cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 114 results. Next

A141123 Primes of the form -x^2+2*x*y+2*y^2 (as well as of the form 3*x^2+6*x*y+2*y^2).

Original entry on oeis.org

2, 3, 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008

Keywords

Comments

Discriminant = 12. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
This is exactly {2} U A068231, primes congruent to 11 (mod 12). This is because the orders of imaginary quadratic fields with discriminant 12 has 1 class per genus (can be verified by the quadclassunit() function in PARI), so the primes represented by a binary quadratic form of this discriminant are determined by a congruence condition. - Jianing Song, Jun 22 2025

Examples

			a(3) = 11 because we can write 11 = -1^2 + 2*1*2 + 2*2^2 (or 11 = 3*1^2 + 6*1*1 + 2*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A038872 (d=5), A038873 (d=8), A068228 (d=12, 48, or -36), A038883 (d=13), A038889 (d=17), A141111 and A141112 (d=65).
Essentially the same as A068231 and A141187.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. A084917.

Programs

  • Maple
    N:= 2000:
    S:= NULL:
    for xx from 1 to floor(2*sqrt(N/3)) do
      for yy from ceil(sqrt(max(1,3*xx^2-N))) to floor(sqrt(3)*xx) do
         S:= S, 3*xx^2-yy^2;
    od od:
    sort(convert(select(isprime,{S}),list)); # Robert Israel, Jul 20 2020
  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 2*x*y + 2*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]]
    (* or: *)
    Select[Prime[Range[200]], # == 2 || # == 3 || Mod[#, 12] == 11&] (* Jean-François Alcover, Oct 25 2016, updated Oct 29 2016 *)

Extensions

More terms from Colin Barker, Apr 05 2015

A068231 Primes congruent to 11 mod 12.

Original entry on oeis.org

11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Intersection of A002145 (primes of form 4n+3) and A003627 (primes of form 3n-1). So these are both Gaussian primes with no imaginary part and Eisenstein primes with no imaginary part. - Alonso del Arte, Mar 29 2007
Is this the same sequence as A141187 (apart from the initial 3)?
If p is prime of the form 2*a(n)^k + 1, then p divides a cyclotomic number Phi(a(n)^k, 2). - Arkadiusz Wesolowski, Jun 14 2013
Also a(n) = primes p dividing A014138((p-3)/2), where A014138(n) = Partial sums of (Catalan numbers starting 1,2,5,...), cf. A000108. - Alexander Adamchuk, Dec 27 2013

Crossrefs

Programs

  • MATLAB
    %4n-1 and 6n-1 primes
    n = 1:10000;
    n2 = 4*n-1;
    n3 = 3*n-1;
    p = primes(max(n2));
    Res = intersect(n2,n3);
    Res2 = intersect(Res,p);
    % Jesse H. Crotts, Sep 25 2016
  • Magma
    [p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[Prime/@Range[250], Mod[ #, 12]==11&]
    Select[Range[11,1500,12],PrimeQ] (* Harvey P. Dale, Sep 15 2023 *)
  • PARI
    for(i=1,250, if(prime(i)%12==11, print(prime(i))))
    

Extensions

Edited by Dean Hickerson, Feb 27 2002

A068229 Primes congruent to 7 (mod 12).

Original entry on oeis.org

7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283, 307, 331, 367, 379, 439, 463, 487, 499, 523, 547, 571, 607, 619, 631, 643, 691, 727, 739, 751, 787, 811, 823, 859, 883, 907, 919, 967, 991, 1039, 1051, 1063, 1087, 1123, 1171, 1231
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Primes of the form 3x^2 + 4y^2. - T. D. Noe, May 08 2005
It appears that all terms starting from term 103 are primes which are the sum of 5 positive (n > 0) different squares in more than one way (A193143) - Vladimir Joseph Stephan Orlovsky, Jul 16 2011.

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1400) | p mod 12 in {7} ]; // Vincenzo Librandi, Jul 14 2012
    
  • Mathematica
    Select[Prime/@Range[250], Mod[#, 12] == 7 &]
  • PARI
    for(i=1,250, if(prime(i)%12==7, print(prime(i))))
    
  • PARI
    is_A068229(n)=n%12==7 && isprime(n) \\ then, e.g.,
    select(is_A068229, primes(250))  \\ - M. F. Hasler, Jan 25 2013

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, Dec 07 2022

Extensions

Edited by Dean Hickerson, Feb 27 2002

A040117 Primes congruent to 5 (mod 12). Also primes p such that x^4 = 9 has no solution mod p.

Original entry on oeis.org

5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353, 389, 401, 449, 461, 509, 521, 557, 569, 593, 617, 641, 653, 677, 701, 761, 773, 797, 809, 821, 857, 881, 929, 941, 953, 977, 1013, 1049, 1061, 1097, 1109, 1181, 1193
Offset: 1

Views

Author

Keywords

Comments

Odd primes of the form 2x^2-2xy+5y^2 with x and y nonnegative. - T. D. Noe, May 08 2005, corrected by M. F. Hasler, Jul 03 2025
Complement of A040116 relative to A000040. - Vincenzo Librandi, Sep 17 2012
Odd primes of the form a^2 + b^2 such that a^2 == b^2 (mod 3). - Thomas Ordowski and Charles R Greathouse IV, May 20 2015
Yasutoshi Kohmoto observes that nextprime(a(n)) is more frequently congruent to 3 (mod 4) than to 1. This bias can be explained by the possible prime constellations and gaps: To have the same residue mod 4 as a prime in the list, the next prime must be at a gap of 4 or 8 or 12..., but a gap of 4 is impossible because 12k + 5 + 4 is divisible by 3, and gaps >= 12 are very rare for small primes. To have the residue 3 (mod 4) the next prime can be at a gap of 2 or 6 with no a priori divisibility property. However, this bias tends to disappear as the primes (and average prime gaps) grow bigger: for primes < 10^5, the ratio is about 35% vs 65% (as the above simple explanation suggests), but considering primes up to 10^8 yields a ratio of about 40% vs 60%. It can be expected that the ratio asymptotically tends to 1:1. - M. F. Hasler, Sep 01 2017

Crossrefs

Equal to A243183 (primes of the form 2x^2+2xy+5y^2) except for the additional A243183(1) = 2 (and indexing of subsequent terms).

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | not exists{x : x in ResidueClassRing(p) | x^4 eq 9} ]; // Vincenzo Librandi, Sep 17 2012
  • Mathematica
    Select[Prime/@Range[250], Mod[ #, 12]==5&]
    ok[p_]:= Reduce[Mod[x^4 - 9, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012 *)
  • PARI
    for(i=1,250, if(prime(i)%12==5, print(prime(i))))
    

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, May 20 2015

Extensions

More terms from Dean Hickerson, Feb 27 2002

A132230 Primes congruent to 1 (mod 30).

Original entry on oeis.org

31, 61, 151, 181, 211, 241, 271, 331, 421, 541, 571, 601, 631, 661, 691, 751, 811, 991, 1021, 1051, 1171, 1201, 1231, 1291, 1321, 1381, 1471, 1531, 1621, 1741, 1801, 1831, 1861, 1951, 2011, 2131, 2161, 2221, 2251, 2281, 2311, 2341, 2371, 2521, 2551, 2671
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Also primes congruent to 1 (mod 15). - N. J. A. Sloane, Jul 11 2008
Primes ending in 1 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 04 2009

Examples

			From _Muniru A Asiru_, Nov 01 2017: (Start)
31 is a prime and 31 = 30*1 + 1;
61 is a prime and 61 = 30*2 + 1;
151 is a prime and 151 = 30*5 + 1;
211 is a prime and 211 = 30*7 + 1;
241 is a prime and 241 = 30*8 + 1;
271 is a prime and 271 = 30*9 + 1.
(End)
		

Crossrefs

Programs

Formula

a(n) = A111175(n)*30 + 1. - Ray Chandler, Apr 07 2009
Intersection of A030430 and A002476. - Ray Chandler, Apr 07 2009

Extensions

Edited by Ray Chandler, Apr 07 2009

A139490 Numbers n such that the quadratic form x^2 + n*x*y + y^2 represents exactly the same primes as the quadratic form x^2 + m*y^2 for some m.

Original entry on oeis.org

1, 4, 6, 7, 8, 10, 14, 16, 18, 22, 26, 38, 58, 82, 86
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008, Apr 26 2008, Apr 27 2008

Keywords

Comments

For the numbers m see A139491.
Conjecture: This sequence is finite and complete (checked for range n<=200 and m<=500).
Three more terms were found by searching n <= 1000 and m <= 4000. The corresponding m are 840, 840, and 1848, which are idoneal numbers A000926. The sequence is probably complete now. [T. D. Noe, Apr 27 2009]

Examples

			a(1)=1 because the primes represented by x^2+xy+y^2 are the same as the primes represented by x^2 + 3*y^2 (see A007645).
The known pairs (n,m) are the following (checked for range n<=200 and m<=500):
n={1, 4, 4, 6, 6, 7, 8, 8, 10, 10, 10, 14, 14, 14, 16, 18, 22, 22, 26, 38, 38}
m={3, 9, 12, 8, 16, 15, 45, 60, 24, 48, 72, 24, 48, 72, 21, 40, 120, 240, 168, 120, 240}.
		

Crossrefs

Programs

  • Mathematica
    f = 200; g = 300; h = 30; j = 100; b = {}; Do[a = {}; Do[Do[If[PrimeQ[x^2 + n y^2], AppendTo[a, x^2 + n y^2]], {x, 0, g}], {y, 1, g}]; AppendTo[b, Take[Union[a], h]], {n, 1, f}]; Print[b]; c = {}; Do[a = {}; Do[Do[If[PrimeQ[n^2 + w*n*m + m^2], AppendTo[a, n^2 + w*n*m + m^2]], {n, m, g}], {m, 1, g}]; AppendTo[c, Take[Union[a], h]], {w, 1, j}]; Print[c]; bb = {}; cc = {}; Do[Do[If[b[[p]] == c[[q]], AppendTo[bb, p]; AppendTo[cc, q]], {p, 1, f}], {q, 1, j}]; Union[cc] (*Artur Jasinski*)

Extensions

Edited by N. J. A. Sloane, Apr 25 2008
Extended by T. D. Noe, Apr 27 2009
Typo fixed by Charles R Greathouse IV, Oct 28 2009

A001617 Genus of modular group Gamma_0(n). Or, genus of modular curve X_0(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 2, 1, 3, 3, 3, 1, 2, 4, 3, 3, 3, 5, 3, 4, 3, 5, 4, 3, 1, 2, 5, 5, 4, 4, 5, 5, 5, 6, 5, 7, 4, 7, 5, 3, 5, 9, 5, 7, 7, 9, 6, 5, 5, 8, 5, 8, 7, 11, 6, 7, 4, 9, 7, 11, 7, 10, 9, 9, 7, 11, 7, 10, 9, 11, 9, 9, 7, 7, 9, 7, 8, 15
Offset: 1

Views

Author

Keywords

Comments

Also the dimension of the space of cusp forms of weight two and level n. - Gene Ward Smith, May 23 2006

Examples

			G.f. = x^11 + x^14 + x^15 + x^17 + x^19 + x^20 + x^21 + 2*x^22 + 2*x^23 + ...
		

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    a := func< n | n lt 1 select 0 else Dimension( CuspForms( Gamma0(n), 2))>; /* Michael Somos, May 08 2015 */
    
  • Maple
    nu2 := proc (n) # number of elliptic points of order two (A000089) local i, s; if modp(n,4) = 0 then RETURN(0) fi; s := 1; for i in divisors(n) do if isprime(i) and i > 2 then s := s*(1+eval(legendre(-1,i))) fi od; s end:
    nu3 := proc (n) # number of elliptic points of order three (A000086) local d, s; if modp(n,9) = 0 then RETURN(0) fi; s := 1; for d in divisors(n) do if isprime(d) then s := s*(1+eval(legendre(-3,d))) fi od; s end:
    nupara := proc (n) # number of parabolic cusps (A001616) local b, d; b := 0; for d to n do if modp(n,d) = 0 then b := b+eval(phi(gcd(d,n/d))) fi od; b end:
    A001615 := proc(n) local i,j; j := n; for i in divisors(n) do if isprime(i) then j := j*(1+1/i); fi; od; j; end;
    genx := proc (n) # genus of X0(n) (A001617) #1+1/12*psi(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: 1+1/12*A001615(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: # Gene Ward Smith, May 23 2006
  • Mathematica
    nu2[n_] := Module[{i, s}, If[Mod[n, 4] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[i] && i > 2, s = s*(1 + JacobiSymbol[-1, i])], {i, Divisors[n]}]; s];
    nu3[n_] := Module[{d, s}, If[Mod[n, 9] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[d], s = s*(1 + JacobiSymbol[-3, d])], {d, Divisors[n]}]; s];
    nupara[n_] := Module[{b, d}, b = 0; For[d = 1, d <= n, d++, If[ Mod[n, d] == 0, b = b + EulerPhi[ GCD[d, n/d]]]]; b];
    A001615[n_] := Module[{i, j}, j = n; Do[ If[ PrimeQ[i], j = j*(1 + 1/i)], {i, Divisors[n]}]; j];
    genx[n_] := 1 + (1/12)*A001615[n] - (1/4)*nu2[n] - (1/3)*nu3[n] - (1/2)*nupara[n];
    A001617 = Table[ genx[n], {n, 1, 102}] (* Jean-François Alcover, Jan 04 2012, after Gene Ward Smith's Maple program *)
    a[ n_] := If[ n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors @n}] - Count[(#^2 - # + 1)/n & /@ Range[n], ?IntegerQ]/3 - Count[ (#^2 + 1)/n & /@ Range[n], ?IntegerQ]/4]; (* Michael Somos, May 08 2015 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    a(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    vector(102, n, a(n))  \\ Gheorghe Coserea, May 20 2016

Formula

a(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2.
From Gheorghe Coserea, May 20 2016: (Start)
limsup a(n) / (n*log(log(n))) = exp(Euler)/(2*Pi^2), where Euler is A001620.
a(n) >= (n-5*sqrt(n)-8)/12, with equality iff n = p^2 for prime p=1 (mod 12) (see A068228).
a(n) < n * exp(Euler)/(2*Pi^2) * (log(log(n)) + 2/log(log(n))) for n>=3 (see Csirik link).
(End)

A329963 Numbers k such that sigma(k) is not divisible by 3.

Original entry on oeis.org

1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 144, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 192, 193, 199, 201, 208, 211, 217, 219, 223, 225, 228, 229
Offset: 1

Views

Author

John L. Drost, Nov 25 2019

Keywords

Comments

A number k is in the sequence iff in its prime factorization, all primes p == 1 (mod 3) occur to such a power p^e that e != 2 (mod 3), and all primes == 2 (mod 3) occur to even powers. (3 can occur to any power.) This sequence is similar but not identical to many others; in particular, 343 is in this sequence, but not in A034022. (And here we don't have 196, although it is in A034022). - First sentence corrected and additional notes added by Antti Karttunen, Jul 03 2024, see also Robert Israel's Nov 09 2016 comment in A087943.
The asymptotic density of this sequence is 0 (Dressler, 1975). - Amiram Eldar, Jul 23 2020

Crossrefs

Complement of A087943. Positions of zeros in A354100, nonzeros in A074941.
Cf. A000203, A353815 (characteristic function).
Setwise difference A003136 \ A088535.
Subsequences: A002476, A068228, A351537, A374135.
Cf. also A088232.
Not the same as A034022.

Programs

Extensions

More terms from Joshua Oliver, Nov 26 2019
Data section further extended up to a(71), to better differentiate from nearby sequences - Antti Karttunen, Jul 04 2024

A243655 Positive numbers that are primitively represented by the indefinite quadratic form x^2 - 3y^2 of discriminant 12.

Original entry on oeis.org

1, 6, 13, 22, 33, 37, 46, 61, 69, 73, 78, 94, 97, 109, 118, 121, 141, 142, 157, 166, 169, 177, 181, 193, 213, 214, 222, 229, 241, 249, 253, 262, 277, 286, 313, 321, 334, 337, 349, 358, 366, 373, 382, 393, 397, 409, 421, 429, 433, 438, 454, 457, 478, 481
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2014

Keywords

Comments

x^2+2xy-2y^2 is an equivalent form.

Crossrefs

Cf. A084916 (all numbers represented), A068228.

Programs

  • Mathematica
    Reap[For[n = 1, n < 500, n++, r = Reduce[x^2 - 3 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)

A038874 Primes p such that 3 is a square mod p.

Original entry on oeis.org

2, 3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193, 227, 229, 239, 241, 251, 263, 277, 311, 313, 337, 347, 349, 359, 373, 383, 397, 409, 419, 421, 431, 433, 443, 457, 467, 479, 491, 503, 541, 563, 577, 587, 599, 601
Offset: 1

Views

Author

Keywords

Comments

Also primes congruent to {1, 2, 3, 11} mod 12.
The subsequence p = 1 (mod 4) corresponds to A068228 and only these entries of a(n) are squares mod 3 (from the quadratic reciprocity law). - Lekraj Beedassy, Jul 21 2004
Largest prime factors of n^2 - 3. - Vladimir Joseph Stephan Orlovsky, Aug 12 2009
Aside from 2 and 3, primes p such that Legendre(3, p) = 1. Bolker asserts there are infinitely many of these primes. - Alonso del Arte, Nov 25 2015
The associated bases of the squares are 1, 0, 5, 4, 7, 15, 12, 11, 8, 28, 21, 13...: 1^2 = 3 -1*2, 0^2 = 3-1*3, 5^2 = 3+ 2*11, 4^2 = 3+1*13, 7^2 = 3+2*23, 15^2 = 3+6*37, 12^2 = 3+3*47,... - R. J. Mathar, Feb 23 2017

Examples

			11 is in the sequence since the equation x^2 - 11y = 3 has solutions, such as x = 5, y = 2.
13 is in the sequence since the equation x^2 - 13y = 3 has solutions, such as x = 4, y = 1.
17 is not in the sequence because x^2 - 17y = 3 has no solutions in integers; Legendre(3, 17) = -1.
		

References

  • Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 74, Theorem 25.3.

Crossrefs

If the first two terms are omitted we get A097933. A040101 is another sequence.

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | p mod 12 in [1, 2, 3, 11]]; // Vincenzo Librandi, Aug 08 2012
    
  • Maple
    select(isprime, [2,3, seq(seq(6+s+12*i, s=[-5,5]),i=0..1000)]); # Robert Israel, Dec 23 2015
  • Mathematica
    Select[Prime[Range[250]], MemberQ[{1, 2, 3, 11}, Mod[#, 12]] &] (* Vincenzo Librandi, Aug 08 2012 *)
    Select[Flatten[Join[{2, 3}, Table[{12n - 1, 12n + 1}, {n, 50}]]], PrimeQ] (* Alonso del Arte, Nov 25 2015 *)
  • PARI
    forprime(p=2, 1e3, if(issquare(Mod(3, p)), print1(p , ", "))) \\ Altug Alkan, Dec 04 2015

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016

Extensions

More terms from Henry Bottomley, Aug 10 2000
Previous Showing 11-20 of 114 results. Next