cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 81 results. Next

A106609 Numerator of n/(n+8).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 2, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 4, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 6, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 8, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

The graph of this sequence is made up of four linear functions: a(n_odd)=n, a(n=2+4i)=n/2, a(4+8i)=n/4, a(8i)=n/8. - Zak Seidov, Oct 30 2006. [In general, f(n) = numerator of n/(n+m) consists of linear functions n/d_i, where d_i are divisors of m (including 1 and m).]
a(n+2), n>=0, is the denominator of the harmonic mean H(n,2) = 4*n/(n+2). a(n+2) = (n+2)/gcd(n+2,8). a(n+5) = A227042(n+2, 2), n >= 0. - Wolfdieter Lang, Jul 04 2013
The sequence p(n) = a(n-4), n>=1, with a(-3) = a(3) = 3, a(-2) = a(2) = 1 and a(-1) = a(1) = 1, appears in the problem of writing 2*sin(2*Pi/n) as an integer in the algebraic number field Q(rho(q(n))), where rho(k) = 2*cos(Pi/k) and q(n) = A225975(n). One has 2*sin(2*Pi/n) = R(p(n), x) modulo C(q(n), x), with x = rho(q(n)) and the integer polynomials R and C given in A127672 and A187360, respectively. See a comment on A225975. - Wolfdieter Lang, Dec 04 2013
A204455(n) divides a(n) for n>=1. - Alexander R. Povolotsky, Apr 06 2015
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 20 2019

Crossrefs

Cf. A109049, A204455, A225975, A227042 (second column, starting with a(5)).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+8))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+8)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    a := n -> iquo(n, [8, 1, 2, 1, 4, 1, 2, 1][1 + modp(n, 8)]):
    seq(a(n), n=0..79); # using Wolfdieter Lang's formula, Peter Luschny, Feb 22 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+8)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15},100] (* Harvey P. Dale, Sep 27 2019 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+8))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,8)/8 for n in range(0, 100)] # Zerinvary Lajos, Jun 09 2009
    

Formula

a(n) = 2*a(n-8) - a(n-16).
G.f.: x* (x^2-x+1) * (x^12 +2*x^11 +4*x^10 +3*x^9 +4*x^8 +4*x^7 +7*x^6 +4*x^5 +4*x^4 +3*x^3 +4*x^2 +2*x +1) / ( (x-1)^2 *(x+1)^2 *(x^2+1)^2 *(x^4+1)^2 ). - R. J. Mathar, Dec 02 2010
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109049(n)/8.
Dirichlet g.f. zeta(s-1)*(1-1/2^s-1/2^(2s)-1/2^(3s)).
Multiplicative with a(2^e) = 2^max(0,e-3). a(p^e) = p^e if p>2. (End)
a(n) = n/gcd(n,8), n >= 0. See the harmonic mean comment above. - Wolfdieter Lang, Jul 04 2013
a(n) = n if n is odd; for n == 0 (mod 8) it is n/8, for n == 2 or 6 (mod 8) it is n/2 and for n == 4 (mod 8) it is n/4. - Wolfdieter Lang, Dec 04 2013
From Peter Bala, Feb 20 2019: (Start)
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4) - F(x^8), where F(x) = x/(1 - x)^2.
More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) + F(m,x^8) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m-th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Sum_{n >= 1} (1/n)*a(n)*x^n = G(x) - (1/2)*G(x^2) - (1/4)*G(x^4) - (1/8)*G(x^8), where G(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4)^2*L(x^4) - (1/8)^2*L(x^8), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8). (End)
Sum_{k=1..n} a(k) ~ (43/128) * n^2. - Amiram Eldar, Nov 25 2022

A110162 Riordan array ((1-x)/(1+x), x/(1+x)^2).

Original entry on oeis.org

1, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Inverse of Riordan array A094527. Rows sums are A099837. Diagonal sums are A110164. Product of Riordan array A102587 and inverse binomial transform (1/(1+x), x/(1+x)).
Coefficients of polynomials related to Cartan matrices of types C_n and B_n: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2), with p(x,0) = 1; p(x,1) = 2-x; p(x,2) = x^2-4*x-2. - Roger L. Bagula, Apr 12 2008
From Wolfdieter Lang, Nov 16 2012: (Start)
The alternating row sums are given in A219233.
For n >= 1 the row polynomials in the variable x^2 are R(2*n,x):=2*T(2*n,x/2) with Chebyshev's T-polynomials. See A127672 and also the triangle A127677.
(End)
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x)^2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 - 2*x + sqrt(1 - 4*x))/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

Examples

			Triangle T(n,k) begins:
m\k  0    1    2     3     4     5     6    7    8   9 10 ...
0:   1
1:  -2    1
2:   2   -4    1
3:  -2    9   -6     1
4:   2  -16   20    -8     1
5:  -2   25  -50    35   -10     1
6:   2  -36  105  -112    54   -12     1
7:  -2   49 -196   294  -210    77   -14    1
8:   2  -64  336  -672   660  -352   104  -16    1
9:  -2   81 -540  1386 -1782  1287  -546  135  -18   1
10:  2 -100  825 -2640  4290 -4004  2275 -800  170 -20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 16 2012
Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - _Wolfdieter Lang_, Nov 16 2012.
		

Crossrefs

Cf. A128411. See A127677 for an almost identical triangle.

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*(Binomial(n+k,n-k) + Binomial(n+k-1,n-k-1)): k in [0..n]]: n in [0.. 12]]; // Vincenzo Librandi, Jun 30 2015
    
  • Mathematica
    Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 16 2018 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1))};
    for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 16 2018
    
  • Sage
    [[(-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 16 2018

Formula

T(n,k) = (-1)^(n-k)*(C(n+k,n-k) + C(n+k-1,n-k-1)), with T(0,0) = 1. - Paul Barry, Mar 22 2007
From Wolfdieter Lang, Nov 16 2012: (Start)
O.g.f. row polynomials P(n,x) := Sum(T(n,k)*x^k, k=0..n): (1-z^2)/(1+(x-2)*z+z^2) (from the Riordan property).
O.g.f. column No. k: ((1-x)/(1+x))*(x/(1+x)^2)^k, k >= 0.
T(0,0) = 1, T(n,k) = (-1)^(n-k)*(2*n/(n+k))*binomial(n+k,n-k), n>=1, and T(n,k) = 0 if n < k. (From the Chebyshev T-polynomial formula due to Waring's formula.)
(End)
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 29 2013

A005582 a(n) = n*(n+1)*(n+2)*(n+7)/24.

Original entry on oeis.org

0, 2, 9, 25, 55, 105, 182, 294, 450, 660, 935, 1287, 1729, 2275, 2940, 3740, 4692, 5814, 7125, 8645, 10395, 12397, 14674, 17250, 20150, 23400, 27027, 31059, 35525, 40455, 45880, 51832, 58344, 65450, 73185, 81585, 90687, 100529, 111150, 122590, 134890
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of Dyck (n+2)-paths with exactly 2 rows of peaks. A row of peaks is a maximal sequence of peaks all at the same height and 2 units apart. For example, UDUDUD ( = /\/\/\ ) contains exactly one row of peaks, as does UUUDDD, but UDUUDDUD has three and a(1)=2 counts UDUUDD, UUDDUD. - David Callan, Mar 02 2005
If X is an n-set and Y a fixed 2-subset of X then a(n-4) is equal to the number of (n-4)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n>=7, a(n-7) is the number of (0,1) n X n matrices A<=P^(-1)+I+P having exactly two 1's in every row and column with perA=16. - Vladimir Shevelev, Apr 12 2010
Row 2 of the convolution array A213550. - Clark Kimberling, Jun 20 2012
a(n-1) = risefac(n, 4)/4! - risefac(n, 2)/2! is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 4 and dimension n. Here risefac is the rising factorial. - Wolfdieter Lang, Dec 10 2015
Consider the array formed by the second polygonal numbers of increasing rank:
A000217(-1-n): 0, 1, 3, 6, 10, 15, ...
A000270(-1-n): 1, 4, 9, 16, 25, 36, ...
A000326(-1-n): 2, 7, 15, 26, 40, 57, ...
A000384(-1-n): 3, 10, 21, 36, 55, 78, ...
Then the antidiagonal sums yield this sequence. - Michael Somos, Nov 23 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Vladimir S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=4) (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Partial sums of A005581.

Programs

  • Maple
    [seq(binomial(n,4)+2*binomial(n,3), n=2..43)]; # Zerinvary Lajos, Jul 26 2006
    seq((n+4)*binomial(n,4)/n, n=3..43); # Zerinvary Lajos, Feb 28 2007
    A005582:=(-2+z)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n(n+1)(n+2)(n+7)/24,{n,0,40}] (* Harvey P. Dale, Jun 01 2012 *)
  • PARI
    concat(0, Vec(x*(2-x)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Dec 10 2015

Formula

a(n) = binomial(n+3, n-1) + binomial(n+2, n-1).
a(n) = binomial(n,4) + 2*binomial(n,3), n>=2. - Zerinvary Lajos, Jul 26 2006
From Colin Barker, Jan 28 2012: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(2-x)/(1-x)^5. (End)
a(n) = Sum_{k=1..n} ( Sum_{i=1..k} i(n-k+2) ). - Wesley Ivan Hurt, Sep 26 2013
a(n+1) = A127672(8+n, n), n >= 0, with the Chebyshev C-polynomial coefficients A127672(n, k). See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
E.g.f.: (1/24)*x*(48 + 60*x + 16*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 01 2017
Sum_{n>=1} 1/a(n) = 853/1225. - Amiram Eldar, Jan 02 2021
a(n) = A005587(-7-n) for all n in Z. - Michael Somos, Nov 23 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000

A131423 a(n) = n*(n+2)*(2*n-1)/3. Also, row sums of triangle A131422.

Original entry on oeis.org

1, 8, 25, 56, 105, 176, 273, 400, 561, 760, 1001, 1288, 1625, 2016, 2465, 2976, 3553, 4200, 4921, 5720, 6601, 7568, 8625, 9776, 11025, 12376, 13833, 15400, 17081, 18880, 20801, 22848, 25025, 27336, 29785, 32376, 35113, 38000, 41041, 44240, 47601, 51128
Offset: 1

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

The Wiener index of the P_2 X P_n grid, where P_m is the path graph on m vertices. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. - Emeric Deutsch, Sep 05 2008

Examples

			a(3) = 25 = sum of row 3 terms, triangle A131422: (6 + 8 + 11).
For n=2, the Wiener index is a(2)=8 since there are 4 vertex pairs with distances of 1 and 2 vertex pairs with distances of 2. - _Dennis P. Walsh_, Dec 04 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)

Crossrefs

Programs

  • Magma
    [n*(n+2)*(2*n-1)/3: n in [1..45]]; // Vincenzo Librandi, Nov 02 2014
  • Maple
    seq((1/3)*n*(n+2)*(2*n-1), n=1..43); # Emeric Deutsch, Sep 06 2008
  • Mathematica
    Table[Sum[2 k^2 - 1, {k, n}], {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 8, 25}, 50] (* Harvey P. Dale, Feb 03 2012 *)
    Table[n (n + 2) (2 n - 1)/3, {n, 50}] (* Wesley Ivan Hurt, Apr 07 2015 *)

Formula

a(n) = n*(n+2)*(2*n-1)/3. - Emeric Deutsch, Sep 06 2008
a(n) = Sum_{k=1..n} k*A143370(n,k). - Emeric Deutsch, Sep 05 2008
From Dennis P. Walsh, Dec 04 2009: (Start)
a(n) = a(n-1) + 2*n^2 - 1.
G.f.: x*(1+4*x-x^2)/(1-x)^4. (End)
a(1)=0, a(2)=1, a(3)=8, a(4)=25; for n>4, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Feb 03 2012
a(n) = Sum_{i=1..n} (A005408(i)*A005408(i-1)-1)/2. - Bruno Berselli, Jan 09 2017
a(n) = (1/2)*trinomial(2*n, 3) = (1/2)*trinomial(2*n, 4*n-3), for n >= 1, with the trinomial irregular triangle A027907. a(n) = (1/(2*Pi))*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n)*R(2*(2*n-3), x), with the R polynomial coefficients given in A127672 and R(-m, x) = R(m, x) [Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 3, rewritten with x = 2*cos(phi)]. For the odd numbered rows of column k=3 see A030440. - Wolfdieter Lang, Apr 27 2018
From Vaclav Kotesovec, Apr 28 2018: (Start)
Sum_{n>=1} 1/a(n) = 12*log(2)/5 - 9/20.
Sum_{n>=1} (-1)^n/a(n) = 3/20 - 3*Pi/5 + 6*log(2)/5. (End)
E.g.f.: exp(x)*x*(3 + 9*x + 2*x^2)/3. - Stefano Spezia, Jan 20 2024

Extensions

More terms from Emeric Deutsch, Sep 06 2008
Definition edited by M. F. Hasler, Jan 13 2015

A102761 Same as A000179, except that a(0) = 2.

Original entry on oeis.org

2, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2010, following a suggestion from Vladimir Shevelev

Keywords

Comments

For any integer n>=0, 2 * Integral_{t=-2..2} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1..1} T_n(z)*exp(-2*z)*dz = a(n)*exp(2) - A300484(n)*exp(-2). - Max Alekseyev, Mar 08 2018

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.

Crossrefs

Row m=2 in A300481.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020

Programs

  • PARI
    { A102761(n) = subst( serlaplace( 2*polchebyshev(n, 1, (x-2)/2)), x, 1); } \\ Max Alekseyev, Mar 06 2018

Formula

a(n) = Sum_{i=0..n} A127672(n,i) * A000023(i). - Max Alekseyev, Mar 06 2018
a(n) = A300481(2,n) = A300480(-2,n). - Max Alekseyev, Mar 06 2018
a(n) = A335391(0,n) (Touchard). - William P. Orrick, Aug 29 2020

Extensions

Changed a(0)=2 (making the sequence more consistent with existing formulae) by Max Alekseyev, Mar 06 2018

A332438 Decimal expansion of (2*cos(Pi/9))^2 = A332437^2.

Original entry on oeis.org

3, 5, 3, 2, 0, 8, 8, 8, 8, 6, 2, 3, 7, 9, 5, 6, 0, 7, 0, 4, 0, 4, 7, 8, 5, 3, 0, 1, 1, 1, 0, 8, 3, 3, 3, 4, 7, 8, 7, 1, 6, 6, 4, 9, 1, 4, 1, 6, 0, 7, 9, 0, 4, 9, 1, 7, 0, 8, 0, 9, 0, 5, 6, 9, 2, 8, 4, 3, 1, 0, 7, 7, 7, 7, 1, 3, 7, 4, 9, 4, 4, 7, 0, 5, 6, 4, 5, 8, 5, 5, 3, 3, 6, 1, 0, 9, 6, 9
Offset: 1

Views

Author

Wolfdieter Lang, Mar 31 2020

Keywords

Comments

This algebraic number rho(9)^2 of degree 3 is a root of its minimal polynomial x^3 - 6*x^2 + 9*x - 1.
The other two roots are x2 = (2*cos(5*Pi/9))^2 = (2*cos(4*Pi/9))^2 = (R(4,rho(9)))^2 = 2 - rho(9) = 0.120614758..., and x3 = (2*cos(7*Pi/9))^2 = (2*cos(7*Pi/9))^2 = (R(7,rho(9)))^2 = 4 + rho(9) - rho(9)^2 = 2.347296355... = A130880 + 2, with rho(9) = 2*cos(Pi/9) = A332437, the monic Chebyshev polynomials R (see A127672), and the computation is done modulo the minimal polynomial of rho(9) which is x^3 - 3*x - 1 (see A187360).
This gives the representation of these roots in the power basis of the simple field extension Q(rho(9)). See the linked W. Lang paper in A187360, sect. 4.
This number rho(9)^2 appears as limit of the quotient of consecutive numbers af various sequences, e.g., A094256 and A094829.
The algebraic number rho(9)^2 - 2 = 1.532088898... of Q(rho(9)) has minimal polynomial x^3 - 3*x + 1 over Q. The other roots are -rho(9) = -A332437 and 2 + rho(9) - rho(9)^2 = A130880. - Wolfdieter Lang, Sep 20 2022

Examples

			3.5320888862379560704047853011108333478716649...
		

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A116425 (n = 7), A296184 (n = 10), A019973 (n = 12).

Programs

  • Mathematica
    RealDigits[(2*Cos[Pi/9])^2, 10, 100][[1]] (* Amiram Eldar, Mar 31 2020 *)
  • PARI
    (2*cos(Pi/9))^2 \\ Michel Marcus, Sep 23 2022

Formula

Equals (2*cos(Pi/9))^2 = rho(9)^2 = A332437^2.
Equals 2 + i^(4/9) - i^(14/9). - Peter Luschny, Apr 04 2020
Equals 2 + w1^(1/3) + w2^(1/3), where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1. - Wolfdieter Lang, Sep 20 2022
Constant c = 2 + 2*cos(2*Pi/9). The linear fractional transformation z -> c - c/z has order 9, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(z))))))))). - Peter Bala, May 09 2024
From Amiram Eldar, Nov 22 2024: (Start)
Equals 3 + sec(Pi/9)/2 = 3 + 1/(2*A019879).
Equals 3 + Product_{k>=3} (1 + (-1)^k/A063289(k)). (End)

A005583 Coefficients of Chebyshev polynomials.

Original entry on oeis.org

2, 11, 36, 91, 196, 378, 672, 1122, 1782, 2717, 4004, 5733, 8008, 10948, 14688, 19380, 25194, 32319, 40964, 51359, 63756, 78430, 95680, 115830, 139230, 166257, 197316, 232841, 273296, 319176, 371008, 429352, 494802, 567987, 649572, 740259, 840788
Offset: 1

Views

Author

Keywords

Comments

If X is an n-set and Y a fixed 2-subset of X then a(n-5) is equal to the number of (n-5)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
a(n-1) = risefac(n,5)/5! - risefac(n,3)/3! is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 5 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005583:=-(-2+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation (this g.f. assumes offset 0)
  • PARI
    conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w;
    t(n)=n*(n+1)/2;
    u=vector(10,i,t(i));
    v=vector(10,i,t(i)-1);
    conv(u,v)
    
  • PARI
    a(n) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1); \\ Joerg Arndt, Mar 05 2018

Formula

G.f.: x*(2-x)/(1-x)^6.
a(n) = binomial(n+4, n-1) + binomial(n+3, n-1) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1).
a(n+1) = -A127672(10+n, n), n >= 0, with the coefficients of the Chebyshev C-polynomials A127672(n, k). - Wolfdieter Lang, Dec 10 2015
a(n) = Sum_{i=1..n} A000217(i)*A000096(n+1-i). - Bruno Berselli, Mar 05 2018
a(n) = binomial(n+3,5) + 2*binomial(n+3,4). - Yuchun Ji, May 23 2019
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 40751/63504.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1360*log(2)/63 - 922961/63504. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999
More terms from Zerinvary Lajos, Jul 21 2006

A109954 Riordan array (1/(1+x)^3,x/(1+x)^2).

Original entry on oeis.org

1, -3, 1, 6, -5, 1, -10, 15, -7, 1, 15, -35, 28, -9, 1, -21, 70, -84, 45, -11, 1, 28, -126, 210, -165, 66, -13, 1, -36, 210, -462, 495, -286, 91, -15, 1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 66, -715, 3003, -6435, 8008, -6188, 3060, -969, 190, -21, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Inverse of Riordan array (c(x)^3,x*c(x)^2) or A050155, with c(x) the g.f. of A000108. Unsigned array is the Riordan array (1/(1-x)^3,x/(1-x)^2), with T(n,k) = binomial(n+k+2,2*k+2).
Triangle of coefficients of polynomials defined by: c0=1; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0 (2 - x))*p(x, n - 2) + c0*p(x, n - 3). Setting c0=0 gives A136674. - Roger L. Bagula, Apr 08 2008
The triangle entries Ts(n,k):=(-1)^(n-1)*A109954(n-1, k) = ((-1)^k)*binomial(n+k+1, 2(k+1)), n>=1, k=0..n-1, are the coefficients of x^(2*k) of the polynomial P(n,x^2) := (1 - (-1)^n*S(2*n,x))/x^2, with the Chebyshev S-polynomials with coefficient triangle given in A049310.
P(n,x^2) = - R(n+1,x)*S(n-1,x)/x^2 if n is even and P(n,x^2) = R(n,x)*S(n,x)/x^2 if n is odd, with R the monic integer Chebyshev T-polynomials with coefficient triangle given in A127672. - Wolfdieter Lang, Oct 24 2012.

Examples

			Triangle T(n, k) begins:
  n/k   0     1      2     3     4      5     6    7   8   9 10
  0:    1
  1:   -3     1
  2:    6    -5      1
  3:  -10    15     -7     1
  4:   15   -35     28    -9     1
  5:  -21    70    -84    45   -11      1
  6:   28  -126    210  -165    66    -13     1
  7:  -36   210   -462   495  -286     91   -15    1
  8:   45  -330    924 -1287  1001   -455   120  -17   1
  9:  -55   495  -1716  3003 -3003   1820  -680  153 -19   1
  10:  66  -715   3003 -6435  8008  -6188  3060 -969 190 -21  1
  ... Reformatted and extended by Wolfdieter Lang, Oct 24 2012.
		

Crossrefs

Programs

  • Mathematica
    c0 = 1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] := p[x, n] = (2 + c0 - x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] - Roger L. Bagula, Apr 08 2008

Formula

Number triangle T(n, k) = (-1)^(n+k)*binomial(n+k+2, 2*k+2) [offset (0, 0)].

A302711 Decimal expansion of 2*sin(15*Pi/32).

Original entry on oeis.org

1, 9, 9, 0, 3, 6, 9, 4, 5, 3, 3, 4, 4, 3, 9, 3, 7, 7, 2, 4, 8, 9, 6, 7, 3, 9, 0, 6, 2, 1, 8, 9, 5, 9, 8, 4, 3, 1, 5, 0, 9, 4, 9, 7, 3, 7, 4, 5, 9, 7, 1, 4, 1, 2, 3, 6, 6, 7, 2, 2, 5, 9, 3, 1, 5, 6, 9, 7, 8, 0, 3, 3, 3, 7, 8, 9, 1, 7, 3, 0, 7, 5, 9, 4, 5, 0, 5, 8, 1, 6, 8, 5, 3, 9, 2, 9, 6, 7, 8, 0
Offset: 1

Views

Author

Wolfdieter Lang, Apr 28 2018

Keywords

Comments

This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète (see the Vieta link) using trigonometry. See the Havil reference, problem 1 (for a correction see below), pp. 69-74, and the Maor reference for Viète's approach, pp. 58-60.
The problem involves the monic Chebyshev polynomial of the first kind R(45, x) (R coefficients are given in A127672). The present problem was stated as R(45, x) = sqrt(2 + sqrt(2 + sqrt(2 + sqrt(2)))) for x = sqrt(2 - sqrt(2 + sqrt(2 + sqrt(2 + sqrt(3))))) (see A302712). This is equivalent to R(45, 2*sin(Pi/96)) = 2*sin(15*Pi/32). It is a special case of the well known identity R(2*k+1, x) = x*(-1)^k*S(2*k, sqrt(4-x^2)), with the Chebyshev S polynomials (see A049310 for the coefficients). Take k = 22, x = 2*sin(Pi/96), and see the Havil reference, p. 71, for the proof of 2*sin(15*Pi/32) = sqrt(2 + sqrt(2 + sqrt(2 + sqrt(2)))). [In the Havil reference on p. 69, the second to last exponent is 43 (not 41), and in the first problem, for the argument x a further +sqrt(2... is missing. In the general identity given on p. 71 a sign factor is missing. It should read, with n = 2*k+1: P_{2*k+1}(2*sin(theta)) = 2*(-1)^k*sin((2*k+1)*theta).]
For the argument x = sqrt(2 - sqrt(2 + sqrt(2 + sqrt(2 + sqrt(3))))) = 2*sin(Pi/96) = 0.65438165643552284... see A302712.
R(45, x) factorizes into minimal polynomials of 2*cos(Pi/k), named C(k, x), for short, C[k], with coefficients given in A187360 as follows. R(45, x) = C[90]*C[30]*C[18]*C[10]*C[6]*C[2]. See a comment in A127672.
All 45 zeros of R(45, x), which are real, are 2*cos((2*k+1)*Pi/90), for k = 0..44. See a comment in A127672.
Viète used the iteration, written in terms of R polynomials as R(45, x) = -R(3, -R(3, R(5, x))) (from the semigroup property of Chebyshev T polynomials). See the Maor reference, pp. 58-60. - Wolfdieter Lang, May 05 2018
An algebraic integer of degree 16. - Charles R Greathouse IV, Jan 29 2022

Examples

			2*sin(15*Pi/32) = 1.990369453344393772489673906218959843150949737459714123...
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
  • Eli Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, pp. 56-62.

Crossrefs

Programs

Formula

This constant is 2*sin(15*Pi/32) = sqrt(2 + sqrt(2 + sqrt(2 + sqrt(2)))). (for a proof see Havil. p.71).

A082375 Irregular triangle read by rows: row n begins with n and decreases by 2 until 0 or 1 is reached, for n >= 0.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 2, 0, 5, 3, 1, 6, 4, 2, 0, 7, 5, 3, 1, 8, 6, 4, 2, 0, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 0, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2, 0, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0, 15, 13, 11, 9, 7, 5, 3, 1, 16, 14, 12, 10, 8, 6, 4, 2, 0, 17, 15, 13, 11, 9, 7, 5, 3, 1, 18, 16, 14
Offset: 0

Views

Author

Michael Somos, Apr 09 2003

Keywords

Comments

As a sequence, a(n) = A025644(n+1) for n <= 142.
The length of row n is given by A008619(n) = 1 + floor(n/2).
From Wolfdieter Lang, Feb 17 2020: (Start)
This table T(n, m) can be used for the conversion identity
2*cos(Pi*k/N) = 2*sin((Pi/(2*N))*(N - 2*k)) = 2*sin((Pi/(2*N))*T(N-2, k-1)), here for N = n+2 >= 2, and k = m + 1 = 1, 2, ..., floor(N/2).
2*cos((Pi/N)*k) = R(k, rho(N)), where R is a monic Chebyshev polynomial from A127672 and rho(N) = 2*cos(Pi/N), gives part of the roots of the polynomial S(N-1, x), for k = 1, 2, ..., floor(N/2), with the Chebyshev S polynomials from A049310.
2*sin((Pi/(2*N))*q) = d^{(2*N)}_q/r, for q = 1, 2, ..., N, with the length ratio (q-th diagonal)/r, where r is the radius of the circle circumscribing a regular (2*N)-gon. The counting q starts with the diagonal d^{(2*N)}_1 = s(2*N) (in units of r), the side of the (2*N)-gon. The next diagonal is d^{(2*N)}_2 = rho(2*N)*s(2*N) (in units of r).
For the instances N = 4 (n = 2) and 5 (n = 3), we have:
N = n+2 = 4:
k = m+1 = 1, 2*cos(Pi*1/4) = 2*sin(Pi*2/8) = sqrt(2);
k = 2, 2*cos(Pi*2/4) = 2*sin(Pi*0/8) = 0.
N = 5 (n=3):
k=1 (m=0), 2*cos(Pi*1/5) = 2*sin(Pi*3/10) = (1 + sqrt(5))/2 = rho(5) = A001622;
k=2: 2*cos(Pi*2/5) = 2*sin(Pi*1/10) = rho(5) - 1. (End)
If b > 0 and c > 0 are the integer coefficients of a monic quadratic x^2 + b*x + c, it has integer roots if its discriminant d^2 = b^2 - 4c is a perfect square. This sequence is the values of d for increasing b sorted by b then c. The first pair of (b, c) = (2, 1) and has d = a(0) = 0. The n-th pair of (b, c) = (A027434(n), A350634(n)) and has d = a(n-1). - Frank M Jackson, Jan 20 2024
This sequence is related to an instance of Clark Kimberling's generic dispersion arrays; in this case the leader sequence is the square numbers A000290 (without 0), and the follower sequence is the nonsquare numbers A000037. This sequence gives the 0-origin column index of n in the resulting dispersion array. - Allan C. Wechsler, Feb 26 2025

Examples

			The irregular triangle T(n, m) begins:
  n\m  0 1 2 3 4 5 ...
  0:   0
  1:   1
  2:   2 0
  3:   3 1
  4:   4 2 0
  5:   5 3 1
  6:   6 4 2 0
  7:   7 5 3 1
  8:   8 6 4 2 0
  9:   9 7 5 3 1
  10: 10 8 6 4 2 0
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Range[n,0,-2],{n,0,20}]] (* Harvey P. Dale, Apr 03 2019 *)
    lst = {}; Do[If[IntegerQ[d=Sqrt[b^2-4c]], AppendTo[lst, d]], {b, 1, 20}, {c, 1, b^2/4}]; lst (* Frank M Jackson, Jan 20 2024 *)
  • PARI
    a(n)=local(m); if(n<0,0,m=sqrtint(1+4*n); m-1-(1+4*n-m^2)\2)

Formula

T(n, m) = n - 2*m, m = 0, 1, ..., floor(n/2), n >= 0 (see the name and programs). - Wolfdieter Lang, Feb 17 2020
a(n) = A199474(n+1) - A122197(n+1). - Wesley Ivan Hurt, Jan 09 2022
a(n) = sqrt((A027434(n+1))^2 - 4*A350634(n+1)). - Frank M Jackson, Jan 20 2024
Previous Showing 21-30 of 81 results. Next