cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A152749 a(n) = (n+1)*(3*n+1)/4 for n odd, a(n) = n*(3*n+2)/4 for n even.

Original entry on oeis.org

0, 2, 4, 10, 14, 24, 30, 44, 52, 70, 80, 102, 114, 140, 154, 184, 200, 234, 252, 290, 310, 352, 374, 420, 444, 494, 520, 574, 602, 660, 690, 752, 784, 850, 884, 954, 990, 1064, 1102, 1180, 1220, 1302, 1344, 1430, 1474, 1564, 1610, 1704, 1752, 1850, 1900, 2002
Offset: 0

Views

Author

Vincenzo Librandi, Dec 31 2009

Keywords

Comments

Interleaving of A049450 and A049451 (for n > 0).
Also, integer values of k*(k+1)/3. - Charles R Greathouse IV, Dec 11 2010
The nonzero coefficients of the expansion of f(a) = Product_{k>=1} (1-a^(2k)), see A194159, occur at the terms of the sequence given above, i.e., f(a) = 1 - a^2 - a^4 + a^10 + a^14 - a^24 - a^30 + a^44 + a^52 - a^70 - a^80 + ... = Sum_{n>=0} (-1)^binomial(n+1,2)*a^A152749(n). - Johannes W. Meijer, Aug 21 2011
Partial sums of A109043. - Reinhard Zumkeller, Mar 31 2012
Nonnegative k such that 12*k+1 is a square. - Vicente Izquierdo Gomez, Jul 22 2013
Equivalently, numbers of the form h*(3*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... (see also the fifth comment of A062717). - Bruno Berselli, Feb 02 2017
For n > 0, a(n-1) is the sum of the largest parts of the partitions of 2n into two even parts. - Wesley Ivan Hurt, Dec 19 2017
The sequence terms occur as exponents in the expansion of Sum_{n >= 0} q^(n*(n+1)/2) * Product_{k >= n+1} 1 - q^k = 1 - q^2 - q^4 + q^10 + q^14 - q^24 - q^30 + + - - .... - Peter Bala, Dec 15 2024
Sequence terms occur as exponents in the expansions of Sum_{n >= 0} q^(n*(2*n+1)) * Product_{k >= 2*n+2} 1 - q^k = Sum_{n >= 0} q^(n*(2*n-1)) * Product_{k >= 2*n+1} 1 - q^k = 1 - q^2 - q^4 + q^10 + q^14 - q^24 - q^30 + + - - .... - Peter Bala, Jun 23 2025

Crossrefs

Cf. A049450 (n*(3*n-1)), A049451 (n*(3*n+1)), A153383 (12n+1 is not prime).

Programs

  • Haskell
    a152749 n = a152749_list !! (n-1)
    a152749_list = scanl1 (+) a109043_list
    -- Reinhard Zumkeller, Mar 31 2012
  • Magma
    [IsOdd(n) select (n+1)*(3*n+1)/4 else n*(3*n+2)/4: n in [0..52]];
    
  • Magma
    f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..30]]; // Bruno Berselli, Nov 13 2012
    
  • Maple
    A152749 := proc(n): if type(n,even) then n*(3*n+2)/4  else (n+1)*(3*n+1)/4 fi: end: seq(A152749(n), n=0..51); # Johannes W. Meijer, Aug 21 2011
  • Mathematica
    Table[If[OddQ[n],(n+1)*(3*n+1)/4,n*(3*n+2)/4],{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
    LinearRecurrence[{1,2,-2,-1,1}, {0, 2, 4, 10, 14}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
    Select[Range[1,1000], IntegerQ[Sqrt[12#+1]]&] (* Vicente Izquierdo Gomez, Jul 22 2013 *)

Formula

From R. J. Mathar, Jan 03-06 2009: (Start)
G.f.: 2*x*(1+x+x^2)/((1+x)^2*(1-x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) = A003154(n+1)/8 - (-1)^n*A005408(n)/8.
a(n) = 2*A001318(n) = ((6*n^2+6*n+1) - (2*n+1)*(-1)^n)/8. (End)
From Amiram Eldar, Mar 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(log(3)-1). (End)

Extensions

Edited, typo corrected and extended by Klaus Brockhaus, Jan 02 2009
Leading term a(0)=0 added by Johannes W. Meijer, Aug 21 2011

A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.

Original entry on oeis.org

0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017

Crossrefs

A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

Formula

a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012

A033580 Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).

Original entry on oeis.org

0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 8,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A139267 in the same spiral - Omar E. Pol, Sep 09 2011
a(n) is the number of edges of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch May 13 2018
The partial sums of this sequence give A035006. - Leo Tavares, Oct 03 2021

Crossrefs

Programs

Formula

a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = A003154(n+1) - A016813(n). See Crossed Stars illustration.
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
a(n) = A046092(n-1) + A033996(n). See Triangulated Star Crosses illustration.
a(n) = 4*A000217(n-1) + 8*A000217(n).
a(n) = 4*A000217(n-1) + 4*A002378. See Oblong Star Crosses illustration.
a(n) = A016754(n) + 4*A000217(n). See Crossed Diamond Stars illustration.
a(n) = 2*A001105(n) + 4*A000217(n).
a(n) = A016742(n) + A046092(n).
a(n) = 4*A000290(n) + 4*A000217(n). (End)

A132356 a(2*k) = k*(10*k+2), a(2*k+1) = 10*k^2 + 18*k + 8, with k >= 0.

Original entry on oeis.org

0, 8, 12, 36, 44, 84, 96, 152, 168, 240, 260, 348, 372, 476, 504, 624, 656, 792, 828, 980, 1020, 1188, 1232, 1416, 1464, 1664, 1716, 1932, 1988, 2220, 2280, 2528, 2592, 2856, 2924, 3204, 3276, 3572, 3648, 3960, 4040, 4368, 4452, 4796, 4884, 5244, 5336, 5712
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 10*X^3 + X^2 = Y^2.
Polygonal number connection: 2*H_n + 6S_n, where H_n is the n-th hexagonal number and S_n is the n-th square number. This is the base formula that is expanded upon to achieve the full series. See contributing formula below. - William A. Tedeschi, Sep 12 2010
Equivalently, numbers of the form 2*h*(5*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 02 2017

Crossrefs

Cf. numbers m such that k*m+1 is a square: A005563 (k=1), A046092 (k=2), A001082 (k=3), A002378 (k=4), A036666 (k=5), A062717 (k=6), A132354 (k=7), A000217 (k=8), A132355 (k=9), A219257 (k=11), A152749 (k=12), A219389 (k=13), A219390 (k=14), A204221 (k=15), A074378 (k=16), A219394 (k=17), A219395 (k=18), A219396 (k=19), A219190 (k=20), A219391 (k=21), A219392 (k=22), A219393 (k=23), A001318 (k=24), A219259 (k=25), A217441 (k=26), A219258 (k=27), A219191 (k=28).
Cf. A220082 (numbers k such that 10*k-1 is a square).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(2*x^2 + x + 2)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,8,12,36,44},50] (* Harvey P. Dale, Dec 15 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2))) \\ G. C. Greubel, Jun 12 2017
    
  • PARI
    a(n) = n^2 + n + 6*((n+1)\2)^2 \\ Charles R Greathouse IV, Sep 11 2022

Formula

G.f.: 4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2). - R. J. Mathar, Apr 07 2008
a(n) = 10*x^2 - 2*x, where x = floor(n/2)*(-1)^n for n >= 1. - William A. Tedeschi, Sep 12 2010
a(n) = ((2*n+1-(-1)^n)*(10*(2*n+1)-2*(-1)^n))/16. - Luce ETIENNE, Sep 13 2014
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. - Chai Wah Wu, May 24 2016
Sum_{n>=1} 1/a(n) = 5/2 - sqrt(1+2/sqrt(5))*Pi/2. - Amiram Eldar, Mar 15 2022
a(n) = n^2 + n + 6*ceiling(n/2)^2. - Ridouane Oudra, Aug 06 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009

A132209 a(0) = 0 and a(n) = 2*n^2 + 2*n - 1, for n>=1.

Original entry on oeis.org

0, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 06 2007

Keywords

Comments

Previous name was: Sequence gives X values that satisfy the integer equation 2*X^3 + 3*X^2 = Y^2.
To find Y values: b(n) = (2*n^2 + 2*n - 1)*(2*n - 1).

Crossrefs

Programs

  • Magma
    [0] cat [2*n^2+2*n-1: n in [1..50]]; // Vincenzo Librandi, Sep 22 2015
    
  • Mathematica
    Join[{0}, LinearRecurrence[{3, -3, 1}, {3, 11, 23}, 40]] (* Vincenzo Librandi, Sep 22 2015 *)
  • PARI
    for(n=0,50, print1(if(n==0, 0, 2*n^2 + 2*n -1), ", ")) \\ G. C. Greubel, Jul 13 2017

Formula

a(n) = 2*n^2 + 2*n - 1 for n>=1.
G.f.: x*(1+x)*(3-x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
E.g.f.: 1 + (2*x^2 + 4*x -1)*exp(x). - G. C. Greubel, Jul 13 2017
From Amiram Eldar, Mar 07 2021: (Start)
Sum_{n>=1} 1/a(n) = 1 + sqrt(3)*Pi*tan(sqrt(3)*Pi/2)/6.
Product_{n>=1} (1 + 1/a(n)) = -Pi*sec(sqrt(3)*Pi/2)/2.
Product_{n>=1} (1 - 1/a(n)) = cos(sqrt(5)*Pi/2)*sec(sqrt(3)*Pi/2)/2. (End)

Extensions

Edited by the Associate Editors of the OEIS, Nov 15 2009
More terms from Vincenzo Librandi, Sep 22 2015
Shorter name (using formula given) from Joerg Arndt, Sep 27 2015

A186423 Partial sums of A186421.

Original entry on oeis.org

0, 1, 3, 4, 8, 11, 17, 20, 28, 33, 43, 48, 60, 67, 81, 88, 104, 113, 131, 140, 160, 171, 193, 204, 228, 241, 267, 280, 308, 323, 353, 368, 400, 417, 451, 468, 504, 523, 561, 580, 620, 641, 683, 704, 748, 771, 817, 840, 888, 913, 963, 988, 1040, 1067, 1121, 1148, 1204, 1233, 1291, 1320
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2011

Keywords

Crossrefs

A062717 is the subsequence of even terms.
A186424 is the subsequence of odd terms.

Programs

  • GAP
    List([0..65], n-> (6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16); # G. C. Greubel, Oct 09 2019
    
  • Haskell
    a186423 n = a186423_list !! n
    a186423_list = scanl1 (+) a186421_list
    
  • Magma
    [(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16: n in [0..65]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    A087960 := proc(n) op((n mod 4)+1,[1,-1,-1,1]) ; end proc:
    A186423 := proc(n) 3*n*(n+1)/8 +3/16 +(-1)^n*(2*n+1)/16 -A087960(n)/4 ; end proc: # R. J. Mathar, Feb 28 2011
  • Mathematica
    CoefficientList[Series[x(1+2x+2x^3+x^4)/((1-x)^3(1+x)^2(1+x^2)),{x, 0, 65}],x]  (* Harvey P. Dale, Mar 13 2011 *)
    Table[(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial[n+1, 2])/16, {n, 0, 65}] (* G. C. Greubel, Oct 09 2019 *)
  • PARI
    vector(66, n, my(m=n-1); (6*m^2 +6*m +3 +(-1)^m*(2*m+1) -4*(-1)^binomial(m+1, 2))/16) \\ G. C. Greubel, Oct 09 2019
    
  • Python
    def A186423(n): return (6*n*(n+1)+3+(-2*n-1 if n&1 else 2*n+1)+(4 if n+1&2 else -4))>>4 # Chai Wah Wu, Jan 31 2023
  • Sage
    [(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^binomial(n+1, 2))/16 for n in (0..65)] # G. C. Greubel, Oct 09 2019
    

Formula

From R. J. Mathar, Feb 28 2011: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4)/( (1+x^2)*(1+x)^2*(1-x)^3 ).
a(n) = (6*n*(n+1) + 3 + (-1)^n*(2*n+1) - 4*A087960(n))/16. (End)
E.g.f.: ((2 + 5*x + 3*x^2)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x) + 2*sin(x) - 2*cos(x))/8. - G. C. Greubel, Oct 09 2019

Extensions

More terms added by G. C. Greubel, Oct 09 2019

A164097 Numbers k such that 6*k + 7 is a perfect square.

Original entry on oeis.org

3, 7, 19, 27, 47, 59, 87, 103, 139, 159, 203, 227, 279, 307, 367, 399, 467, 503, 579, 619, 703, 747, 839, 887, 987, 1039, 1147, 1203, 1319, 1379, 1503, 1567, 1699, 1767, 1907, 1979, 2127, 2203, 2359, 2439, 2603, 2687, 2859, 2947, 3127, 3219, 3407, 3503, 3699
Offset: 1

Views

Author

Vincenzo Librandi, Aug 10 2009

Keywords

Comments

The entries are prime, or divisible by 3, or divisible by prime of the form 3*m+1.

Crossrefs

Cf. A062717, A104777 (the squares 6*k+7).

Programs

  • Magma
    [n: n in [1..4000] | IsSquare(6*n+7)]; // Vincenzo Librandi, Oct 12 2012
  • Mathematica
    Select[Range[4000], IntegerQ[Sqrt[6 # + 7 ]] &] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {3, 7, 19, 27, 47}, 50] (* Harvey P. Dale, Apr 29 2011 *)

Formula

From R. J. Mathar, Aug 26 2009: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-3-4*x-6*x^2+x^4)/((1+x)^2*(x-1)^3).
a(n) = 3*(2*n-1+2*n^2)/4 -(-1)^n*(1+2*n)/4 = A062717(n+1)-1. (End)
Sum_{n>=1} 1/a(n) = 1 + (tan((2+sqrt(7))*Pi/6) - cot((1+sqrt(7))*Pi/6))*Pi/(2*sqrt(7)). - Amiram Eldar, Feb 24 2023

Extensions

Edited by R. J. Mathar, Aug 26 2009

A132354 Integers m such that 7*m + 1 is a square.

Original entry on oeis.org

0, 5, 9, 24, 32, 57, 69, 104, 120, 165, 185, 240, 264, 329, 357, 432, 464, 549, 585, 680, 720, 825, 869, 984, 1032, 1157, 1209, 1344, 1400, 1545, 1605, 1760, 1824, 1989, 2057, 2232, 2304, 2489, 2565, 2760, 2840, 3045, 3129, 3344, 3432, 3657, 3749, 3984, 4080
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

Numbers of the form m*(7*m + 2) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Crossrefs

Programs

Formula

a(2*k) = k*(7*k + 2), a(2*k + 1) = 7*k^2 + 12*k + 5.
a(n) = n^2 + n + 3*ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
G.f.: -x*(5*x^2 + 4*x + 5)/((x - 1)^3*(x + 1)^2). - Colin Barker, Oct 24 2012
Sum_{n>=1} 1/a(n) = 7/4 - cot(2*Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009
Better definition from Max Alekseyev, Oct 24 2012

A323674 Square array, read by antidiagonals, of the positive integers 6cd +-c +-d = (6c +- 1)d +- c. Alternate rows (or columns) are numbers that differ by c from multiples of 6c - 1 or 6c + 1.

Original entry on oeis.org

4, 6, 6, 9, 8, 9, 11, 13, 13, 11, 14, 15, 20, 15, 14, 16, 20, 24, 24, 20, 16, 19, 22, 31, 28, 31, 22, 19, 21, 27, 35, 37, 37, 35, 27, 21, 24, 29, 42, 41, 48, 41, 42, 29, 24, 26, 34, 46, 50, 54, 54, 50, 46, 34, 26, 29, 36, 53, 54, 65, 60, 65, 54, 53, 36, 29, 31, 41, 57, 63, 71, 73, 73, 71, 63, 57, 41, 31
Offset: 1

Views

Author

Sally Myers Moite, Jan 23 2019

Keywords

Comments

This sequence without duplicates is A067611, which is the complement of A002822, the positive integers x for which 6x - 1 and 6x + 1 are twin primes.

Examples

			Square array begins:
   4,   6,   9,  11,  14,  16,  19,  21,  24,  26, ...
   6,   8,  13,  15,  20,  22,  27,  29,  34,  36, ...
   9,  13,  20,  24,  31,  35,  42,  46,  53,  57, ...
  11,  15,  24,  28,  37,  41,  50,  54,  63,  67, ...
  14,  20,  31,  37,  48,  54,  65,  71,  82,  88, ...
  16,  22,  35,  41,  54,  60,  73,  79,  92,  98, ...
  19,  27,  42,  50,  65,  73,  88,  96, 111, 119, ...
  21,  29,  46,  54,  71,  79,  96, 104, 121, 129, ...
  24,  34,  53,  63,  82,  92, 111, 121, 140, 150, ...
  26,  36,  57,  67,  88,  98, 119, 129, 150, 160, ...
  ...
Note that, for example, the third row (or column) contains numbers that differ by 2 from multiples of 11 = 6*2 - 1, and the eighth row contains numbers that differ by 4 from multiples of 25 = 6*4 + 1.
		

Crossrefs

The first and second rows are A047209 and A047336.
The diagonal is A062717, the numbers x for which 6*x + 1 is a perfect square.

Programs

  • PARI
    a(m,n) = 6*floor((m+1)/2)*floor((n+1)/2) + ((-1)^n)*floor((m+1)/2) + ((-1)^m)*floor((n+1)/2);
    matrix(7, 7, n, k, a(n, k)) \\ Michel Marcus, Jan 25 2019

Formula

a(m,n) = 6*floor((m+1)/2)*floor((n+1)/2) + ((-1)^n)*floor((m+1)/2) + ((-1)^m)*floor((n+1)/2), m,n >= 1.

A247215 Integers k such that 3k+1 and 6k+1 are both squares.

Original entry on oeis.org

0, 8, 280, 9520, 323408, 10986360, 373212840, 12678250208, 430687294240, 14630689753960, 497012764340408, 16883803297819920, 573552299361536880, 19483894374994434008, 661878856450449219400, 22484397224940279025600, 763807626791519037651008
Offset: 1

Views

Author

Casey Leung, Nov 26 2014

Keywords

Examples

			When n=1, a(1)=0, 3(0)+1=1, 6(0)+1=1.
When n=2, a(2)=8, 3(8)+1=25, 6(8)+1=49.
When n=3, a(3)=280, 3(280)+1=841=29^2, 6(280)+1=1681=41^2.
When n=4, a(4)=9520, 3(9520)+1=28560=169^2, 6(9520)+1=57121=239^2.
		

Crossrefs

The common terms of A062717 and A001082.

Programs

  • Mathematica
    LinearRecurrence[{35,-35,1},{0,8,280},20] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    concat(0, Vec(-8*x^2/((x-1)*(x^2-34*x+1)) + O(x^100))) \\ Colin Barker, Nov 26 2014

Formula

a(n) = (1/72)*(3*(3*(17-12*sqrt(2))^n+2*sqrt(2)*(17-12*sqrt(2))^n+3*(17+12*sqrt(2))^n-2*sqrt(2)*(17+12*sqrt(2))^n)-18).
From Colin Barker, Nov 26 2014: (Start)
a(n) = 8*A029546(n).
a(n) = 35*a(n-1)-35*a(n-2)+a(n-3).
G.f.: -8*x^2 / ((x-1)*(x^2-34*x+1)).
(End)
Lim_{n -> infinity} a(n+1)/a(n) = 33.970562748... = (1+sqrt(2))^4 (the dominant root of x^2-34*x+1). - Joerg Arndt, Dec 01 2014

Extensions

More terms from Colin Barker, Nov 26 2014
Previous Showing 11-20 of 20 results.