, 1). - Peter Munn, Mar 05 2019
The sequence was independently developed as a multiplicative number system in 1985-1986 (and first published in 1995, see the Uhlmann reference) using a proof method involving representations of positive integers as sums of powers of 2. This approach offers an arguably simpler and more flexible means for analyzing the sequence. - Jeffrey K. Uhlmann, Nov 09 2022

Examples

			Prime powers which are not terms of this sequence:
  8 = 2^3 = 2^(1+2), 27 = 3^3 = 3^(1+2), 32 = 2^5 = 2^(1+4),
  64 = 2^6 = 2^(2+4), 125 = 5^3 = 5^(1+2), 128 = 2^7 = 2^(1+2+4)
"Fermi-Dirac factorizations":
  6 = 2*3, 8 = 2*4, 24 = 2*3*4, 27 = 3*9, 32 = 2*16, 64 = 4*16,
  108 = 3*4*9, 120 = 2*3*4*5, 121 = 121, 125 = 5*25, 128 = 2*4*16.
		

References

  • V. S. Abramovich, On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17 (Russian; MR0632989(83a:10003)).
  • S. Ramanujan, Highly Composite Numbers, Collected Papers of Srinivasa Ramanujan, p. 125, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).
  • J. K. Uhlmann, Dynamic map building and localization: new theoretical foundations, Doctoral Dissertation, University of Oxford, Appendix 16, 1995.

Crossrefs

Cf. A000040 (primes, is a subsequence), A026416, A026477, A037992 (partial products), A050377-A050380, A052330, A064547, A066724, A084400, A176699, A182979.
Cf. A268388 (complement without 1).
Cf. A124010, subsequence of A000028, A000961, A213925, A223490.
Cf. A228520, A186945 (Fermi-Dirac analog of Ramanujan primes, A104272, and Labos primes, A080359).
Cf. also A268385, A268391, A268392.

Programs

  • Haskell
    a050376 n = a050376_list !! (n-1)
    a050376_list = filter ((== 1) . a209229 . a100995) [1..]
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    isA050376 := proc(n)
        local f,e;
        f := ifactors(n)[2] ;
        if nops(f) = 1 then
            e := op(2,op(1,f)) ;
            if isA000079(e) then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    A050376 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            2 ;
        else
            for a from procname(n-1)+1 do
                if isA050376(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 26 2017
  • Mathematica
    nn = 300; t = {}; k = 1; While[lim = nn^(1/k); lim > 2,  t = Join[t, Prime[Range[PrimePi[lim]]]^k]; k = 2 k]; t = Union[t] (* T. D. Noe, Apr 05 2012 *)
  • PARI
    {a(n)= local(m, c, k, p); if(n<=1, 2*(n==1), n--; c=0; m=2; while( cMichael Somos, Apr 15 2005; edited by Michel Marcus, Aug 07 2021
    
  • PARI
    lst(lim)=my(v=primes(primepi(lim)),t); forprime(p=2,sqrt(lim),t=p; while((t=t^2)<=lim,v=concat(v,t))); vecsort(v) \\ Charles R Greathouse IV, Apr 10 2012
    
  • PARI
    is_A050376(n)=2^#binary(n=isprimepower(n))==n*2 \\ M. F. Hasler, Apr 08 2015
    
  • PARI
    ispow2(n)=n && n>>valuation(n,2)==1
    is(n)=ispow2(isprimepower(n)) \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    isok(n)={my(e=isprimepower(n)); e && !bitand(e,e-1)} \\ Andrew Howroyd, Oct 16 2024
    
  • Python
    from sympy import isprime, perfect_power
    def ok(n):
      if isprime(n): return True
      answer = perfect_power(n)
      if not answer: return False
      b, e = answer
      if not isprime(b): return False
      while e%2 == 0: e //= 2
      return e == 1
    def aupto(limit):
      alst, m = [], 1
      for m in range(1, limit+1):
        if ok(m): alst.append(m)
      return alst
    print(aupto(241)) # Michael S. Branicky, Feb 03 2021
    
  • Python
    from sympy import primepi, integer_nthroot
    def A050376(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025
  • Scheme
    (define A050376 (MATCHING-POS 1 1 (lambda (n) (= 1 (A064547 n)))))
    ;; Requires also my IntSeq-library. - Antti Karttunen, Feb 09 2016
    

Formula

From Vladimir Shevelev, Mar 16 2012: (Start)
Product_{i>=1} a(i)^k_i = n!, where k_i = floor(n/a(i)) - floor(n/a(i)^2) + floor(n/a(i)^3) - floor(n/a(i)^4) + ...
Denote by A(x) the number of terms not exceeding x.
Then A(x) = pi(x) + pi(x^(1/2)) + pi(x^(1/4)) + pi(x^(1/8)) + ...
Conversely, pi(x) = A(x) - A(sqrt(x)). For example, pi(37) = A(37) - A(6) = 16-4 = 12. (End)
A209229(A100995(a(n))) = 1. - Reinhard Zumkeller, Mar 19 2013
From Vladimir Shevelev, Aug 31 2013: (Start)
A Fermi-Dirac analog of Euler product: Zeta(s) = Product_{k>=1} (1+a(k)^(-s)), for s > 1.
In particular, Product_{k>=1} (1+a(k)^(-2)) = Pi^2/6. (End)
a(n) = A268385(A268392(n)). [By their definitions.] - Antti Karttunen, Feb 10 2016
A000040 union A001248 union A030514 union A179645 union A030635 union .... - R. J. Mathar, May 26 2017

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
More examples from Daniel Forgues, Feb 09 2011

A036554 Numbers whose binary representation ends in an odd number of zeros.

Original entry on oeis.org

2, 6, 8, 10, 14, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, 46, 50, 54, 56, 58, 62, 66, 70, 72, 74, 78, 82, 86, 88, 90, 94, 96, 98, 102, 104, 106, 110, 114, 118, 120, 122, 126, 128, 130, 134, 136, 138, 142, 146, 150, 152, 154, 158, 160, 162, 166, 168, 170, 174
Offset: 1

Views

Author

Keywords

Comments

Fraenkel (2010) called these the "dopey" numbers.
Also n such that A035263(n)=0 or A050292(n) = A050292(n-1).
Indices of even numbers in A033485. - Philippe Deléham, Mar 16 2004
a(n) is an odious number (see A000069) for n odd; a(n) is an evil number (see A001969) for n even. - Philippe Deléham, Mar 16 2004
Indices of even numbers in A007913, in A001511. - Philippe Deléham, Mar 27 2004
This sequence consists of the increasing values of n such that A097357(n) is even. - Creighton Dement, Aug 14 2004
Numbers with an odd number of 2's in their prime factorization (e.g., 8 = 2*2*2). - Mark Dow, Sep 04 2007
Equals the set of natural numbers not in A003159 or A141290. - Gary W. Adamson, Jun 22 2008
Represents the set of CCW n-th moves in the standard Tower of Hanoi game; and terms in even rows of a [1, 3, 5, 7, 9, ...] * [1, 2, 4, 8, 16, ...] multiplication table. Refer to the example. - Gary W. Adamson, Mar 20 2010
Refer to the comments in A003159 relating to A000041 and A174065. - Gary W. Adamson, Mar 21 2010
If the upper s-Wythoff sequence of s is s, then s=A036554. (See A184117 for the definition of lower and upper s-Wythoff sequences.) Starting with any nondecreasing sequence s of positive integers, A036554 is the limit when the upper s-Wythoff operation is iterated. For example, starting with s=(1,4,9,16,...) = (n^2), we obtain lower and upper s-Wythoff sequences
a=(1,3,4,5,6,8,9,10,11,12,14,...) = A184427;
b=(2,7,12,21,31,44,58,74,...) = A184428.
Then putting s=a and repeating the operation gives
b'=(2,6,8,10,13,17,20,...), which has the same first four terms as A036554. - Clark Kimberling, Jan 14 2011
Or numbers having infinitary divisor 2, or the same, having factor 2 in Fermi-Dirac representation as a product of distinct terms of A050376. - Vladimir Shevelev, Mar 18 2013
Thus, numbers not in A300841 or in A302792. Equally, sequence 2*A300841(n) sorted into ascending order. - Antti Karttunen, Apr 23 2018

Examples

			From _Gary W. Adamson_, Mar 20 2010: (Start)
Equals terms in even numbered rows in the following multiplication table:
(rows are labeled 1,2,3,... as with the Towers of Hanoi disks)
   1,  3,  5,  7,  9, 11, ...
   2,  6, 10, 14, 18, 22, ...
   4, 12, 20, 28, 36, 44, ...
   8, 24, 40, 56, 72, 88, ...
   ...
As shown, 2, 6, 8, 10, 14, ...; are in even numbered rows, given the row with (1, 3, 5, 7, ...) = row 1.
The term "5" is in an odd row, so the 5th Towers of Hanoi move is CW, moving disc #1 (in the first row).
a(3) = 8 in row 4, indicating that the 8th Tower of Hanoi move is CCW, moving disc #4.
A036554 bisects the positive nonzero natural numbers into those in the A036554 set comprising 1/3 of the total numbers, given sufficiently large n.
This corresponds to 1/3 of the TOH moves being CCW and 2/3 CW. Row 1 of the multiplication table = 1/2 of the natural numbers, row 2 = 1/4, row 3 = 1/8 and so on, or 1 = (1/2 + 1/4 + 1/8 + 1/16 + ...). Taking the odd-indexed terms of this series given offset 1, we obtain 2/3 = 1/2 + 1/8 + 1/32 + ..., while sum of the even-indexed terms is 1/3. (End)
		

Crossrefs

Indices of odd numbers in A007814. Subsequence of A036552. Complement of A003159. Also double of A003159.
Cf. A000041, A003157, A003158, A005408, A052330, A072939, A079523, A096268 (characteristic function, when interpreted with offset 1), A141290, A174065, A300841.

Programs

  • Haskell
    a036554 = (+ 1) . a079523  -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [2*m:m in [1..100] | Valuation(m,2) mod 2 eq 0]; // Marius A. Burtea, Aug 29 2019
    
  • Mathematica
    Select[Range[200],OddQ[IntegerExponent[#,2]]&] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    is(n)=valuation(n,2)%2 \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    def ok(n):
      c = 0
      while n%2 == 0: n //= 2; c += 1
      return c%2 == 1
    print([m for m in range(1, 175) if ok(m)]) # Michael S. Branicky, Feb 06 2021
    
  • Python
    from itertools import count, islice
    def A036554_gen(startvalue=1): return filter(lambda n:(~n & n-1).bit_length()&1,count(max(startvalue,1))) # generator of terms >= startvalue
    A036554_list = list(islice(A036554_gen(),30)) # Chai Wah Wu, Jul 05 2022
    
  • Python
    is_A036554 = lambda n: A001511(n)&1==0 # M. F. Hasler, Nov 26 2024
    
  • Python
    def A036554(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n) # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A079523(n)+1 = A072939(n)-1.
a(n) = A003156(n) + n = A003157(n) - n = A003158(n) - n + 1. - Philippe Deléham, Apr 10 2004
Values of k such that A091297(k) = 2. - Philippe Deléham, Feb 25 2004
a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012 [In fact, a(n) = 3n + O(log n). - Charles R Greathouse IV, Nov 27 2024]
a(n) = 2*A003159(n). - Clark Kimberling, Sep 30 2014
{a(n)} = A052330({A005408(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Aug 26 2019

Extensions

Incorrect equation removed from formula by Peter Munn, Dec 04 2020

A096111 If n = 2^k - 1, then a(n) = k+1, otherwise a(n) = (A000523(n)+1)*a(A053645(n)).

Original entry on oeis.org

1, 2, 2, 3, 3, 6, 6, 4, 4, 8, 8, 12, 12, 24, 24, 5, 5, 10, 10, 15, 15, 30, 30, 20, 20, 40, 40, 60, 60, 120, 120, 6, 6, 12, 12, 18, 18, 36, 36, 24, 24, 48, 48, 72, 72, 144, 144, 30, 30, 60, 60, 90, 90, 180, 180, 120, 120, 240, 240, 360, 360, 720, 720, 7, 7, 14, 14, 21, 21
Offset: 0

Views

Author

Amarnath Murthy, Jun 29 2004

Keywords

Comments

Each n > 1 occurs 2*A045778(n) times in the sequence.
f(n+2^k) = (k+1)*f(n) if 2^k > n+1. - Robert Israel, Apr 25 2016
If the binary indices of n (row n of A048793) are the positions 1's in its reversed binary expansion, then a(n) is the product of all binary indices of n + 1. The number of binary indices of n is A000120(n), their sum is A029931(n), and their average is A326699(n)/A326700(n). - Gus Wiseman, Jul 27 2019

Crossrefs

Permutation of A096115, i.e. a(n) = A096115(A122198(n+1)) [Note the different starting offsets]. Bisection: A121663. Cf. A096113, A052330.
Cf. A029931.

Programs

  • Maple
    f:= proc(n) local L;
        L:= convert(2*n+2,base,2);
        convert(subs(0=NULL,zip(`*`,L, [$0..nops(L)-1])),`*`);
    end proc:
    map(f, [$0..100]); # Robert Israel, Apr 25 2016
  • Mathematica
    CoefficientList[(Product[1 + k x^(2^(k - 1)), {k, 7}] - 1)/x, x] (* Michael De Vlieger, Apr 08 2016 *)
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];Table[Times@@bpe[n+1],{n,0,100}] (* Gus Wiseman, Jul 26 2019 *)
  • PARI
    N=166; q='q+O('q^N);
    gf= (prod(n=1,1+ceil(log(N)/log(2)), 1+n*q^(2^(n-1)) ) - 1) / q;
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */
  • Scheme
    (define (A096111 n) (cond ((pow2? (+ n 1)) (+ 2 (A000523 n))) (else (* (+ 1 (A000523 n)) (A096111 (A053645 n))))))
    (define (pow2? n) (and (> n 0) (zero? (A004198bi n (- n 1)))))
    

Formula

G.f.: ( prod(k>=1, 1+k*x^(2^(k-1)) )- 1 ) / x. - Vladeta Jovovic, Nov 08 2005
a(n) is the product of the exponents in the binary expansion of 2*n + 2. - Peter Kagey, Apr 24 2016

Extensions

Edited, extended and Scheme code added by Antti Karttunen, Aug 25 2006

A037992 Smallest number with 2^n divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 17297280, 294053760, 5587021440, 128501493120, 3212537328000, 93163582512000, 2888071057872000, 106858629141264000, 4381203794791824000, 188391763176048432000, 8854412869274276304000, 433866230594439538896000
Offset: 0

Views

Author

Keywords

Comments

Positions where the number of infinitary divisors of n (A037445), increases to a record (cf. A002182), or infinitary analog of highly composite numbers (A002182). - Vladimir Shevelev, May 13-22 2016
Infinitary superabundant numbers: numbers m with record values of the infinitary abundancy index, A049417(m)/m > A049417(k)/k for all k < m. - Amiram Eldar, Sep 20 2019

Crossrefs

Programs

  • Haskell
    a037992 n = head [x | x <- [1..], a000005 x == 2 ^ n]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Catch[ For[ k = 2, True, k++, If[ an = k*a[n-1]; DivisorSigma[0, an] == 2^n, Throw[an]]]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 16 2012 *)
  • PARI
    {a(n)= local(A,m,c,k,p); if(n<1, n==0, c=0; A=1; m=1; while( cMichael Somos, Apr 15 2005 */
    
  • Python
    def a(n):
      product = 1
      k = 1
      for i in range(n+1):
        product *= k   # k=A050376(i), for i>=1
        while product % k == 0:
          k += 1
      return product
    # Jason L. Miller, Mar 20 2024

Formula

A000005(a(n)) = A000079(n).
a(n) = Product_{k=1..n} A050376(k), product of the first n terms of A050376. - Lekraj Beedassy, Jun 30 2004
a(n) = A052330(2^n -1). - Thomas Ordowski, Jun 29 2005
A001221(a(n+1)) <= A001221(a(n))+1, see also A074239; A007947(a(n)) gives a sequence of primorials (A002110) in nondecreasing order. - Reinhard Zumkeller, Apr 16 2006, corrected: Apr 09 2015
a(n) = A005179(2^n). - Ivan N. Ianakiev, Apr 01 2015
a(n+1)/a(n) = A050376(n+1). - Jinyuan Wang, Oct 14 2018

Extensions

a(18) from Don Reble, Aug 20 2002

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A059896 The set of Fermi-Dirac factors of A(n,k) is the union of the Fermi-Dirac factors of n and k. Symmetric square array read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 8, 3, 8, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 24, 5, 24, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 27, 8, 35, 6, 35, 8, 27, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Every positive integer, m, is the product of a unique subset, S(m), of the numbers listed in A050376 (primes, squares of primes etc.) The Fermi-Dirac factors of m are the members of S(m). So T(n,k) is the product of the members of (S(n) U S(k)).
Old name: Table a(i,j) = product prime(k)^(Ei(k) OR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; OR is the bitwise operation on binary representation of the exponents.
Analogous to LCM, with OR replacing MAX.
A003418-analog seems to be A066616. - Antti Karttunen, Apr 12 2017
Considered as a binary operation, the result is the lowest common multiple of the squarefree parts of its operands multiplied by the square of the operation's result when applied to the square roots of the square parts of its operands. - Peter Munn, Mar 02 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 OR 3) * 3^(3 OR 5) = 2^7*3^7 = 279936.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  2,  6,  8, 10,  6, 14,  8,  18,  10,  22,  24
   3,  6,  3, 12, 15,  6, 21, 24,  27,  30,  33,  12
   4,  8, 12,  4, 20, 24, 28,  8,  36,  40,  44,  12
   5, 10, 15, 20,  5, 30, 35, 40,  45,  10,  55,  60
   6,  6,  6, 24, 30,  6, 42, 24,  54,  30,  66,  24
   7, 14, 21, 28, 35, 42,  7, 56,  63,  70,  77,  84
   8,  8, 24,  8, 40, 24, 56,  8,  72,  40,  88,  24
   9, 18, 27, 36, 45, 54, 63, 72,   9,  90,  99, 108
  10, 10, 30, 40, 10, 30, 70, 40,  90,  10, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,  11, 132
  12, 24, 12, 12, 60, 24, 84, 24, 108, 120, 132,  12
		

Crossrefs

Sequences used in a definition of this sequence: A003986, A000188/A007913/A008833, A052330/A052331.
Has simple/very significant relationships with A003961, A059895/A059897, A225546, A267116.

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059895(x,y) * A059897(x,y).
A(x,y) * A059895(x,y) = x*y.
(End).
From Peter Munn, Mar 02 2022: (Start)
OR denotes the bitwise operation (A003986).
Limited multiplicative property: if gcd(n_1*k_1, n_2*k_2) = 1 then A(n_1*n_2, k_1*k_2) = A(n_1, k_1) * A(n_2, k_2).
For prime p, A(p^e_1, p^e_2) = p^(e_1 OR e_2).
A(n, A(m, k)) = A(A(n, m), k).
A(n, k) = A(k, n).
A(n, 1) = A(n, n) = n.
A(n^2, k^2) = A(n, k)^2.
A(n, k) = A(A007913(n), A007913(k)) * A(A008833(n), A008833(k)) = lcm(A007913(n), A007913(k)) * A(A000188(n), A000188(k))^2.
A007947(A(n, k)) = A007947(n*k).
Isomorphism: A(A052330(n), A052330(k)) = A052330(n OR k).
Equivalently, A(n, k) = A052330(A052331(n) OR A052331(k)).
A(A003961(n), A003961(k)) = A003961(A(n, k)).
A(A225546(n), A225546(k)) = A225546(A(n, k)).
(End)

Extensions

New name from Peter Munn, Mar 02 2022

A007417 If k appears, 3k does not.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 100
Offset: 1

Views

Author

Keywords

Comments

The characteristic function of this sequence is given by A014578. - Philippe Deléham, Mar 21 2004
Numbers whose ternary representation ends in even number of zeros. - Philippe Deléham, Mar 25 2004
Numbers for which 3 is not an infinitary divisor. - Vladimir Shevelev, Mar 18 2013
Where odd terms occur in A051064. - Reinhard Zumkeller, May 23 2013

Examples

			From _Gary W. Adamson_, Mar 02 2010: (Start)
Given the following multiplication table: top row = "not multiples of 3", left column = powers of 3; we get:
   1   2   4   5   7   8   10   11   13
   3   6  12  15  21  24   30   33   39
   9  18  36  45  63  72   90   99  114
  27  54 108
  81
If rows are labeled (1, 2, 3, ...) then odd-indexed rows are in the set; but evens not. Examples: 9 is in the set since 3 is not, but 27 in row 4 can't be. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A145204. - Reinhard Zumkeller, Oct 04 2008
Cf. A007949, A014578 (characteristic function), A042948, A051064, A052330, A092400, A092401.

Programs

  • Haskell
    import Data.List (delete)
    a007417 n = a007417_list !! (n-1)
    a007417_list = s [1..] where
       s (x:xs) = x : s (delete (3*x) xs)
    
  • Mathematica
    Select[ Range[100], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // EvenQ)&] (* Jean-François Alcover, Mar 01 2013, after Philippe Deléham *)
    Select[Range[100], EvenQ@ IntegerExponent[#, 3] &] (* Michael De Vlieger, Sep 01 2020 *)
  • PARI
    is(n) = { my(i = 0); while(n%3==0, n/=3; i++); i%2==0; } \\ Iain Fox, Nov 17 2017
    
  • PARI
    is(n)=valuation(n,3)%2==0; \\ Joerg Arndt, Aug 08 2020
    
  • Python
    from sympy import integer_log
    def A007417(n):
        def f(x): return n+x-sum(((m:=x//9**i)-2)//3+(m-1)//3+2 for i in range(integer_log(x,9)[0]+1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 15 2025

Formula

Limit_{n->infinity} a(n)/n = 4/3. - Philippe Deléham, Mar 21 2004
Partial sums of A092400. Indices of even numbers in A007949. Indices of odd numbers in A051064. a(n) = A092401(2n-1). - Philippe Deléham, Mar 29 2004
{a(n)} = A052330({A042948(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Aug 31 2019

Extensions

More terms from Philippe Deléham, Mar 29 2004
Typo corrected by Philippe Deléham, Apr 15 2010

A145204 Numbers whose representation in base 3 (A007089) ends in an odd number of zeros.

Original entry on oeis.org

0, 3, 6, 12, 15, 21, 24, 27, 30, 33, 39, 42, 48, 51, 54, 57, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102, 105, 108, 111, 114, 120, 123, 129, 132, 135, 138, 141, 147, 150, 156, 159, 165, 168, 174, 177, 183, 186, 189, 192, 195, 201, 204, 210, 213, 216, 219, 222, 228, 231
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 04 2008

Keywords

Comments

Previous name: Complement of A007417.
Also numbers having infinitary divisor 3, or the same, having factor 3 in their Fermi-Dirac representation as product of distinct terms of A050376. - Vladimir Shevelev, Mar 18 2013
For n > 1: where even terms occur in A051064. - Reinhard Zumkeller, May 23 2013
If we exclude a(1) = 0, these are numbers whose squarefree part is divisible by 3, which can be partitioned into numbers whose squarefree part is congruent to 3 mod 9 (A055041) and 6 mod 9 (A055040) respectively. - Peter Munn, Jul 14 2020
The inclusion of 0 as a term might be viewed as a cultural preference: if we habitually wrote numbers enclosed in brackets and then used a null string of digits for zero, the natural number sequence in ternary would be [], [1], [2], [10], [11], [12], [20], ... . - Peter Munn, Aug 02 2020
The asymptotic density of this sequence is 1/4. - Amiram Eldar, Sep 20 2020

Crossrefs

Subsequence of A008585, A028983.
Subsequences: A016051, A055040, A055041, A329575.
Cf. A007089, A007417 (complement), A050376, A182581 (characteristic function).
Positions of 0s in A014578.
Excluding 0: the positions of odd numbers in A007949; equivalently, of even numbers in A051064; symmetric difference of A003159 and A036668.
Related to A042964 via A052330.
Related to A036554 via A064614.

Programs

  • Haskell
    a145204 n = a145204_list !! (n-1)
    a145204_list = 0 : map (+ 1) (findIndices even a051064_list)
    -- Reinhard Zumkeller, May 23 2013
    
  • Maple
    isA145204 := proc(n) local d, c;
    if n = 0 then return true fi;
    d := A007089(n); c := 0;
    while irem(d, 10) = 0 do c := c+1; d := iquo(d, 10) od;
    type(c, odd) end:
    select(isA145204, [$(0..231)]); # Peter Luschny, Aug 05 2020
  • Mathematica
    Select[ Range[0, 235], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // OddQ)&] (* Jean-François Alcover, Mar 18 2013 *)
    Join[{0}, Select[Range[235], OddQ @ IntegerExponent[#, 3] &]] (* Amiram Eldar, Sep 20 2020 *)
  • Python
    import numpy as np
    def isA145204(n):
        if n == 0: return True
        c = 0
        d = int(np.base_repr(n, base = 3))
        while d % 10 == 0:
            c += 1
            d //= 10
        return c % 2 == 1
    print([n for n in range(231) if isA145204(n)]) # Peter Luschny, Aug 05 2020
    
  • Python
    from sympy import integer_log
    def A145204(n):
        if n == 1: return 0
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n-1+sum(((m:=x//9**i)-2)//3+(m-1)//3+2 for i in range(integer_log(x,9)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Feb 15 2025

Formula

a(n) = 3 * A007417(n-1) for n > 1.
A014578(a(n)) = 0.
For n > 1, A007949(a(n)) mod 2 = 1. [Edited by Peter Munn, Aug 02 2020]
{a(n) : n >= 2} = {A052330(A042964(k)) : k >= 1} = {A064614(A036554(k)) : k >= 1}. - Peter Munn, Aug 31 2019 and Dec 06 2020

Extensions

New name using a comment of Vladimir Shevelev by Peter Luschny, Aug 05 2020

A368900 LCM-transform of Doudna sequence.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 3, 2, 7, 1, 1, 1, 5, 1, 3, 2, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Let's define "property S" for sequences as follows: If s is any sequence of positive natural numbers, normalized to begin with offset 1, then it satisfies the S-property if LCM-transform(s) is equal to the sequence obtained by applying A014963 to sequence s, or in other words, when for all n >= 1, lcm {s(1)..s(n)} / lcm {s(1)..s(n-1)} = A014963(s(n)). This holds if and only if, for all n >= 1, when, either (case A): s(n) is of the form p^k, p prime, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to p^(k-1), or (case B): when s(n) is not a prime power, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to s(n). Together the cases (A) and (B) reduce to the condition that each prime power should appear in s before any of its multiples do.
Clearly the Doudna-sequence satisfies the property by the way of its construction, as do many of its variants like A356867 (see A369060).
Also, for any base-2 related permutation b that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., if for all n >= 1, A000523(b(n)) = A000523(n), then the above property is automatically satisfied.
Furthermore, because in Doudna-sequence no multiple of any term is located on the same row as the term itself (see the tree-illustration in A005940), it follows that any composition of A005940 with any such base-2 related permutation as mentioned above also automatically satisfies the S-property, for example, the permutations A163511, A243353, A253563, A253565, A366260, A366263 and A366275.
Note: Like A005940 itself, also this sequence might be more logical with the starting offset 0 instead of 1, to better align with the underlying mapping from the binary expansion of n to the prime factorization. - Antti Karttunen, Jan 24 2024

Crossrefs

List of LCM-transforms of permutations (permutation given in parentheses):
Cf. A265576 (A064413; note that the EKG sequence permutation does not satisfy the S-property).
In all following cases, the permutation satisfies the S-property:
Cf. A369041 (A003188), A369042 (A006068), A369043 (A193231), A369044 (A057889), A369041 (A054429). [Base-2 related permutations]
Other permutations that have the same property: A303767, (and when used as an offset=1 sequence): A052330.

Programs

  • Mathematica
    nn = 120; Array[Set[{s[#], a[#]}, {#, #}] &, 2]; j = 2;
    Do[If[EvenQ[n],
      Set[s[n], 2 s[n/2]],
      Set[s[n],
        Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &,
          FactorInteger[s[(n + 1)/2]]]]];
      k = LCM[j, s[n]]; a[n] = k/j; j = k, {n, 3, nn}];
    Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
  • PARI
    up_to = 16384;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t) };
    v368900 = LCMtransform(vector(up_to,i,A005940(i)));
    A368900(n) = v368900[n];
    
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A209229(n) = (n && !bitand(n,n-1));
    A368900(n)  = if(1==n, 1, my(x=A000265(n-1)); if(A209229(1+x), prime(1+valuation(n-1,2)), 1));

Formula

a(n) = A368901(n) / A368901(n-1) = lcm {1..A005940(n)} / lcm {1..A005940(n-1)}.
a(n) = A005940(n) / gcd(A005940(n), A368901(n-1)).
a(n) = A014963(A005940(n)). [Because A005940 satisfies the property given in the comments]
For n >= 1, Product_{d|n} a(A005941(d)) = n. [Implied by above]
For n >= 1, a(n) = A369030(1+A054429(n-1)).
For n > 1, if n-1 is a number of the form 2^i - 2^j with i >= j, then a(n) = prime(1+j), otherwise a(n) = 1.

A036668 Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1.

Original entry on oeis.org

1, 4, 5, 6, 7, 9, 11, 13, 16, 17, 19, 20, 23, 24, 25, 28, 29, 30, 31, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 52, 53, 54, 55, 59, 61, 63, 64, 65, 66, 67, 68, 71, 73, 76, 77, 78, 79, 80, 81, 83, 85, 89, 91, 92, 95, 96, 97, 99, 100, 101, 102, 103, 107
Offset: 1

Views

Author

N. J. A. Sloane, Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

Keywords

Comments

If n appears then 2n and 3n do not. - Benoit Cloitre, Jun 13 2002
Closed under multiplication. Each term is a product of a unique subset of {6} U A050376 \ {2,3}. - Peter Munn, Sep 14 2019

Crossrefs

Cf. A003159, A007310, A014601, A036667, A050376, A052330, A325424 (complement), A325498 (first differences), A373136 (characteristic function).
Positions of 0's in A182582.
Subsequences: A084087, A339690, A352272, A352273.

Programs

  • Maple
    N:= 1000: # to get all terms up to N
    A:= {seq(2^i,i=0..ilog2(N))}:
    Ae,Ao:= selectremove(issqr,A):
    Be:= map(t -> seq(t*9^j, j=0 .. floor(log[9](N/t))),Ae):
    Bo:= map(t -> seq(t*3*9^j,j=0..floor(log[9](N/(3*t)))),Ao):
    B:= Be union Bo:
    C1:= map(t -> seq(t*(6*i+1),i=0..floor((N/t -1)/6)),B):
    C2:= map(t -> seq(t*(6*i+5),i=0..floor((N/t - 5)/6)),B):
    A036668:= C1 union C2; # Robert Israel, May 09 2014
  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
    IntegerQ]]] &]], {150}]; a  (* A036668 *)
    (* Peter J. C. Moses, Apr 23 2019 *)
  • PARI
    twos(n) = {local(r,m);r=0;m=n;while(m%2==0,m=m/2;r++);r}
    threes(n) = {local(r,m);r=0;m=n;while(m%3==0,m=m/3;r++);r}
    isA036668(n) = (twos(n)+threes(n))%2==0 \\ Michael B. Porter, Mar 16 2010
    
  • PARI
    is(n)=(valuation(n,2)+valuation(n,3))%2==0 \\ Charles R Greathouse IV, Sep 10 2015
    
  • PARI
    list(lim)=my(v=List(),N);for(n=0,logint(lim\=1,3),N=if(n%2,2*3^n,3^n); while(N<=lim, forstep(k=N,lim,[4*N,2*N], listput(v,k)); N<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 10 2015
    
  • Python
    from itertools import count
    def A036668(n):
        def f(x):
            c = n+x
            for i in range(x.bit_length()+1):
                i2 = 1<x:
                        break
                    m = x//k
                    c -= (m-1)//6+(m-5)//6+2
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Jan 28 2025

Formula

a(n) = 12/7 * n + O(log^2 n). - Charles R Greathouse IV, Sep 10 2015
{a(n)} = A052330({A014601(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Sep 14 2019

Extensions

Offset changed by Chai Wah Wu, Jan 28 2025
Previous Showing 11-20 of 62 results. Next