cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 93 results. Next

A195851 Column 7 of array A195825. Also column 1 of triangle A195841. Also 1 together with the row sums of triangle A195841.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 87, 89, 95, 107, 128, 152, 173, 185, 192, 196, 203, 216, 242, 281, 328, 367, 394, 409, 421, 436, 465
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4], [13, 13, 13, 13], [35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Maple
    A195160 := proc(n)
            (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 ;
    end proc:
    A195841 := proc(n, k)
            option remember;
            local ks, a, j ;
            if A195160(k) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A195160(j) <= n-1 then
                                    a := a+procname(n-1, j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A195160(k) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
            end if;
    end proc:
    A195851 := proc(n)
            A195841(n+1,1) ;
    end proc:
    seq(A195851(n), n=0..60) ; # R. J. Mathar, Oct 08 2011

Formula

G.f.: Product_{k>=1} 1/((1 - x^(9*k))*(1 - x^(9*k-1))*(1 - x^(9*k-8))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n)/3) / (8*sin(Pi/9)*n). - Vaclav Kotesovec, Aug 14 2017

A196933 Column 9 of array A195825. Also column 1 of triangle A195843. Also 1 together with the row sums of triangle A195843.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 195, 197, 203, 216, 242, 281
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13], [35, 35, 35, 35], [86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Mathematica
    T := Product[1/((1 - x^(11*k))*(1 - x^(11*k - 1))*(1 - x^(11*k - 10))), {k, 1, 70}]; a:= CoefficientList[Series[T, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(11*k))*(1 - x^(11*k-1))*(1 - x^(11*k-10))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/11)) / (8*sin(Pi/11)*n). - Vaclav Kotesovec, Aug 14 2017

Extensions

More terms from Omar E. Pol, Jun 10 2012

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A211970
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. (if k>=1) with a(0)=1,
. if k >= 0]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
The partial sums of column 0 give A015128. - Omar E. Pol, Feb 09 2014

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
...
		

Crossrefs

For another version see A195825.

Formula

T(n,k) = A211971(n), if k = 0.
T(n,k) = A195825(n,k), if k >= 1.

A002621 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94, 121, 155, 194, 241, 295, 359, 431, 515, 609, 717, 837, 973, 1123, 1292, 1477, 1683, 1908, 2157, 2427, 2724, 3045, 3396, 3774, 4185, 4626, 5104, 5615, 6166, 6754, 7386, 8058, 8778, 9542, 10358, 11222, 12142, 13114
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A001400. Column 4 of A092905.

Programs

  • Maple
    A002621:=-1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+2), right=Set(U, card=1)}, unlabeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=4..51) ; # Zerinvary Lajos, Feb 07 2008
    A057077 := proc(n) (-1)^floor(n/2) ; end proc:
    A061347 := proc(n) op(1+(n mod 3),[1,1,-2]) ; end proc:
    A002621 := proc(n) 83/288*n^2+55/64*n+2815/3456+11/288*n^3+1/576*n^4+11/128*(-1)^n+1/64*(-1)^n*n; %+ A057077(n)/16 +A061347(n)/27; end proc:
    seq(A002621(n),n=0..10) ; # R. J. Mathar, Mar 15 2011
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)),{x,0,60}],x] (* Stefan Steinerberger, Jun 10 2007 *)
    LinearRecurrence[{2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1}, {1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
  • PARI
    a(n)=(n+1)*(9*(-1)^n+n^3+21*n^2+145*n+350)\/576 \\ Charles R Greathouse IV, May 23 2013

Formula

a(n) = +2*a(n-1) - a(n-3) - 2*a(n-5) + 2*a(n-6) + a(n-8) - 2*a(n-10) + a(n-11).
a(n) = 83*n^2/288 +55*n/64 +2815/3456 +11*n^3/288 +n^4/576 +11*(-1)^n/128 +(-1)^n*n/64 + A057077(n)/16 +A061347(n)/27. - R. J. Mathar, Mar 15 2011
a(n)=floor((n+1)*(9*(-1)^n + n^3 + 21*n^2 + 145*n + 350)/576 + 1/2). - Tani Akinari, Nov 10 2012

A143623 Decimal expansion of the constant cos(1) + sin(1).

Original entry on oeis.org

1, 3, 8, 1, 7, 7, 3, 2, 9, 0, 6, 7, 6, 0, 3, 6, 2, 2, 4, 0, 5, 3, 4, 3, 8, 9, 2, 9, 0, 7, 3, 2, 7, 5, 6, 0, 3, 3, 5, 4, 8, 7, 3, 4, 8, 1, 4, 1, 6, 2, 9, 3, 2, 9, 3, 3, 4, 2, 8, 4, 8, 9, 6, 5, 3, 7, 3, 0, 1, 0, 7, 9, 9, 1, 6, 5, 7, 1, 1, 4, 3, 3, 4, 6, 6, 5, 9, 1, 5, 9, 9, 6, 3, 0, 2, 3, 5, 7, 8, 5, 1
Offset: 1

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

cos(1) + sin(1) = Sum_{n >= 0} (-1)^floor(n/2)/n! = 1 + 1/1! - 1/2! - 1/3! + 1/4! + 1/5! - 1/6! - 1/7! + + - - ... .
Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2)*n^k/n! for k = 0, 1, 2, ... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1).
Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1).
The decimal expansion of the constant cos(1) - sin(1) = E_2(1) is recorded in A143624. Compare with A143625.

Examples

			1.38177329067603622405 ... .
		

Crossrefs

Programs

Formula

Equals sin(1+Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A195852 Column 8 of array A195825. Also column 1 of triangle A195842. Also 1 together with the row sums of triangle A195842.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 194, 197, 203, 216, 242, 281, 328, 367, 393, 407
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13], [35, 35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 9 (mod 10). - Peter Bala, Dec 10 2020

Crossrefs

Formula

G.f.: Product_{k>=1} 1/((1 - x^(10*k))*(1 - x^(10*k-1))*(1 - x^(10*k-9))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(n/5))/(2*(sqrt(5)-1)*n). - Vaclav Kotesovec, Aug 14 2017
a(n) = a(n-1) + a(n-9) - a(n-12) - a(n-28) + + - - (with the convention a(n) = 0 for negative n), where 1, 9, 12, 28, ... is the sequence of generalized 12-gonal numbers A195162. - Peter Bala, Dec 10 2020

Extensions

More terms from Omar E. Pol, Jun 10 2012

A129818 Riordan array (1/(1+x), x/(1+x)^2), inverse array is A039599.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, -1, 6, -5, 1, 1, -10, 15, -7, 1, -1, 15, -35, 28, -9, 1, 1, -21, 70, -84, 45, -11, 1, -1, 28, -126, 210, -165, 66, -13, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1, -1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 09 2007

Keywords

Comments

This sequence is up to sign the same as A129818. - T. D. Noe, Sep 30 2011
Row sums: A057078. - Philippe Deléham, Jun 11 2007
Subtriangle of the triangle given by (0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012
This triangle provides the coefficients of powers of x^2 for the even-indexed Chebyshev S polynomials (see A049310): S(2*n,x) = Sum_{k=0..n} T(n,k)*x^(2*k), n >= 0. - Wolfdieter Lang, Dec 17 2012
If L(x^n) := C(n) = A000108(n) (Catalan numbers), then the polynomials P_n(x) := Sum_{k=0..n} T(n,k)*x^k are orthogonal with respect to the inner product given by (f(x),g(x)) := L(f(x)*g(x)). - Michael Somos, Jan 03 2019

Examples

			Triangle T(n,k) begins:
  n\k  0   1    2     3     4     5    6    7    8   9 10 ...
   0:  1
   1: -1   1
   2:  1  -3    1
   3: -1   6   -5     1
   4:  1 -10   15    -7     1
   5: -1  15  -35    28    -9     1
   6:  1 -21   70   -84    45   -11    1
   7: -1  28 -126   210  -165    66  -13    1
   8:  1 -36  210  -462   495  -286   91  -15    1
   9: -1  45 -330   924 -1287  1001 -455  120  -17   1
  10:  1 -55  495 -1716  3003 -3003 1820 -680  153 -19  1
  ... Reformatted by _Wolfdieter Lang_, Dec 17 2012
Recurrence from the A-sequence A115141:
15 = T(4,2) = 1*6 + (-2)*(-5) + (-1)*1.
(0, -1, 0, -1, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, ...) begins:
  1
  0,  1
  0, -1,   1
  0,  1,  -3,   1
  0, -1,   6,  -5,  1
  0,  1, -10,  15, -7,  1
  0, -1,  15, -35, 28, -9, 1. - _Philippe Deléham_, Mar 19 2012
Row polynomial for n=3 in terms of x^2: S(6,x) = -1 + 6*x^2 -5*x^4 + 1*x^6, with Chebyshev's S polynomial. See a comment above. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -35 = T(5,2) = (5/3)*(-1*1 +1*(-5) - 1*15) = -3*7 = -35. - _Wolfdieter Lang_, Jun 03 2020
		

Crossrefs

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare((1 - sqrt(1 - 4*x))/(2*x), 10):
    LinearAlgebra[MatrixInverse](%); # Peter Luschny, Jan 04 2019
  • Mathematica
    max = 10; Flatten[ CoefficientList[#, y] & /@ CoefficientList[ Series[ (1 + x)/(1 + (2 - y)*x + x^2), {x, 0, max}], x]] (* Jean-François Alcover, Sep 29 2011, after Wolfdieter Lang *)
  • Sage
    @CachedFunction
    def A129818(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = A129818(n-1,k) if n==1 else 2*A129818(n-1,k)
        return A129818(n-1,k-1) - A129818(n-2,k) - h
    for n in (0..9): [A129818(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^(n-k)*A085478(n,k) = (-1)^(n-k)*binomial(n+k,2*k).
Sum_{k=0..n} T(n,k)*A000531(k) = n^2, with A000531(0)=0. - Philippe Deléham, Jun 11 2007
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A057078(n), A057077(n), A057079(n), A005408(n), A002878(n), A001834(n), A030221(n), A002315(n), A033890(n), A057080(n), A057081(n), A054320(n), A097783(n), A077416(n), A126866(n), A028230(n+1) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, respectively. - Philippe Deléham, Nov 19 2009
O.g.f.: (1+x)/(1+(2-y)*x+x^2). - Wolfdieter Lang, Dec 15 2010
O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1+x))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010
From Wolfdieter Lang, Dec 20 2010: (Start)
Recurrences from the Z- and A-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.
T(n,0) = -1*T(n-1,0), n >= 1, from the o.g.f. -1 for the Z-sequence (trivial result).
T(n,k) = Sum_{j=0..n-k} A(j)*T(n-1,k-1+j), n >= k >= 1, with A(j):= A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0 (o.g.f. 1/c(x)^2 with the A000108 (Catalan) o.g.f. c(x)). (End)
T(n,k) = (-1)^n*A123970(n,k). - Philippe Deléham, Feb 18 2012
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 19 2012
A039599(m,n) = Sum_{k=0..n} T(n,k) * C(k+m) where C(n) are the Catalan numbers. - Michael Somos, Jan 03 2019
Equals the matrix inverse of the Riordan square (cf. A321620) of the Catalan numbers. - Peter Luschny, Jan 04 2019
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): T(n,k) = ((1 + 2*k)/(n - k))*Sum_{j = k..n-1} (-1)^(n-j)*T(j,k), with input T(n,n) = 1, and T(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020

A176742 Expansion of (1 - x^2) / (1 + x^2) in powers of x.

Original entry on oeis.org

1, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2
Offset: 0

Views

Author

Wolfdieter Lang, Oct 15 2010

Keywords

Comments

Difference sequence of A057077.
Sequence of determinants of matrices for some bipartite graphs, called Tz(n). The graph Tz(4) appears in the logo for the beer called Tannenzäpfle (small fir cone), brewed by Badische Staatsbrauerei Rothaus, Germany, hence the name Tz. See the link for this logo with Tz(4).
The vertex-vertex matrix for these bipartite graphs will also be called Tz(n) (without leading to confusion).
General proof by expanding the determinant a(n) = determinant(Tz(n)) along the first column yielding b(n-1)-b(n-2), with b(n-1) the A_{1,1} minor of the matrix Tz(n), and deriving a recurrence for the b(n), namely b(n) = -b(n-2) with inputs b(0) = 1 = b(1). This gives b(n) = A057077(n), n>=0.

Examples

			G.f. = 1 - 2*x^2 + 2*x^4 - 2*x^6 + 2*x^8 - 2*x^10 + 2*x^12 - 2*x^14 + 2*x^16 + ...
The bipartite graphs Tz(n) (n>=1) look like |, |X|, |XX|, |XXX|, ... For n>=2 the lines have to be connected to give the 2*n nodes and 2*n edges. The n=1 graph Tz(1) has 2*1=2 nodes and only one edge.
n=1: determinant((1))=1; n=2: determinant(Matrix([[1,1],[1,1]]))=0; n=3: determinant(Matrix([[1,1,0],[1,0,1],[0,1,1]]))=-2; n=4: determinant(Tz(4))=0; etc.
		

Crossrefs

Programs

  • Maple
    a := n -> 2^signum(n)*(-1)^iquo(n+1,2)*modp(n+1,2);
    seq(a(n), n=0..100); # Peter Luschny, Jun 22 2014
  • Mathematica
    Join[{1}, Table[{0, -2, 0, 2}, {26}]] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
    a[ n_] := - Boole[n == 0] + {0, -2, 0, 2}[[Mod[ n, 4, 1]]]; (* Michael Somos, May 05 2015 *)
    PadRight[{1},120,{2,0,-2,0}] (* Harvey P. Dale, Apr 13 2019 *)
  • PARI
    {a(n) = - (n == 0) + [2, 0, -2, 0][n%4 + 1]}; /* Michael Somos, Mar 21 2011 */
    
  • Python
    def A176742(n): return (2,0,-2,0)[n&3] if n else 1 # Chai Wah Wu, Apr 22 2025

Formula

Euler transform of length 4 sequence [0, -2, 0, 1]. - Michael Somos, Mar 21 2011
Moebius transform is length 4 sequence [0, -2, 0, 4]. - Michael Somos, Mar 22 2011
a(n) = a(-n) for all n in Z. a(n) = c_4(n) if n>1, where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011
a(n-1) := determinant(Tz(n)), n>=1. The rows of the matrix Tz(4) are [[1, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 1]]. Tz(1)=(1), and Tz(2) has rows [[1, 1], [1, 1]]. The matrix for the generalization Tz(n) has rows [[1,1,0,...,0], [1,0,1,0,...,0], [0,1,0,1,0,...,0], ..., [0,...,0,1,0,1], [0,...,0,1,1].
a(0)=1, a(2*k-1)= 0, a(4*k) = +2, a(4*k-2) = -2, k>=1.
O.g.f.: (1-x^2)/(1+x^2).
a(n) = A057077(n) - A057077(n-1), n>=1. a(0)=1.
Dirichlet g.f. sum_{n>=1} a(n)/n^s = zeta(s)*(4^(1-s)-2^(1-s)). - R. J. Mathar, Apr 11 2011
a(n) = (((n+1) mod 2)+((n+2+sign(n)) mod 2))*(-1)^ceiling(n/2). - Wesley Ivan Hurt, Jun 20 2014

A067994 Hermite numbers.

Original entry on oeis.org

1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, -30240, 0, 665280, 0, -17297280, 0, 518918400, 0, -17643225600, 0, 670442572800, 0, -28158588057600, 0, 1295295050649600, 0, -64764752532480000, 0, 3497296636753920000, 0, -202843204931727360000, 0
Offset: 0

Views

Author

Eric W. Weisstein, Feb 07 2002

Keywords

Comments

|a(n)| is the number of sets of ordered pairs of n labeled elements. - Steven Finch, Nov 14 2021
|a(n)| is the number of square roots of any permutation in S_{2n} whose disjoint cycle decomposition consists of n transpositions, n > 0. For n=2, permutation (1,2)(3,4) in S_4 has exactly |a(2)|=2 square roots: (1,3,2,4) and (1,4,2,3). - Luis Manuel Rivera Martínez, Feb 25 2015
Self-convolution gives A076729(n)*(-1)^n interleaved with zeros. - Vladimir Reshetnikov, Oct 11 2016
Named after the French mathematician Charles Hermite (1822-1901). - Amiram Eldar, Jun 06 2021

Examples

			From _Steven Finch_, Nov 14 2021: (Start)
|a(4)| = 12 because the sets of ordered pairs for n = 4 are
  {(1,2),(3,4)}, {(2,1),(3,4)}, {(1,2),(4,3)}, {(2,1),(4,3)},
  {(1,3),(2,4)}, {(3,1),(2,4)}, {(1,3),(4,2)}, {(3,1),(4,2)},
  {(1,4),(3,2)}, {(4,1),(3,2)}, {(1,4),(2,3)}, {(4,1),(2,3)}. (End)
		

Crossrefs

Cf. A097388 (same sequence without zeros).
Cf. A101109 (ordered triples instead of ordered pairs).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Maple
    A067994 := n -> pochhammer(-n, n/2):
    seq(A067994(n), n = 0..31); # Peter Luschny, Nov 14 2021
  • Mathematica
    HermiteH[Range[0,50], 0]
    With[{nmax=50}, CoefficientList[Series[Exp[-x^2], {x,0,nmax}],x]*Range[0, nmax]!] (* G. C. Greubel, Jun 09 2018 *)
  • PARI
    a(n) = polhermite(n, 0); \\ Michel Marcus, Feb 27 2015
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x^2))) \\ G. C. Greubel, Jun 09 2018
    

Formula

E.g.f.: exp(-x^2). - Vladeta Jovovic, Aug 24 2002
a(n) = (-1)^(n/2)*n!/(n/2)! if n is even, 0 otherwise. - Mitch Harris, Feb 01 2006
a(n) = -(2*n-2)*a(n-2). - Alexander Karpov, Jul 24 2017
E.g.f.: U(0) where U(k) = 1 - x^2/((2*k+1) - x^2*(2*k+1)/(x^2 - 2*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2012
G.f.: 1/G(0) where G(k) = 1 + 2*x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2012
E.g.f.: E(0)/(1+x) where E(k) = 1 + x/(1 - x/(x - (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
E.g.f.: E(0)-1, where E(k) = 2 - x^2/(2*k+1 + x^2/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(2*k) = A097388(k), a(2*k+1) = 0. - Joerg Arndt, Oct 12 2016
From Peter Luschny, Nov 14 2021: (Start)
a(n) = A057077(n)*A126869(n)*A081123(n). In particular, a(n) is divisible by floor(n/2)!.
a(n) = Pochhammer(-n, n/2). (End)

A133607 Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = -1, with 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, -2, 1, 0, 1, -1, -3, 2, 1, 0, 1, -1, -4, 3, 3, -1, 0, 1, -1, -5, 4, 6, -3, -1, 0, 1, -1, -6, 5, 10, -6, -4, 1, 0, 1, -1, -7, 6, 15, -10, -10, 4, 1, 0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 27 2007

Keywords

Comments

Previous name: Triangle T(n,k), 0<=k<=n, read by rows given by [0, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, -1;
  0, 1, -1, -1;
  0, 1, -1, -2, 1;
  0, 1, -1, -3, 2, 1;
  0, 1, -1, -4, 3, 3, -1;
  0, 1, -1, -5, 4, 6, -3, -1;
  0, 1, -1, -6, 5, 10, -6, -4, 1;
  0, 1, -1, -7, 6, 15, -10, -10, 4, 1;
  0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  0, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
Triangle A103631 begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 1, 2, 1;
  0, 1, 1, 3, 2, 1;
  0, 1, 1, 4, 3, 3, 1;
  0, 1, 1, 5, 4, 6, 3, 1;
  0, 1, 1, 6, 5, 10, 6, 4, 1;
  0, 1, 1, 7, 6, 15, 10, 10, 4, 1;
  0, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1;
  0, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
  0, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1;
  ...
Triangle A108299 begins:
  1;
  1, -1;
  1, -1, -1;
  1, -1, -2, 1;
  1, -1, -3, 2, 1;
  1, -1, -4, 3, 3, -1;
  1, -1, -5, 4, 6, -3, -1;
  1, -1, -6, 5, 10, -6, -4, 1;
  1, -1, -7, 6, 15, -10, -10, 4, 1;
  1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
		

Crossrefs

Another version is A108299.
Unsigned version is A103631 (T(n,k) = A103631(n,k)*A057077(k)).

Programs

  • Mathematica
    m = 13
    (* DELTA is defined in A084938 *)
    DELTA[Join[{0, 1}, Table[0, {m}]], Join[{1, -2, 1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
    qStirling2[n_, k_, q_] /; 1 <= k <= n := q^(k-1) qStirling2[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}] qStirling2[n-1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[qStirling2[n, k, -1], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2020 *)
  • Sage
    from sage.combinat.q_analogues import q_stirling_number2
    for n in (0..9):
        print([q_stirling_number2(n,k).substitute(q=-1) for k in [0..n]])
    # Peter Luschny, Mar 09 2020

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)= A057077(n), A010892(n), A000012(n), A001519(n), A001835(n), A004253(n), A001653(n), A049685(n-1), A070997(n-1), A070998(n-1), A072256(n), A078922(n), A077417(n-1), A085260(n), A001570(n-1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 respectively .
Sum_{k, 0<=k<=n}T(n,k)*x^k = A000007(n), A010892(n), A133631(n), A133665(n), A133666(n), A133667(n), A133668(n), A133669(n), A133671(n), A133672(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively .
G.f.: (1-x+y*x)/(1-x+y^2*x^2). - Philippe Deléham, Mar 14 2012
T(n,k) = T(n-1,k) - T(n-2,k-2), T(0,0) = T(1,1) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(2,2) = -1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 14 2012

Extensions

New name from Peter Luschny, Mar 09 2020
Previous Showing 31-40 of 93 results. Next