A152749
a(n) = (n+1)*(3*n+1)/4 for n odd, a(n) = n*(3*n+2)/4 for n even.
Original entry on oeis.org
0, 2, 4, 10, 14, 24, 30, 44, 52, 70, 80, 102, 114, 140, 154, 184, 200, 234, 252, 290, 310, 352, 374, 420, 444, 494, 520, 574, 602, 660, 690, 752, 784, 850, 884, 954, 990, 1064, 1102, 1180, 1220, 1302, 1344, 1430, 1474, 1564, 1610, 1704, 1752, 1850, 1900, 2002
Offset: 0
-
a152749 n = a152749_list !! (n-1)
a152749_list = scanl1 (+) a109043_list
-- Reinhard Zumkeller, Mar 31 2012
-
[IsOdd(n) select (n+1)*(3*n+1)/4 else n*(3*n+2)/4: n in [0..52]];
-
f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..30]]; // Bruno Berselli, Nov 13 2012
-
A152749 := proc(n): if type(n,even) then n*(3*n+2)/4 else (n+1)*(3*n+1)/4 fi: end: seq(A152749(n), n=0..51); # Johannes W. Meijer, Aug 21 2011
-
Table[If[OddQ[n],(n+1)*(3*n+1)/4,n*(3*n+2)/4],{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
LinearRecurrence[{1,2,-2,-1,1}, {0, 2, 4, 10, 14}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
Select[Range[1,1000], IntegerQ[Sqrt[12#+1]]&] (* Vicente Izquierdo Gomez, Jul 22 2013 *)
A132355
Numbers of the form 9*h^2 + 2*h, for h an integer.
Original entry on oeis.org
0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1
- Jason Kimberley, Table of n, a(n) for n = 1..2108
- S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See A(q).
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
A205808 is the characteristic function.
Cf.
A000217,
A001082,
A002378,
A005563,
A028347,
A036666,
A046092,
A054000,
A056220,
A062717,
A087475,
A132209,
A010701,
A056020.
For similar sequences of numbers m such that 9*m+k is a square, see list in
A266956.
-
a:=func; [0] cat [a(n*m): m in [-1,1], n in [1..25]]; // Jason Kimberley, Nov 08 2012
-
readlib(issqr); for n from 0 to 3560 do if(issqr(9*n+1)) then print(n) fi od; # Gary Detlefs, Feb 22 2010
seq(n^2+n+5*ceil(n/2)^2,n=0..39); # Gary Detlefs, Feb 23 2010
-
f[n_]:=IntegerQ[Sqrt[1+9*n]]; Select[Range[0,8! ],f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
Sort[Table[9n^2+2n,{n,-30,30}]] (* Harvey P. Dale, Dec 06 2013 *)
-
a(n)=n^2-n+5*(n\2)^2 \\ Charles R Greathouse IV, Sep 28 2015
Since this is a list, offset changed to 1 and formulas translated by
Jason Kimberley, Nov 18 2012
A033580
Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).
Original entry on oeis.org
0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10 (2016), pp. 884-892.
- Leo Tavares, Illustration: Crossed Stars
- Leo Tavares, Illustration: Four Quarter Star Crosses
- Leo Tavares, Illustration: Triangulated Star Crosses
- Leo Tavares, Illustration: Oblong Star Crosses
- Leo Tavares, Illustration: Crossed Diamond Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
A132356
a(2*k) = k*(10*k+2), a(2*k+1) = 10*k^2 + 18*k + 8, with k >= 0.
Original entry on oeis.org
0, 8, 12, 36, 44, 84, 96, 152, 168, 240, 260, 348, 372, 476, 504, 624, 656, 792, 828, 980, 1020, 1188, 1232, 1416, 1464, 1664, 1716, 1932, 1988, 2220, 2280, 2528, 2592, 2856, 2924, 3204, 3276, 3572, 3648, 3960, 4040, 4368, 4452, 4796, 4884, 5244, 5336, 5712
Offset: 0
Cf. numbers m such that k*m+1 is a square:
A005563 (k=1),
A046092 (k=2),
A001082 (k=3),
A002378 (k=4),
A036666 (k=5),
A062717 (k=6),
A132354 (k=7),
A000217 (k=8),
A132355 (k=9),
A219257 (k=11),
A152749 (k=12),
A219389 (k=13),
A219390 (k=14),
A204221 (k=15),
A074378 (k=16),
A219394 (k=17),
A219395 (k=18),
A219396 (k=19),
A219190 (k=20),
A219391 (k=21),
A219392 (k=22),
A219393 (k=23),
A001318 (k=24),
A219259 (k=25),
A217441 (k=26),
A219258 (k=27),
A219191 (k=28).
Cf.
A220082 (numbers k such that 10*k-1 is a square).
-
CoefficientList[Series[4*x*(2*x^2 + x + 2)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2017 *)
LinearRecurrence[{1,2,-2,-1,1},{0,8,12,36,44},50] (* Harvey P. Dale, Dec 15 2023 *)
-
my(x='x+O('x^50)); concat([0], Vec(4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2))) \\ G. C. Greubel, Jun 12 2017
-
a(n) = n^2 + n + 6*((n+1)\2)^2 \\ Charles R Greathouse IV, Sep 11 2022
A132209
a(0) = 0 and a(n) = 2*n^2 + 2*n - 1, for n>=1.
Original entry on oeis.org
0, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511
Offset: 0
-
[0] cat [2*n^2+2*n-1: n in [1..50]]; // Vincenzo Librandi, Sep 22 2015
-
Join[{0}, LinearRecurrence[{3, -3, 1}, {3, 11, 23}, 40]] (* Vincenzo Librandi, Sep 22 2015 *)
-
for(n=0,50, print1(if(n==0, 0, 2*n^2 + 2*n -1), ", ")) \\ G. C. Greubel, Jul 13 2017
Edited by the Associate Editors of the OEIS, Nov 15 2009
Shorter name (using formula given) from
Joerg Arndt, Sep 27 2015
Original entry on oeis.org
0, 1, 3, 4, 8, 11, 17, 20, 28, 33, 43, 48, 60, 67, 81, 88, 104, 113, 131, 140, 160, 171, 193, 204, 228, 241, 267, 280, 308, 323, 353, 368, 400, 417, 451, 468, 504, 523, 561, 580, 620, 641, 683, 704, 748, 771, 817, 840, 888, 913, 963, 988, 1040, 1067, 1121, 1148, 1204, 1233, 1291, 1320
Offset: 0
A062717 is the subsequence of even terms.
A186424 is the subsequence of odd terms.
-
List([0..65], n-> (6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16); # G. C. Greubel, Oct 09 2019
-
a186423 n = a186423_list !! n
a186423_list = scanl1 (+) a186421_list
-
[(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16: n in [0..65]]; // G. C. Greubel, Oct 09 2019
-
A087960 := proc(n) op((n mod 4)+1,[1,-1,-1,1]) ; end proc:
A186423 := proc(n) 3*n*(n+1)/8 +3/16 +(-1)^n*(2*n+1)/16 -A087960(n)/4 ; end proc: # R. J. Mathar, Feb 28 2011
-
CoefficientList[Series[x(1+2x+2x^3+x^4)/((1-x)^3(1+x)^2(1+x^2)),{x, 0, 65}],x] (* Harvey P. Dale, Mar 13 2011 *)
Table[(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial[n+1, 2])/16, {n, 0, 65}] (* G. C. Greubel, Oct 09 2019 *)
-
vector(66, n, my(m=n-1); (6*m^2 +6*m +3 +(-1)^m*(2*m+1) -4*(-1)^binomial(m+1, 2))/16) \\ G. C. Greubel, Oct 09 2019
-
def A186423(n): return (6*n*(n+1)+3+(-2*n-1 if n&1 else 2*n+1)+(4 if n+1&2 else -4))>>4 # Chai Wah Wu, Jan 31 2023
-
[(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^binomial(n+1, 2))/16 for n in (0..65)] # G. C. Greubel, Oct 09 2019
A164097
Numbers k such that 6*k + 7 is a perfect square.
Original entry on oeis.org
3, 7, 19, 27, 47, 59, 87, 103, 139, 159, 203, 227, 279, 307, 367, 399, 467, 503, 579, 619, 703, 747, 839, 887, 987, 1039, 1147, 1203, 1319, 1379, 1503, 1567, 1699, 1767, 1907, 1979, 2127, 2203, 2359, 2439, 2603, 2687, 2859, 2947, 3127, 3219, 3407, 3503, 3699
Offset: 1
-
[n: n in [1..4000] | IsSquare(6*n+7)]; // Vincenzo Librandi, Oct 12 2012
-
Select[Range[4000], IntegerQ[Sqrt[6 # + 7 ]] &] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {3, 7, 19, 27, 47}, 50] (* Harvey P. Dale, Apr 29 2011 *)
A132354
Integers m such that 7*m + 1 is a square.
Original entry on oeis.org
0, 5, 9, 24, 32, 57, 69, 104, 120, 165, 185, 240, 264, 329, 357, 432, 464, 549, 585, 680, 720, 825, 869, 984, 1032, 1157, 1209, 1344, 1400, 1545, 1605, 1760, 1824, 1989, 2057, 2232, 2304, 2489, 2565, 2760, 2840, 3045, 3129, 3344, 3432, 3657, 3749, 3984, 4080
Offset: 0
Cf.
A054000,
A056220,
A000217,
A087475,
A028347,
A062717,
A036666,
A002378,
A001082,
A046092,
A005563.
A323674
Square array, read by antidiagonals, of the positive integers 6cd +-c +-d = (6c +- 1)d +- c. Alternate rows (or columns) are numbers that differ by c from multiples of 6c - 1 or 6c + 1.
Original entry on oeis.org
4, 6, 6, 9, 8, 9, 11, 13, 13, 11, 14, 15, 20, 15, 14, 16, 20, 24, 24, 20, 16, 19, 22, 31, 28, 31, 22, 19, 21, 27, 35, 37, 37, 35, 27, 21, 24, 29, 42, 41, 48, 41, 42, 29, 24, 26, 34, 46, 50, 54, 54, 50, 46, 34, 26, 29, 36, 53, 54, 65, 60, 65, 54, 53, 36, 29, 31, 41, 57, 63, 71, 73, 73, 71, 63, 57, 41, 31
Offset: 1
Square array begins:
4, 6, 9, 11, 14, 16, 19, 21, 24, 26, ...
6, 8, 13, 15, 20, 22, 27, 29, 34, 36, ...
9, 13, 20, 24, 31, 35, 42, 46, 53, 57, ...
11, 15, 24, 28, 37, 41, 50, 54, 63, 67, ...
14, 20, 31, 37, 48, 54, 65, 71, 82, 88, ...
16, 22, 35, 41, 54, 60, 73, 79, 92, 98, ...
19, 27, 42, 50, 65, 73, 88, 96, 111, 119, ...
21, 29, 46, 54, 71, 79, 96, 104, 121, 129, ...
24, 34, 53, 63, 82, 92, 111, 121, 140, 150, ...
26, 36, 57, 67, 88, 98, 119, 129, 150, 160, ...
...
Note that, for example, the third row (or column) contains numbers that differ by 2 from multiples of 11 = 6*2 - 1, and the eighth row contains numbers that differ by 4 from multiples of 25 = 6*4 + 1.
The diagonal is
A062717, the numbers x for which 6*x + 1 is a perfect square.
-
a(m,n) = 6*floor((m+1)/2)*floor((n+1)/2) + ((-1)^n)*floor((m+1)/2) + ((-1)^m)*floor((n+1)/2);
matrix(7, 7, n, k, a(n, k)) \\ Michel Marcus, Jan 25 2019
A247215
Integers k such that 3k+1 and 6k+1 are both squares.
Original entry on oeis.org
0, 8, 280, 9520, 323408, 10986360, 373212840, 12678250208, 430687294240, 14630689753960, 497012764340408, 16883803297819920, 573552299361536880, 19483894374994434008, 661878856450449219400, 22484397224940279025600, 763807626791519037651008
Offset: 1
When n=1, a(1)=0, 3(0)+1=1, 6(0)+1=1.
When n=2, a(2)=8, 3(8)+1=25, 6(8)+1=49.
When n=3, a(3)=280, 3(280)+1=841=29^2, 6(280)+1=1681=41^2.
When n=4, a(4)=9520, 3(9520)+1=28560=169^2, 6(9520)+1=57121=239^2.
-
LinearRecurrence[{35,-35,1},{0,8,280},20] (* Harvey P. Dale, Mar 25 2025 *)
-
concat(0, Vec(-8*x^2/((x-1)*(x^2-34*x+1)) + O(x^100))) \\ Colin Barker, Nov 26 2014
Comments