cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 65 results. Next

A084218 a(n) = sigma_4(n^2)/sigma_2(n^2).

Original entry on oeis.org

1, 13, 73, 205, 601, 949, 2353, 3277, 5905, 7813, 14521, 14965, 28393, 30589, 43873, 52429, 83233, 76765, 129961, 123205, 171769, 188773, 279313, 239221, 375601, 369109, 478297, 482365, 706441, 570349, 922561, 838861, 1060033, 1082029
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->sigma[4](n^2)/sigma[2](n^2): seq(a(n),n=1..40); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[DivisorSigma[4, n^2]/DivisorSigma[2, n^2], {n, 1, 50}] (* G. C. Greubel, Oct 08 2018 *)
    f[p_, e_] := (p^(4*e + 2) + 1)/(p^2 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)=sumdiv(n^2,d,d^4)/sumdiv(n^2,d,d^2)
    
  • PARI
    a(n) = sigma(n^2, 4)/sigma(n^2, 2); \\ Michel Marcus, Oct 09 2018

Formula

Multiplicative with a(p^e) = (p^(4*e + 2) + 1)/(p^2 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.09957644430375183822287768590764825667080036406680891521221069625517483696... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(3)) = 0.172525... . - Amiram Eldar, Oct 30 2022
From Peter Bala, Jan 18 2024: (Start)
a(n) = Sum_{d divides n} J_2(d^2) = Sum_{d divides n} d^2 * J_2(d), where the Jordan totient function J_2(n) = A007434(n).
a(n) = Sum_{1 <= j, k <= n} ( n/gcd(j, k, n) )^2.
Dirichlet g.f.: zeta(s) * zeta(s-4) / zeta(s-2) [Corrected by Michael Shamos, May 18 2025]. (End)
a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_4(d). - Seiichi Manyama, May 18 2024

A062952 Multiplicative with a(p^e) = (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1).

Original entry on oeis.org

1, 4, 9, 18, 25, 36, 49, 78, 87, 100, 121, 162, 169, 196, 225, 326, 289, 348, 361, 450, 441, 484, 529, 702, 645, 676, 807, 882, 841, 900, 961, 1334, 1089, 1156, 1225, 1566, 1369, 1444, 1521, 1950, 1681, 1764, 1849, 2178, 2175, 2116, 2209, 2934, 2443, 2580
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

If k is squarefree (cf. A005117) then A062952(k) = k^2. - Benoit Cloitre, Apr 16 2002
Inverse Möbius transform of A062354(n). - Wesley Ivan Hurt, Jul 26 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50] (* Amiram Eldar, Jul 31 2019 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = Sum_{d|n} phi(d)*sigma(d).
a(n) = Sum_{k=1..n} sigma(n/gcd(n, k)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A183699 * A330523 / 3. - Amiram Eldar, Oct 30 2022

A084220 a(n) = sigma_6(n^2)/sigma_3(n^2).

Original entry on oeis.org

1, 57, 703, 3641, 15501, 40071, 117307, 233017, 512461, 883557, 1770231, 2559623, 4824613, 6686499, 10897203, 14913081, 24132657, 29210277, 47039023, 56439141, 82466821, 100903167, 148023723, 163810951, 242203001, 275002941, 373584043
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->sigma[6](n^2)/sigma[3](n^2): seq(a(n),n=1..30); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[DivisorSigma[6,n^2]/DivisorSigma[3,n^2],{n,30}] (* Harvey P. Dale, May 02 2012 *)
    f[p_, e_] := (p^(6*e + 3) + 1)/(p^3 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)=sumdiv(n^2,d,d^6)/sumdiv(n^2,d,d^3)
    
  • PARI
    a(n) = sigma(n^2, 6)/sigma(n^2, 3); \\ Michel Marcus, Oct 09 2018

Formula

Multiplicative with a(p^e) = (p^(6*e + 3) + 1)/(p^3 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.019347996519986873084210965032965644185467985307512751244884310846924559959... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = 90*zeta(7)/(7*Pi^4) = 0.133093... . - Amiram Eldar, Oct 30 2022
From Seiichi Manyama, May 18 2024: (Start)
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^3.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^3 * sigma_6(d). (End)

A051193 a(n) = Sum_{k=1..n} lcm(n,k).

Original entry on oeis.org

1, 4, 12, 24, 55, 66, 154, 176, 279, 320, 616, 468, 1027, 910, 1110, 1376, 2329, 1656, 3268, 2320, 3171, 3674, 5842, 3624, 6525, 6136, 7398, 6636, 11803, 6630, 14446, 10944, 12837, 13940, 15820, 12096, 24679, 19570, 21450, 18080, 33661, 18984, 38872, 26884
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000010, A018804, A051173 (triangle whose n-th row sum is a(n)), A057660, A057661.

Programs

  • Haskell
    a051193 = sum . a051173_row  -- Reinhard Zumkeller, Feb 11 2014
    
  • Maple
    a:=n->add(ilcm( n, j ), j=1..n): seq(a(n), n=1..50); # Zerinvary Lajos, Nov 07 2006
  • Mathematica
    Table[Sum[LCM[k, n], {k, 1, n}], {n, 1, 39}] (* Geoffrey Critzer, Feb 16 2015 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := n * (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
  • PARI
    a(n) = sum(k=1, n, lcm(n,k)); \\ Michel Marcus, Feb 06 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A051193(n): return n*(1+prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items())>>1) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = n*(1+Sum_{d|n} d*phi(d))/2 = n*(1+A057660(n))/2 = n*A057661(n). - Vladeta Jovovic, Jun 21 2002
G.f.: x*f'(x), where f(x) = x/(2*(1 - x)) + (1/2)*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k) and phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
Sum_{k=1..n} a(k) ~ 3 * zeta(3) * n^4 / (4*Pi^2). - Vaclav Kotesovec, May 29 2021

A062949 Multiplicative with a(p^e) = ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1).

Original entry on oeis.org

1, 3, 5, 9, 9, 15, 13, 25, 23, 27, 21, 45, 25, 39, 45, 65, 33, 69, 37, 81, 65, 63, 45, 125, 69, 75, 95, 117, 57, 135, 61, 161, 105, 99, 117, 207, 73, 111, 125, 225, 81, 195, 85, 189, 207, 135, 93, 325, 139, 207, 165, 225, 105, 285, 189, 325, 185, 171, 117, 405
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

Inverse Mobius transform of A062355.

Crossrefs

Programs

  • Maple
    A062949 := proc(n) add(numtheory[phi](d)*numtheory[tau](d), d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Feb 09 2011
  • Mathematica
    f[p_, e_] := ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 60] (* Amiram Eldar, Jul 31 2019 *)

Formula

a(n) = Sum_{d|n} phi(d)*tau(d).
a(n) = Sum_{k=1..n} tau(n/gcd(n, k)).
a(n) = Sum_{d|n} d*uphi(n/d), where uphi() = A047994(). - Vladeta Jovovic, Mar 16 2004

A372966 a(n) = sigma_8(n^2)/sigma_4(n^2).

Original entry on oeis.org

1, 241, 6481, 61681, 390001, 1561921, 5762401, 15790321, 42521761, 93990241, 214344241, 399754561, 815702161, 1388738641, 2527596481, 4042322161, 6975673921, 10247744401, 16983432721, 24055651681, 37346120881, 51656962081, 78310705441, 102337070401
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Comments

Apparently, a(n) == 1 (mod 240). - Hugo Pfoertner, May 20 2024

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(8*e + 4) + 1)/(p^4 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, May 20 2024 *)
  • PARI
    a(n) = sigma(n^2, 8)/sigma(n^2, 4);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 8));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( n/gcd(x_1, x_2, x_3, x_4, n) )^4.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^4 * sigma_8(d).
From Amiram Eldar, May 20 2024: (Start)
Multiplicative with a(p^e) = (p^(8*e + 4) + 1)/(p^4 + 1).
Dirichlet g.f.: zeta(s)*zeta(s-8)/zeta(s-4).
Sum_{k=1..n} a(k) ~ (zeta(9)/(9*zeta(5))) * n^9. (End)

A350156 Inverse Moebius transform of A000056.

Original entry on oeis.org

1, 7, 25, 55, 121, 175, 337, 439, 673, 847, 1321, 1375, 2185, 2359, 3025, 3511, 4897, 4711, 6841, 6655, 8425, 9247, 12145, 10975, 15121, 15295, 18169, 18535, 24361, 21175, 29761, 28087, 33025, 34279, 40777, 37015, 50617, 47887, 54625, 53119, 68881, 58975, 79465, 72655, 81433, 85015
Offset: 1

Views

Author

Werner Schulte, Jan 19 2022

Keywords

Comments

Let f be an arbitrary arithmetic function. Define the sequence a(f; n) by a(f; n) = Sum_{i=1..n, k=1..n} f(n / gcd(gcd(i,k),n)) for n > 0. Then a(f; n) equals inverse Moebius transform of f(n) * A007434(n) for n > 0; if f is multiplicative then a(f; n) is multiplicative; this sequence uses f(n) = n (see formula section).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(3*e) - (p - 1)*(p^(3*e) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Jan 19 2022 *)
  • Python
    from math import prod
    from sympy import factorint
    def A350156(n): return prod((q:=p**(3*e))-(p-1)*(q-1)//(p**3-1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = p^(3*e) - (p-1) * (p^(3*e) - 1) / (p^3 - 1) for prime p and e >= 0.
Dirichlet g.f.: Sum_{n>0} a(n) / n^s = zeta(s-3) * zeta(s) / zeta(s-1).
a(n) = Sum_{i=1..n, k=1..n} n / gcd(gcd(i,k),n) for n > 0.
Dirichlet convolution with A000010 equals A000578.
Dirichlet convolution of A001158 and A055615.
Sum_{k=1..n} a(k) ~ c * n^4, where c = Pi^4/(360*zeta(3)) = 0.225098... . - Amiram Eldar, Oct 16 2022
a(n) = Sum_{d|n} phi(n/d) * (n/d)^2 * sigma_2(d^2)/sigma(d^2). - Seiichi Manyama, May 24 2024
a(n) = Sum_{1 <= x_1, x_2 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, n) )^2. - Seiichi Manyama, May 25 2024

A068970 a(n) = Sum_{d|n} phi(d^4).

Original entry on oeis.org

1, 9, 55, 137, 501, 495, 2059, 2185, 4429, 4509, 13311, 7535, 26365, 18531, 27555, 34953, 78609, 39861, 123463, 68637, 113245, 119799, 267675, 120175, 313001, 237285, 358723, 282083, 682893, 247995, 893731, 559241, 732105, 707481, 1031559, 606773, 1823509
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> add(numtheory:-phi(d^4),d=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Sep 13 2018
  • Mathematica
    Table[Total[EulerPhi[Divisors[n]^4]], {n, 40}] (* Vincenzo Librandi, Sep 13 2018 *)
    f[p_, e_] := 1 + p^3*(p - 1)*(p^(4*e) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Dec 01 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^4)); \\ Michel Marcus, Mar 10 2018

Formula

Also Sum_{d|n} d^m*phi(d^(4-m)) for m=0, 1, 2, 3.
Multiplicative with a(p^e) = 1 + p^3 * (p-1)(p^(4e)-1)/(p^4-1).
G.f.: Sum_{k>=1} k^3*phi(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 10 2018
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - Amiram Eldar, Dec 01 2022
From Peter Bala, Jan 21 2024: (Start)
a(n) = Sum_{k = 1..n} (n/gcd(k, n))^3 = Sum_{k = 1..n} (lcm(k, n)/k)^3.
Dirichlet g.f.: zeta(s) * zeta(s-4)/zeta(s-3). (End)

A006580 a(n) = Sum_{k=1..n-1} lcm(k,n-k).

Original entry on oeis.org

0, 0, 1, 4, 8, 20, 21, 56, 60, 96, 105, 220, 152, 364, 301, 360, 464, 816, 549, 1140, 760, 1036, 1221, 2024, 1196, 2200, 2041, 2484, 2184, 4060, 2205, 4960, 3664, 4224, 4641, 5180, 4008, 8436, 6517, 7072, 5980, 11480, 6321, 13244, 8888, 9540, 11661, 17296
Offset: 0

Views

Author

Keywords

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of array A003990.
Cf. A209295.

Programs

  • Haskell
    a006580 n = a006580_list !! (n-1)
    a006580_list = map sum a003990_tabl
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Maple
    a:= n-> add(ilcm(j, n-j), j=0..n):
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 25 2019
  • Mathematica
    Table[ Sum[ LCM[ k, n-k ], {k, 1, n-1} ], {n, 2, 50} ] (* Olivier Gérard, Aug 15 1997 *)
    f1[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); f2[p_, e_] := 1 - (p - 1)*e; a[n_] := (Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct)*n/6; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = sum(k=1, n-1, lcm(k, n-k)); \\ Michel Marcus, Aug 11 2017

Formula

For n > 0, a(n) = (n/6)*Sum_{d|n} (d*phi(d) - A023900(d)). - Sebastian Karlsson, Oct 02 2021
a(n) = (n/6) * (A057660(n) - A130054(n)), for n > 0. - Amiram Eldar, Apr 28 2023

Extensions

More terms from Olivier Gérard, Aug 15 1997

A321349 a(n) = Sum_{d|n} phi(d^n), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 3, 19, 137, 2501, 16071, 705895, 8421505, 258293449, 4007813013, 259374246011, 2972767821815, 279577021469773, 4762869973595499, 233543432626753439, 9223512776490647553, 778579070010669895697, 13115569455375954492093, 1874292305362402347591139
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d^n], {d, Divisors[n]}], {n, 19}]
    nmax = 19; Rest[CoefficientList[Series[Sum[k^(k - 1) EulerPhi[k] x^k/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(n/GCD[n, k])^(n - 1), {k, n}], {n, 19}]
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^n)); \\ Michel Marcus, Nov 06 2018

Formula

G.f.: Sum_{k>=1} k^(k-1)*phi(k)*x^k/(1 - (k*x)^k).
a(n) = Sum_{d|n} d^(n-1)*phi(d).
a(n) = Sum_{k=1..n} (n/gcd(n,k))^(n-1).
From Richard L. Ollerton, May 08 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k)^n)/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} gcd(n,k)^(n-1)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Previous Showing 11-20 of 65 results. Next