cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A033991 a(n) = n*(4*n-1).

Original entry on oeis.org

0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives numbers on negative x axis. (See illustration in Example.)
This sequence is the number of expressions x generated for a given modulus n in finite arithmetic. For example, n=1 (modulus 1) generates 3 expressions: 0+0=0(mod 1), 0-0=0(mod 1), 0*0=0(mod 1). By subtracting n from 4n^2, we eliminate the counting of those expressions that would include division by zero, which would be, of course, undefined. - David Quentin Dauthier, Nov 04 2007
From Emeric Deutsch, Sep 21 2010: (Start)
a(n) is also the Wiener index of the windmill graph D(3,n).
The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
Example: a(2)=14; indeed if the triangles are OAB and OCD, then, denoting distance by d, we have d(O,A)=d(O,B)=d(A,B)=d(O,C)=d(O,D)=d(C,D)=1 and d(A,C)=d(A,D)=d(B,C)=d(B,D)=2. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(4,n), D(5,n), and D(6,n) see A152743, A028994, and A180577, respectively. (End)
Even hexagonal numbers divided by 2. - Omar E. Pol, Aug 18 2011
For n > 0, a(n) equals the number of length 3*n binary words having exactly two 0's with the n first bits having at most one 0. For example a(2) = 14. Words are 010111, 011011, 011101, 011110, 100111, 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Franck Maminirina Ramaharo, Mar 09 2018
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n-1; {1, 2, 1, 4n-2}]. For n=1, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 06 2022

Examples

			Clockwise spiral (with sequence terms parenthesized) begins
   16--17--18--19
    |
   15   4---5---6
    |   |       |
  (14) (3) (0)  7
    |   |   |   |
   13   2---1   8
    |           |
   12--11--10---9
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = A007742(-n) = A074378(2n-1) = A014848(2n).
G.f.: x*(3+5*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A014635(n)/2. - Zerinvary Lajos, Jan 16 2007
From Zerinvary Lajos, Jun 12 2007: (Start)
a(n) = A000326(n) + A005476(n).
a(n) = A049452(n) - A001105(n). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Harvey P. Dale, Oct 10 2011
a(n) = A118729(8n+2). - Philippe Deléham, Mar 26 2013
From Ilya Gutkovskiy, Dec 04 2016: (Start)
E.g.f.: x*(3 + 4*x)*exp(x).
Sum_{n>=1} 1/a(n) = 3*log(2) - Pi/2 = 0.50864521488... (End)
a(n) = Sum_{i=n..3n-1} i. - Wesley Ivan Hurt, Dec 04 2016
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n, 2) + 2*n^2.
a(n) = A054556(n+1) - 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3-2*sqrt(2)))/sqrt(2) - log(2). - Amiram Eldar, Mar 20 2022

Extensions

Two remarks combined into one by Emeric Deutsch, Oct 03 2010

A033951 Write 1,2,... in a clockwise spiral; sequence gives numbers on positive x axis.

Original entry on oeis.org

1, 8, 23, 46, 77, 116, 163, 218, 281, 352, 431, 518, 613, 716, 827, 946, 1073, 1208, 1351, 1502, 1661, 1828, 2003, 2186, 2377, 2576, 2783, 2998, 3221, 3452, 3691, 3938, 4193, 4456, 4727, 5006, 5293, 5588, 5891, 6202, 6521, 6848, 7183, 7526, 7877, 8236, 8603, 8978
Offset: 0

Views

Author

Olivier Gorin (gorin(AT)roazhon.inra.fr)

Keywords

Comments

Ulam's spiral (S spoke of A054552). - Robert G. Wilson v, Oct 31 2011
a(n) is the first term in a sum of 2*n + 1 consecutive integers that equals (2*n + 1)^3. - Patrick J. McNab, Dec 24 2016

Examples

			Spiral begins:
.
  65--66--67--68--69--70--71--72--73
   |                               |
  64  37--38--39--40--41--42--43  74
   |   |                       |   |
  63  36  17--18--19--20--21  44  75
   |   |   |               |   |   |
  62  35  16   5---6---7  22  45  76
   |   |   |   |       |   |   |   |
  61  34  15   4   1   8  23  46  77
   |   |   |   |   |   |   |   |
  60  33  14   3---2   9  24  47
   |   |   |           |   |   |
  59  32  13--12--11--10  25  48
   |   |                   |   |
  58  31--30--29--28--27--26  49
   |                           |
  57--56--55--54--53--52--51--50
From _Aaron David Fairbanks_, Mar 06 2025: (Start)
Illustration of initial terms:
                                            o o o o
                        o o o             o o o o o o
          o o         o o o o o         o o o o o o o o
  o     o o o o     o o o o o o o     o o o o o o o o o o
          o o         o o o o o         o o o o o o o o
                        o o o             o o o o o o
                                            o o o o
  1        8              23                   46
(End)
		

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 4*n^2 + 3*n + 1.
G.f.: (1 + 5*x + 2*x^2)/(1-x)^3.
A014848(2n+1) = a(n).
Equals A132774 * [1, 2, 3, ...]; = binomial transform of [1, 7, 8, 0, 0, 0, ...]. - Gary W. Adamson, Aug 28 2007
a(n) = A016754(n) - n. - Reinhard Zumkeller, May 17 2009
a(n) = a(n-1) + 8*n-1 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
a(0)=1, a(1)=8, a(2)=23, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 07 2015
E.g.f.: exp(x)*(1 + 7*x + 4*x^2). - Stefano Spezia, Apr 24 2024

Extensions

Extended (with formula) by Erich Friedman

A054552 a(n) = 4*n^2 - 3*n + 1.

Original entry on oeis.org

1, 2, 11, 28, 53, 86, 127, 176, 233, 298, 371, 452, 541, 638, 743, 856, 977, 1106, 1243, 1388, 1541, 1702, 1871, 2048, 2233, 2426, 2627, 2836, 3053, 3278, 3511, 3752, 4001, 4258, 4523, 4796, 5077, 5366, 5663, 5968, 6281, 6602, 6931, 7268, 7613, 7966, 8327
Offset: 0

Views

Author

Enoch Haga and G. L. Honaker, Jr., Apr 09 2000

Keywords

Comments

Also indices in any square spiral organized like A054551.
Equals binomial transform of [1, 1, 8, 0, 0, 0, ...]. - Gary W. Adamson, May 11 2008
Ulam's spiral (E spoke). - Robert G. Wilson v, Oct 31 2011
For n > 0: left edge of the triangle A033293. - Reinhard Zumkeller, Jan 18 2012

Examples

			The spiral begins:
.
197-196-195-194-193-192-191-190-189-188-187-186-185-184-183
  |                                                       |
198 145-144-143-142-141-140-139-138-137-136-135-134-133 182
  |   |                                               |   |
199 146 101-100--99--98--97--96--95--94--93--92--91 132 181
  |   |   |                                       |   |   |
200 147 102  65--64--63--62--61--60--59--58--57  90 131 180
  |   |   |   |                               |   |   |   |
201 148 103  66  37--36--35--34--33--32--31  56  89 130 179
  |   |   |   |   |                       |   |   |   |   |
202 149 104  67  38  17--16--15--14--13  30  55  88 129 178
  |   |   |   |   |   |               |   |   |   |   |   |
203 150 105  68  39  18   5---4---3  12  29  54  87 128 177
  |   |   |   |   |   |   |       |   |   |   |   |   |   |
204 151 106  69  40  19   6   1---2  11  28  53  86 127 176
  |   |   |   |   |   |   |           |   |   |   |   |   |
205 152 107  70  41  20   7---8---9--10  27  52  85 126 175
  |   |   |   |   |   |                   |   |   |   |   |
206 153 108  71  42  21--22--23--24--25--26  51  84 125 174
  |   |   |   |   |                           |   |   |   |
207 154 109  72  43--44--45--46--47--48--49--50  83 124 173
  |   |   |   |                                   |   |   |
208 155 110  73--74--75--76--77--78--79--80--81--82 123 172
  |   |   |                                           |   |
209 156 111-112-113-114-115-116-117-118-119-120-121-122 171
  |   |                                                   |
210 157-158-159-160-161-162-163-164-165-166-167-168-169-170
  |
211-212-213-214-215-216-217-218-219-220-221-222-223-224-225
.
- _Robert G. Wilson v_, Jul 04 2014
		

Crossrefs

Spokes of square spiral: A054552, A054554, A054556, A053755, A054567, A054569, A033951, A016754.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A003215.

Programs

Formula

G.f.: (1 - x + 8*x^2)/(1-x)^3.
a(n) = 8*n + a(n-1) - 7 (with a(0)=1). - Vincenzo Librandi, Aug 07 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=2, a(2)=11. - Harvey P. Dale, Oct 10 2011
E.g.f.: exp(x)*(1 + x + 4*x^2). - Stefano Spezia, May 14 2021
a(n) = A003215(n-1) + A000290(n). - Leo Tavares, Jul 21 2022

A033954 Second 10-gonal (or decagonal) numbers: n*(4*n+3).

Original entry on oeis.org

0, 7, 22, 45, 76, 115, 162, 217, 280, 351, 430, 517, 612, 715, 826, 945, 1072, 1207, 1350, 1501, 1660, 1827, 2002, 2185, 2376, 2575, 2782, 2997, 3220, 3451, 3690, 3937, 4192, 4455, 4726, 5005, 5292, 5587, 5890, 6201, 6520, 6847, 7182, 7525, 7876, 8235
Offset: 0

Views

Author

Keywords

Comments

Same as A033951 except start at 0. See example section.
Bisection of A074377. Also sequence found by reading the line from 0, in the direction 0, 22, ... and the line from 7, in the direction 7, 45, ..., in the square spiral whose vertices are the generalized 10-gonal numbers A074377. - Omar E. Pol, Jul 24 2012

Examples

			  36--37--38--39--40--41--42
   |                       |
  35  16--17--18--19--20  43
   |   |               |   |
  34  15   4---5---6  21  44
   |   |   |       |   |   |
  33  14   3   0===7==22==45==76=>
   |   |   |   |   |   |
  32  13   2---1   8  23
   |   |           |   |
  31  12--11--10---9  24
   |                   |
  30--29--28--27--26--25
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, this sequence, A062728, A135705.
Cf. A060544.

Programs

  • GAP
    List([0..50], n-> n*(4*n+3)) # G. C. Greubel, May 24 2019
  • Magma
    [n*(4*n+3): n in [0..50]]; // G. C. Greubel, May 24 2019
    
  • Mathematica
    Table[n(4n+3),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,22},50] (* Harvey P. Dale, May 06 2018 *)
  • PARI
    a(n)=4*n^2+3*n
    
  • Sage
    [n*(4*n+3) for n in (0..50)] # G. C. Greubel, May 24 2019
    

Formula

a(n) = A001107(-n) = A074377(2*n).
G.f.: x*(7+x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = a(n-1) + 8*n - 1 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
For n>0, Sum_{j=0..n} (a(n) + j)^4 + (4*A000217(n))^3 = Sum_{j=n+1..2n} (a(n) + j)^4; see also A045944. - Charlie Marion, Dec 08 2007, edited by Michel Marcus, Mar 14 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 22. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+6). - Philippe Deléham, Mar 26 2013
a(n) = A002943(n) + n = A007742(n) + 2n = A016742(n) + 3n = A033991(n) + 4n = A002939(n) + 5n = A001107(n) + 6n = A033996(n) - n. - Philippe Deléham, Mar 26 2013
Sum_{n>=1} 1/a(n) = 4/9 + Pi/6 - log(2) = 0.2748960394827980081... . - Vaclav Kotesovec, Apr 27 2016
E.g.f.: exp(x)*x*(7 + 4*x). - Stefano Spezia, Jun 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(2)) + log(2)/3 - 4/9 - sqrt(2)*arcsinh(1)/3. - Amiram Eldar, Nov 28 2021
For n>0, (a(n)^2 + n)/(a(n) + n) = (4*n + 1)^2/4, a ratio of two squares. - Rick L. Shepherd, Feb 23 2022
a(n) = A060544(n+1) - A000217(n+1). - Leo Tavares, Mar 31 2022

A054569 a(n) = 4*n^2 - 6*n + 3.

Original entry on oeis.org

1, 7, 21, 43, 73, 111, 157, 211, 273, 343, 421, 507, 601, 703, 813, 931, 1057, 1191, 1333, 1483, 1641, 1807, 1981, 2163, 2353, 2551, 2757, 2971, 3193, 3423, 3661, 3907, 4161, 4423, 4693, 4971, 5257, 5551, 5853, 6163, 6481, 6807, 7141, 7483, 7833, 8191
Offset: 1

Views

Author

Keywords

Comments

Move in 1-7 direction in a spiral organized like A068225 etc.
Third row of A082039. - Paul Barry, Apr 02 2003
Inverse binomial transform of A036826. - Paul Barry, Jun 11 2003
Equals the "middle sequence" T(2*n,n) of the Connell sequence A001614 as a triangle. - Johannes W. Meijer, May 20 2011
Ulam's spiral (SW spoke). - Robert G. Wilson v, Oct 31 2011

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n+1) = 4*n^2 + 2*n + 1. - Paul Barry, Apr 02 2003
a(n) = 4*n^2 - 6*n+3 - 3*0^n (with leading zero). - Paul Barry, Jun 11 2003
Binomial transform of [1, 6, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
a(n) = 8*n + a(n-1) - 10 (with a(1)=1). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Mar 23 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1+x)*(1+3*x)/(1-x)^3. (End)
a(n) = A000384(n) + A000384(n-1). - Bruce J. Nicholson, May 07 2017
E.g.f.: -3 + (3 - 2*x + 4*x^2)*exp(x). - G. C. Greubel, Jul 04 2019
Sum_{n>=1} 1/a(n) = A339237. - R. J. Mathar, Jan 22 2021

Extensions

Edited by Frank Ellermann, Feb 24 2002

A035608 Expansion of g.f. x*(1 + 3*x)/((1 + x)*(1 - x)^3).

Original entry on oeis.org

0, 1, 5, 10, 18, 27, 39, 52, 68, 85, 105, 126, 150, 175, 203, 232, 264, 297, 333, 370, 410, 451, 495, 540, 588, 637, 689, 742, 798, 855, 915, 976, 1040, 1105, 1173, 1242, 1314, 1387, 1463, 1540, 1620, 1701, 1785, 1870, 1958, 2047, 2139, 2232, 2328, 2425, 2525, 2626
Offset: 0

Views

Author

Keywords

Comments

Maximum value of Voronoi's principal quadratic form of the first type when variables restricted to {-1,0,1}. - Michael Somos, Mar 10 2004
This is the main row of a version of the "square spiral" when read alternatively from left to right (see link). See also A001107, A007742, A033954, A033991. It is easy to see that the only prime in the sequence is 5. - Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 08 2009
From Mitch Phillipson, Manda Riehl, Tristan Williams, Mar 06 2009: (Start)
a(n) gives the number of elements of S_2 \wr C_k that avoid the pattern 12, using the following ordering:
In S_j, a permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b. We extend this notion to S_j \wr C_n as follows. Element psi =[ alpha_1^beta_1, ... alpha_j^beta_j ] avoids tau = [ a_1 ... a_m ] (tau in S_m) if psi' = [ alpha_1*beta_1 ... alpha_j*beta_j ] avoids tau in the usual sense. For n=2, there are 5 elements of S_2 \wr C_2 that avoid the pattern 12. They are: [ 2^1,1^1 ], [ 2^2,1^1 ], [ 2^2,1^2 ], [ 2^1,1^2 ], [ 1^2,2^1 ].
For example, if psi = [2^1,1^2], then psi'=[2,2] which avoids tau=[1,2] because no subsequence ab of psi' has a < b. (End)

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 115.

Crossrefs

Partial sums of A042948.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Magma
    [n^2 + n - 1 - Floor((n-1)/2): n in [0..25]]; // G. C. Greubel, Oct 29 2017
  • Maple
    A035608:=n->floor((n + 1/4)^2): seq(A035608(n), n=0..100); # Wesley Ivan Hurt, Oct 29 2017
  • Mathematica
    Table[n^2 + Floor[n/2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
    CoefficientList[Series[x (1 + 3 x)/((1 + x) (1 - x)^3), {x, 0, 60}], x] (* or *) LinearRecurrence[{2, 0, -2, 1}, {0, 1, 5, 10}, 60] (* Harvey P. Dale, Feb 21 2013 *)
  • PARI
    a(n)=n^2+n-1-(n-1)\2
    

Formula

a(n) = n^2 + n - 1 - floor((n-1)/2).
a(n) = A011848(2*n+1).
a(n) = A002378(n) - A004526(n+1). - Reinhard Zumkeller, Jan 27 2010
a(n) = 2*A006578(n) - A002378(n)/2 = A139592(n)/2. - Reinhard Zumkeller, Feb 07 2010
a(n) = A002265(n+2) + A173562(n). - Reinhard Zumkeller, Feb 21 2010
a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Jan 27 2010
a(n) = (-1)^n*Sum_{i=0..n} (-1)^i*(2*i^2 + 3*i + 1). Omits the leading 0. - William A. Tedeschi, Aug 25 2010
a(n) = n^2 + floor(n/2), from Mathematica section. - Vladimir Joseph Stephan Orlovsky, Apr 12 2011
a(0)=0, a(1)=1, a(2)=5, a(3)=10; for n > 3, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Feb 21 2013
For n > 1: a(n) = a(n-2) + 4*n - 3; see also row sums of triangle A253146. - Reinhard Zumkeller, Dec 27 2014
a(n) = 3*A002620(n) + A002620(n+1). - R. J. Mathar, Jul 18 2015
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 4 - 2*log(2) - Pi/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/3 - 4*(1-log(2)). (End)
E.g.f.: (x*(2*x + 3)*cosh(x) + (2*x^2 + 3*x - 1)*sinh(x))/2. - Stefano Spezia, Apr 24 2024

A054556 a(n) = 4*n^2 - 9*n + 6.

Original entry on oeis.org

1, 4, 15, 34, 61, 96, 139, 190, 249, 316, 391, 474, 565, 664, 771, 886, 1009, 1140, 1279, 1426, 1581, 1744, 1915, 2094, 2281, 2476, 2679, 2890, 3109, 3336, 3571, 3814, 4065, 4324, 4591, 4866, 5149, 5440, 5739, 6046, 6361, 6684, 7015, 7354, 7701, 8056, 8419, 8790
Offset: 1

Views

Author

Keywords

Comments

Move in 1-4 direction in a spiral organized like A068225 etc.
Equals binomial transform of [1, 3, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
Ulam's spiral (N spoke). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonpositive m. - Bruno Berselli, Jan 06 2016

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n)^2 = Sum_{i = 0..2*(4*n-5)} (4*n^2-13*n+9+i)^2*(-1)^i = ((n-1)*(4*n-5)+1)^2. - Bruno Berselli, Apr 29 2010
From Harvey P. Dale, Aug 21 2011: (Start)
a(0)=1, a(1)=4, a(2)=15; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(6*x^2+x+1)/(x-1)^3. (End)
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n - 2, 2) + 2*(n - 1)^2 + 1.
a(n) = A000384(n-1) + A058331(n-1).
a(n) = A130883(n-1) + A001105(n-1). (End)
E.g.f.: exp(x)*(6 - 5*x + 4*x^2) - 6. - Stefano Spezia, Apr 24 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Incorrect formula deleted by N. J. A. Sloane, Aug 02 2009

A054567 a(n) = 4*n^2 - 7*n + 4.

Original entry on oeis.org

1, 6, 19, 40, 69, 106, 151, 204, 265, 334, 411, 496, 589, 690, 799, 916, 1041, 1174, 1315, 1464, 1621, 1786, 1959, 2140, 2329, 2526, 2731, 2944, 3165, 3394, 3631, 3876, 4129, 4390, 4659, 4936, 5221, 5514, 5815, 6124, 6441, 6766, 7099, 7440, 7789, 8146, 8511, 8884
Offset: 1

Views

Author

Keywords

Comments

The number 1 is placed in the middle of a sheet of squared paper and the numbers 2, 3, 4, 5, 6, etc. are written in a clockwise spiral around 1, as in A068225 etc. This sequence is read off along one of the rays from 1.
Ulam's spiral (W spoke of A054552). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonnegative m. - Bruno Berselli, Jan 06 2016
The sequence forms the 1x2 diagonal of the square maze arrangement in A081344. - Jarrod G. Sage, Jul 17 2024

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 8*n+a(n-1)-11 for n>1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
a(n) = A204674(n-1) / n. - Reinhard Zumkeller, Jan 18 2012
From Colin Barker, Oct 25 2014: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: -x*(4*x^2+3*x+1) / (x-1)^3. (End)
E.g.f.: exp(x)*(4 - 3*x + 4*x^2) - 4. - Stefano Spezia, Apr 24 2024
a(n) = A016742(n-1) + n. - Jarrod G. Sage, Jul 17 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Typo fixed by Charles R Greathouse IV, Oct 28 2009

A008527 Coordination sequence for body-centered tetragonal lattice.

Original entry on oeis.org

1, 10, 34, 74, 130, 202, 290, 394, 514, 650, 802, 970, 1154, 1354, 1570, 1802, 2050, 2314, 2594, 2890, 3202, 3530, 3874, 4234, 4610, 5002, 5410, 5834, 6274, 6730, 7202, 7690, 8194, 8714, 9250, 9802, 10370, 10954, 11554, 12170, 12802, 13450, 14114, 14794, 15490, 16202, 16930, 17674
Offset: 0

Views

Author

Keywords

Comments

Also sequence found by reading the segment (1, 10) together with the line from 10, in the direction 10, 34, ..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Nov 02 2012

Crossrefs

Apart from leading term, same as A108100.
Cf. A206399.
Cf. A016754 (SE), A054554 (NE), A054569 (SW), A053755 (NW), A033951 (S), A054552 (E), A054556 (N), A054567 (W) (Ulam spiral spokes).
A143839 (SSE) + A143855 (ESE) = A143838 (SSW) + A143856 (ENE) = A143854 (WSW) + A143861 (NNE) = A143859 (WNW) + A143860 (NNW) = even bisection = a(2n) = A010021(n).

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 2*(1+4*n^2) )); # G. C. Greubel, Nov 09 2019
  • Magma
    [1] cat [2*(1 + 4*n^2): n in [1..50]]; // G. C. Greubel, Nov 09 2019
    
  • Maple
    1, seq(8*k^2+2, k=1..50);
  • Mathematica
    a[0]:= 1; a[n_]:= 8n^2 +2; Table[a[n], {n,0,50}] (* Alonso del Arte, Sep 06 2011 *)
    LinearRecurrence[{3,-3,1},{1,10,34,74},50] (* Harvey P. Dale, Feb 13 2022 *)
  • PARI
    vector(51, n, if(n==1,1, 2*(1+(2*n-2)^2)) ) \\ G. C. Greubel, Nov 09 2019
    
  • Sage
    [1]+[2*(1+4*n^2) for n in (1..40)] # G. C. Greubel, Nov 09 2019
    

Formula

a(0) = 1; a(n) = 8*n^2+2 for n>0.
From Gary W. Adamson, Dec 27 2007: (Start)
a(n) = (2n+1)^2 + (2n-1)^2 for n>0.
Binomial transform of [1, 9, 15, 1, -1, 1, -1, 1, ...]. (End)
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: (1+x)*(1+6*x+x^2)/(1-x)^3. (End)
From Bruce J. Nicholson, Jul 31 2019: (Start) Assume n>0.
a(n) = A016754(n) + A016754(n-1).
a(n) = 2 * A053755(n).
a(n) = A054554(n+1) + A054569(n+1).
a(n) = A033951(n) + A054552(n).
a(n) = A054556(n+1) + A054567(n+1). (End)
E.g.f.: -1 + 2*exp(x)*(1 + 2*x)^2. - Stefano Spezia, Aug 02 2019
Sum_{n>=0} 1/a(n) = 3/4+1/8*Pi*coth(Pi/2) = 1.178172.... - R. J. Mathar, May 07 2024

A080335 Diagonal in square spiral or maze arrangement of natural numbers.

Original entry on oeis.org

1, 5, 9, 17, 25, 37, 49, 65, 81, 101, 121, 145, 169, 197, 225, 257, 289, 325, 361, 401, 441, 485, 529, 577, 625, 677, 729, 785, 841, 901, 961, 1025, 1089, 1157, 1225, 1297, 1369, 1445, 1521, 1601, 1681, 1765, 1849, 1937, 2025, 2117, 2209, 2305, 2401, 2501
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Comments

Interleaves the odd squares A016754 with (1+4n^2), A053755.
Squares of positive integers (plus 1 if n is odd). - Wesley Ivan Hurt, Oct 10 2013
a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+3] X [n+3] chessboard, when the lone queen is in the most vulnerable position on the board. Specifically, the lone queen will placed in any center position, facing an opponent's "army" of size a(n)-1 == A137932(n+2). - Bob Selcoe, Feb 12 2015
a(n) is also the edge chromatic number of the complement of the (n+2) X (n+2) rook graph. - Eric W. Weisstein, Jan 31 2024

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = (3 + 4*n + 2*n^2 - (-1)^n)/2.
a(2*n) = A016754(n), a(2*n+1) = A053755(n+1).
E.g.f.: exp(x)*(2 + 3*x + x^2) - cosh(x). The sequence 1,1,5,9,... is given by n^2+(1+(-1)^n)/2 with e.g.f. exp(1+x+x^2)*exp(x)-sinh(x). - Paul Barry, Sep 02 2003 and Sep 19 2003
a(0)=1, a(1)=5, a(2)=9, a(3)=17, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Jan 29 2012
a(n)+(-1)^n = A137928(n+1). - Philippe Deléham, Feb 17 2012
G.f.: (1 + 3*x - x^2 + x^3)/((1-x)^3*(1+x)). - Colin Barker, Mar 18 2012
a(n) = A000035(n) + A000290(n+1). - Wesley Ivan Hurt, Oct 10 2013
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = A137932(n+2) + 1.
a(n) = (n+1)^2 when n is even; a(n) = (n+1)^2 + 1 when n is odd.
a(n) = A002378(n+2) - A047238(n+3) + 1.
(End)
Sum_{n>=0} 1/a(n) = Pi*coth(Pi/2)/4 + Pi^2/8 - 1/2. - Amiram Eldar, Jul 07 2022
Previous Showing 11-20 of 43 results. Next