cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 132 results. Next

A339545 Primes p such that A007088(p) == A151799(p) (mod p).

Original entry on oeis.org

3, 19, 29, 691
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 08 2020

Keywords

Comments

Primes p such that the binary representation of p, considered as a decimal number, is congruent mod p to the prime previous to p.
No other terms < 10^11. - Max Alekseyev, Feb 04 2024

Examples

			a(3) = 29 is a member because 29 = 11101_2, 11101 == 23 (mod 29), and 23 is the prime previous to 29.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and convert(t,binary) mod t = prevprime(t), [seq(i,i=3..1000,2)]);

A064989 Multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 17, 3, 10, 7, 19, 2, 9, 11, 8, 5, 23, 6, 29, 1, 14, 13, 15, 4, 31, 17, 22, 3, 37, 10, 41, 7, 12, 19, 43, 2, 25, 9, 26, 11, 47, 8, 21, 5, 34, 23, 53, 6, 59, 29, 20, 1, 33, 14, 61, 13, 38, 15, 67, 4, 71, 31, 18, 17, 35, 22, 73, 3, 16
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

From Antti Karttunen, May 12 2014: (Start)
a(A003961(n)) = n for all n. [This is a left inverse function for the injection A003961.]
Bisections are A064216 (the terms at odd indices) and A064989 itself (the terms at even indices), i.e., a(2n) = a(n) for all n.
(End)
From Antti Karttunen, Dec 18-21 2014: (Start)
When n represents an unordered integer partition via the indices of primes present in its prime factorization (for n >= 2, n corresponds to the partition given as the n-th row of A112798) this operation subtracts one from each part. If n is of the form 2^k (a partition having just k 1's as its parts) the result is an empty partition (which is encoded by 1, having an "empty" factorization).
For all odd numbers n >= 3, a(n) tells which number is located immediately above n in square array A246278. Cf. also A246277.
(End)
Alternatively, if numbers are represented as the multiset of indices of prime factors with multiplicity, this operation subtracts 1 from each element and discards the 0's. - M. F. Hasler, Dec 29 2014

Examples

			a(20) = a(2^2*5) = a(2^2)*a(5) = prevprime(5) = 3.
		

Crossrefs

Cf. A064216 (odd bisection), A003961 (inverse), A151799.
Other sequences whose definition involve or are some other way related with this sequence: A105560, A108951, A118306, A122111, A156552, A163511, A200746, A241909, A243070, A243071, A243072, A243073, A244319, A245605, A245607, A246165, A246266, A246268, A246277, A246278, A246361, A246362, A246371, A246372, A246373, A246374, A246376, A246380, A246675, A246682, A249745, A250470.
Similar prime-shifts towards smaller numbers: A252461, A252462, A252463.

Programs

  • Haskell
    a064989 1 = 1
    a064989 n = product $ map (a008578 . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A064989 n) (if (= 1 n) n (apply * (map (lambda (k) (if (zero? k) 1 (A000040 k))) (map -1+ (map A049084 (factor n)))))))
    ;; Antti Karttunen, May 12 2014
    (definec (A064989 n) (if (= 1 n) n (* (A008578 (A055396 n)) (A064989 (A032742 n))))) ;; One based on given recurrence and utilizing memoizing definec-macro.
    (definec (A064989 n) (cond ((= 1 n) n) ((even? n) (A064989 (/ n 2))) (else (A163511 (/ (- (A243071 n) 1) 2))))) ;; Corresponds to one of the alternative formulas, but is very unpractical way to compute this sequence. - Antti Karttunen, Dec 18 2014
    
  • Maple
    q:= proc(p) prevprime(p) end proc: q(2):= 1:
    [seq(mul(q(f[1])^f[2], f = ifactors(n)[2]), n = 1 .. 1000)]; # Robert Israel, Dec 21 2014
  • Mathematica
    Table[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n, {n, 81}] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=1; j=1; if (n>1 && f[1, 1]==2, j=2); for (i=j, length(f), a*=precprime(f[1, i] - 1)^f[2, i]); write("b064989.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
    
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((p=f[i,1]) % 2, f[i,1] = precprime(p-1), f[i,1] = 1);); factorback(f);} \\ Michel Marcus, Dec 18 2014
    
  • PARI
    A064989(n)=factorback(Mat(apply(t->[max(precprime(t[1]-1),1),t[2]],Vec(factor(n)~))~)) \\ M. F. Hasler, Dec 29 2014
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
    
  • Python
    from math import prod
    from sympy import prevprime, factorint
    def A064989(n): return prod(prevprime(p)**e for p, e in  factorint(n>>(~n&n-1).bit_length()).items()) # Chai Wah Wu, Jan 05 2023

Formula

From Antti Karttunen, Dec 18 2014: (Start)
If n = product A000040(k)^e(k) then a(n) = product A008578(k)^e(k) [where A000040(n) gives the n-th prime, and A008578(n) gives 1 for 1 and otherwise the (n-1)-th prime].
a(1) = 1; for n > 1, a(n) = A008578(A055396(n)) * a(A032742(n)). [Above formula represented as a recurrence. Cf. A252461.]
a(1) = 1; for n > 1, a(n) = A008578(A061395(n)) * a(A052126(n)). [Compare to the formula of A252462.]
This prime-shift operation is used in the definitions of many other sequences, thus it can be expressed in many alternative ways:
a(n) = A200746(n) / n.
a(n) = A242424(n) / A105560(n).
a(n) = A122111(A122111(n)/A105560(n)) = A122111(A052126(A122111(n))). [In A112798-partition context: conjugate, remove the largest part (the largest prime factor), and conjugate again.]
a(1) = 1; for n > 1, a(2n) = a(n), a(2n+1) = A163511((A243071(2n+1)-1) / 2).
a(n) = A249818(A250470(A249817(n))). [A250470 is an analogous operation for "going one step up" in the square array A083221 (A083140).]
(End)
Product_{k=1..n} a(k) = n! / A307035(n). - Vaclav Kotesovec, Mar 21 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) = 0.220703928... , where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Nov 18 2022

A151800 Least prime > n (version 2 of the "next prime" function).

Original entry on oeis.org

2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 47, 47, 47, 47, 53, 53, 53, 53, 53, 53, 59, 59, 59, 59, 59, 59, 61, 61, 67, 67, 67, 67, 67, 67, 71, 71, 71, 71, 73, 73, 79
Offset: 0

Views

Author

N. J. A. Sloane, Jun 29 2009

Keywords

Comments

Version 1 of the "next prime" function is A007918: smallest prime >= n.
Maple's nextprime() is this version 2; PARI/GP's nextprime() is version 1.
See A007918 for references and further information.
a(n) is the smallest number greater than one that is not divisible by any 1 < k <= n. Consider a multi-round election in which, in each round, voters each cast one vote for one of the remaining candidates. Then, any candidates which receive the fewest votes in that round are eliminated. This repeats until either one candidate remains, who wins the election, or no candidates remain. a(n) is the smallest nontrivial number of voters that can guarantee a winner if the election initially has n > 0 candidates. This is a consequence of the first fact. - Thomas Anton, Mar 30 2020
Conjecture: if n > 3, then a(n) < n^(n^(1/n)). - Thomas Ordowski, Feb 23 2023

Crossrefs

Programs

Formula

a(n) = A007918(n+1).
a(n) = 1 + Sum_{k=1..2n} (floor((n!^k)/k!) - floor(((n!^k)-1)/k!)). - Anthony Browne, May 11 2016
a(n) = A000040(A036234(n)). - Ridouane Oudra, Sep 30 2024

A007917 Version 1 of the "previous prime" function: largest prime <= n.

Original entry on oeis.org

2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 29, 29, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 47, 47, 53, 53, 53, 53, 53, 53, 59, 59, 61, 61, 61, 61, 61, 61, 67, 67, 67, 67, 71, 71, 73, 73, 73, 73
Offset: 2

Views

Author

R. Muller

Keywords

Comments

Version 2 of the "previous prime" function (see A151799) is "largest prime < n". This produces the same sequence of numerical values, except the offset (or indexing) starts at 3 instead of 2.
Maple's "prevprime" function uses version 2.
Also the largest prime dividing n! or lcm(1,...,n). - Labos Elemer, Jun 22 2000
Also largest prime among terms of (n+1)st row of Pascal's triangle. - Jud McCranie, Jan 17 2000
Also largest integer k such that A000203(k) <= n+1. - Benoit Cloitre, Mar 17 2002. - Corrected by Antti Karttunen, Nov 07 2017
Also largest prime factor of A061355(n) (denominator of Sum_{k=0..n} 1/k!). - Jonathan Sondow, Jan 09 2005
Also prime(pi(x)) where pi(x) is the prime counting function = number of primes <= x. - Cino Hilliard, May 03 2005
Also largest prime factor, occurring to the power p, in denominator of Sum_{k=1..n} 1/k^p, for any positive integer p. - M. F. Hasler, Nov 10 2006
For n > 10, these values are close to the most negative eigenvalues of A191898 (conjecture). - Mats Granvik, Nov 04 2011

References

  • K. Atanassov, On the 37th and the 38th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 2, 83-85.
  • J. Castillo, Other Smarandache Type Functions: Inferior/Superior Smarandache f-part of x, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 202-204.

Crossrefs

Programs

Formula

Equals A006530(A000142(n)). - Jonathan Sondow, Jan 09 2005
Equals A006530(A056040(n)). - Peter Luschny, Mar 04 2011
a(n) = A000040(A049084(A007918(n)) + 1 - A010051(n)). - Reinhard Zumkeller, Jul 26 2012
From Wesley Ivan Hurt, May 22 2013: (Start)
omega( Product_{i=2..n} a(i) ) = pi(n).
Omega( Product_{i=2..n} a(i) ) = n - 1. (End)
For n >= 2, a(A000203(n)) = A070801(n). - Antti Karttunen, Nov 07 2017
a(n) = n + 1 - Sum_{i=1..n} floor(pi(i)/pi(n)) = n + 1 - A175851(n). - Ridouane Oudra, Jun 24 2024
Conjecture: a(n) = floor(log(Sum_{k=2..n} exp(A000010(k)+1))). - Joseph M. Shunia, Aug 09 2024
a(n) = A000040(A000720(n)). - Ridouane Oudra, Oct 04 2024

Extensions

Edited by N. J. A. Sloane, Apr 06 2008

A007918 Least prime >= n (version 1 of the "next prime" function).

Original entry on oeis.org

2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 47, 47, 47, 47, 53, 53, 53, 53, 53, 53, 59, 59, 59, 59, 59, 59, 61, 61, 67, 67, 67, 67, 67, 67, 71, 71, 71, 71, 73, 73
Offset: 0

Views

Author

R. Muller and Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Comments

Version 2 of the "next prime" function is "smallest prime > n". This produces A151800.
Maple uses version 2.
According to the "k-tuple" conjecture, a(n) is the initial term of the lexicographically earliest increasing arithmetic progression of n primes; the corresponding common differences are given by A061558. - David W. Wilson, Sep 22 2007
It is easy to show that the initial term of an increasing arithmetic progression of n primes cannot be smaller than a(n). - N. J. A. Sloane, Oct 18 2007
Also, smallest prime bounded by n and 2n inclusively (in accordance with Bertrand's theorem). Smallest prime >n is a(n+1) and is equivalent to smallest prime between n and 2n exclusively. - Lekraj Beedassy, Jan 01 2007
Run lengths of successive equal terms are given by A125266. - Felix Fröhlich, May 29 2022
Conjecture: if n > 1, then a(n) < n^(n^(1/n)). - Thomas Ordowski, Feb 23 2023

Crossrefs

Programs

  • Haskell
    a007918 n = a007918_list !! n
    a007918_list = 2 : 2 : 2 : concat (zipWith
                  (\p q -> (replicate (fromInteger(q - p)) q))
                                       a000040_list $ tail a000040_list)
    -- Reinhard Zumkeller, Jul 26 2012
    
  • Magma
    [2] cat [NextPrime(n-1): n in [1..80]]; // Vincenzo Librandi, Jan 14 2016
    
  • Maple
    A007918 := n-> nextprime(n-1); # M. F. Hasler, Apr 09 2008
  • Mathematica
    NextPrime[Range[-1, 72]] (* Jean-François Alcover, Apr 18 2011 *)
  • PARI
    A007918(n)=nextprime(n)  \\ M. F. Hasler, Jun 24 2011
    
  • PARI
    for(x=0,100,print1(nextprime(x)",")) \\ Cino Hilliard, Jan 15 2007
    
  • Python
    from sympy import nextprime
    def A007918(n): return nextprime(n-1) # Chai Wah Wu, Apr 22 2022

Formula

For n > 1: a(n) = A000040(A049084(A007917(n)) + 1 - A010051(n)). - Reinhard Zumkeller, Jul 26 2012
a(n) = A151800(n-1). - Seiichi Manyama, Apr 02 2018

A064216 Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, 37, 41, 12, 43, 25, 26, 47, 21, 34, 53, 59, 20, 33, 61, 38, 67, 71, 18, 35, 73, 16, 79, 39, 46, 83, 55, 58, 51, 89, 28, 97, 101, 30, 103, 107, 62, 109, 57, 44, 65, 49, 74, 27, 113, 82, 127, 85, 24, 131
Offset: 1

Views

Author

Howard A. Landman, Sep 21 2001

Keywords

Comments

a((A003961(n) + 1) / 2) = n and A003961(a(n)) = 2*n - 1 for all n. If the sequence is indexed by odd numbers only, it becomes multiplicative. In this variant sequence, denoted b, even indices don't exist, and we get b(1) = a(1) = 1, b(3) = a(2) = 2, b(5) = 3, b(7) = 5, b(9) = 4 = b(3) * b(3), ... , b(15) = 6 = b(3) * b(5), and so on. This property can also be stated as: a(x) * a(y) = a(((2x - 1) * (2y - 1) + 1) / 2) for x, y > 0. - Reinhard Zumkeller [re-expressed by Peter Munn, May 23 2020]
Not multiplicative in usual sense - but letting m=2n-1=product_j (p_j)^(e_j) then a(n)=a((m+1)/2)=product_j (p_(j-1))^(e_j). - Henry Bottomley, Apr 15 2005
From Antti Karttunen, Jul 25 2016: (Start)
Several permutations that use prime shift operation A064989 in their definition yield a permutation obtained from their odd bisection when composed with this permutation from the right. For example, we have:
A243505(n) = A122111(a(n)).
A243065(n) = A241909(a(n)).
A244153(n) = A156552(a(n)).
A245611(n) = A243071(a(n)).
(End)

Examples

			For n=11, the 11th odd number is 2*11 - 1 = 21 = 3^1 * 7^1. Replacing the primes 3 and 7 with the previous primes 2 and 5 gives 2^1 * 5^1 = 10, so a(11) = 10. - _Michael B. Porter_, Jul 25 2016
		

Crossrefs

Odd bisection of A064989 and A252463.
Row 1 of A251721, Row 2 of A249821.
Cf. A048673 (inverse permutation), A048674 (fixed points).
Cf. A246361 (numbers n such that a(n) <= n.)
Cf. A246362 (numbers n such that a(n) > n.)
Cf. A246371 (numbers n such that a(n) < n.)
Cf. A246372 (numbers n such that a(n) >= n.)
Cf. A246373 (primes p such that a(p) >= p.)
Cf. A246374 (primes p such that a(p) < p.)
Cf. A246343 (iterates starting from n=12.)
Cf. A246345 (iterates starting from n=16.)
Cf. A245448 (this permutation "squared", a(a(n)).)
Cf. A253894, A254044, A254045 (binary width, weight and the number of nonleading zeros in base-2 representation of a(n), respectively).
Cf. A285702, A285703 (phi and sigma applied to a(n).)
Here obviously the variant 2, A151799(n) = A007917(n-1), of the prevprime function is used.
Cf. also A003961, A270430, A270431.

Programs

  • Mathematica
    Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, f[k,1] = precprime(f[k,1]-1)); factorback(f);} \\ Michel Marcus, Mar 17 2016
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A064216 n) (A064989 (- (+ n n) 1))) ;; Antti Karttunen, May 12 2014
    

Formula

a(n) = A064989(2n - 1). - Antti Karttunen, May 12 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.6621117868..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Reinhard Zumkeller, Sep 26 2001
Additional description added by Antti Karttunen, May 12 2014

A252463 Hybrid shift: a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1); shift the even numbers one bit right, shift the prime factorization of odd numbers one step towards smaller primes.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 4, 4, 5, 7, 6, 11, 7, 6, 8, 13, 9, 17, 10, 10, 11, 19, 12, 9, 13, 8, 14, 23, 15, 29, 16, 14, 17, 15, 18, 31, 19, 22, 20, 37, 21, 41, 22, 12, 23, 43, 24, 25, 25, 26, 26, 47, 27, 21, 28, 34, 29, 53, 30, 59, 31, 20, 32, 33, 33, 61, 34, 38, 35, 67, 36, 71, 37, 18, 38, 35, 39, 73, 40, 16
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

For any node n >= 2 in binary trees A005940 and A163511, a(n) gives the parent node of n. (Here we assume that their initial root 1 is its own parent).

Crossrefs

A252464 gives the number of iterations needed to reach 1 from n.
Bisections: A000027 and A064216.

Programs

  • Mathematica
    Table[Which[n == 1, 1, EvenQ@ n, n/2, True, Times @@ Power[
    Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n], {n, 81}] (* Michael De Vlieger, Sep 16 2017 *)
  • PARI
    a064989(n) = factorback(Mat(apply(t->[max(precprime(t[1]-1), 1), t[2]], Vec(factor(n)~))~)); \\ A064989
    a(n) = if (n==1, 1, if (n%2, a064989(n), n/2)); \\ Michel Marcus, Oct 13 2021
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a064989(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Sep 15 2017
    
  • Scheme
    (define (A252463 n) (cond ((<= n 1) n) ((even? n) (/ n 2)) (else (A064989 n))))
    

Formula

a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1).
Other identities. For all n >= 1:
a(2n-1) = A064216(n).
A001222(a(n)) = A001222(n) - (1 - A000035(n)).
Above means: if n is odd, A001222(a(n)) = A001222(n) and if n is even, A001222(a(n)) = A001222(n) - 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/8 + (1/2) * Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.2905279467..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023

A164368 Primes p with the property: if q is the smallest prime > p/2, then a prime exists between p and 2q.

Original entry on oeis.org

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 109, 127, 137, 149, 151, 167, 179, 181, 191, 197, 227, 229, 233, 239, 241, 263, 269, 281, 283, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 521, 569, 571, 587, 593, 599, 601, 607
Offset: 1

Views

Author

Vladimir Shevelev, Aug 14 2009

Keywords

Comments

The Ramanujan primes possess the following property:
If p = prime(n) > 2, then all numbers (p+1)/2, (p+3)/2, ..., (prime(n+1)-1)/2 are composite.
The sequence equals all primes with this property, whether Ramanujan or not.
All Ramanujan primes A104272 are in the sequence.
Every lesser of twin primes (A001359), beginning with 11, is in the sequence. - Vladimir Shevelev, Aug 31 2009
109 is the first non-Ramanujan prime in this sequence.
A very simple sieve for the generation of the terms is the following: let p_0=1 and, for n>=1, p_n be the n-th prime. Consider consecutive intervals of the form (2p_n, 2p_{n+1}), n=0,1,2,... From every interval containing at least one prime we remove the last one. Then all remaining primes form the sequence. Let us demonstrate this sieve: For p_n=1,2,3,5,7,11,... consider intervals (2,4), (4,6), (6,10), (10,14), (14,22), (22,26), (26,34), ... . Removing from the set of all primes the last prime of each interval, i.e., 3,5,7,13,19,23,31,... we obtain 2,11,17,29, etc. - Vladimir Shevelev, Aug 30 2011
This sequence and A194598 are the mutually wrapping up sequences:
A194598(1) <= a(1) <= A194598(2) <= a(2) <= ...
From Peter Munn, Oct 30 2017: (Start)
The sequence is the list of primes p = prime(k) such that there are no primes between prime(k)/2 and prime(k+1)/2. Changing "k" to "k-1" and therefore "k+1" to "k" produces a definition very similar to A164333's: it differs by prefixing an initial term 3. From this we get a(n+1) = prevprime(A164333(n)) = A151799(A164333(n)) for n >= 1.
The sequence is the list of primes that are not the largest prime less than 2*prime(k) for any k, so that - as a set - it is the complement relative to A000040 of the set of numbers in A059788.
{{2}, A166252, A166307} is a partition.
(End)

Examples

			2 is in the sequence, since then q=2, and there is a prime 3 between 2 and 4. - _N. J. A. Sloane_, Oct 15 2009
		

Crossrefs

Cf. Ramanujan primes, A104272, and related sequences: A164288, A080359, A164294, A193507, A194184, A194186.
A001359, A166252, A166307 are subsets.
Cf. A001262, A001567, A062568, A141232 (all relate to pseudoprimes to base 2).

Programs

  • Maple
    a:= proc(n) option remember; local q, k, p;
          k:= nextprime(`if`(n=1, 1, a(n-1)));
          do q:= nextprime(floor(k/2));
             p:= nextprime(k);
             if p<2*q then break fi;
             k:= p
          od; k
        end:
    seq(a(n), n=1..55);  # Alois P. Heinz, Aug 30 2011
  • Mathematica
    Reap[Do[q=NextPrime[p/2]; If[PrimePi[2*q] != PrimePi[p], Sow[p]], {p, Prime[Range[100]]}]][[2, 1]]
    (* Second program: *)
    fQ[n_] := PrimePi[ 2NextPrime[n/2]] != PrimePi[n];
    Select[ Prime@ Range@ 105, fQ]
  • PARI
    is(n)=nextprime(n+1)<2*nextprime(n/2) && isprime(n) \\ Charles R Greathouse IV, Apr 24 2015

Formula

As a set, this sequence = A000040 \ A059788 = A000040 \ prevprime(2*A000040) = A000040 \ A151799(A005843(A000040)). - Peter Munn, Oct 30 2017

Extensions

Definition clarified and simplified by Jonathan Sondow, Oct 25 2011

A049711 a(n) = n - prevprime(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6
Offset: 3

Views

Author

Keywords

Comments

All runs end in even numbers at a(p), new highs are found at A000101 and the increasing gap size is A005250. - Robert G. Wilson v, Dec 07 2001
All terms are positive since here the variant 2 (A151799(n) < n) of the prevprime function is used, rather than the variant 1 (A007917(n) <= n). - M. F. Hasler, Sep 09 2015

Crossrefs

Programs

  • Maple
    A049711 := n-> n-prevprime(n);
  • Mathematica
    PrevPrim[n_] := Block[ {k = n - 1}, While[ !PrimeQ[k], k-- ]; Return[k]]; Table[ n - PrevPrim[n], {n, 3, 100} ]
    Array[#-NextPrime[#,-1]&,100,3] (* Harvey P. Dale, Dec 07 2011 *)
  • PARI
    A049711(n)=n-precprime(n-1) \\ M. F. Hasler, Sep 09 2015

Formula

a(n) = A064722(n-1) + 1. - Pontus von Brömssen, Jul 31 2022

A013603 Difference between 2^n and the nearest prime less than or equal to 2^n.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 5, 3, 3, 9, 3, 1, 3, 19, 15, 1, 5, 1, 3, 9, 3, 15, 3, 39, 5, 39, 57, 3, 35, 1, 5, 9, 41, 31, 5, 25, 45, 7, 87, 21, 11, 57, 17, 55, 21, 115, 59, 81, 27, 129, 47, 111, 33, 55, 5, 13, 27, 55, 93, 1, 57, 25, 59, 49, 5, 19, 23, 19, 35, 231, 93, 69, 35, 97, 15
Offset: 1

Views

Author

James Kilfiger (mapdn(AT)csv.warwick.ac.uk)

Keywords

Comments

If a(n) = 1, then n is prime and 2^n - 1 is a Mersenne prime. - Franz Vrabec, Sep 27 2005
Using the first variant A007917 (rather than A151799) of the prevprime() function, the sequence is well defined for n = 1, with a(1) = 2^1 - prevprime(2^1) = 2 - 2 = 0. - M. F. Hasler, Sep 09 2015
In Mathematica, one can use NextPrime with a second argument of -1 to obtain the next smaller prime. As almost all the powers of 2 are composite, this produces the proper results for most of this sequence. However, NextPrime[2, -1] returns -2 rather than the expected 2, which would consequently mean a(1) = 4 rather than 0. - Alonso del Arte, Dec 10 2016

Crossrefs

Equivalent sequence for next prime: A092131.

Programs

  • Maple
    seq(2^i-prevprime(2^i),i=2..100);
  • Mathematica
    {0} ~Join~ Array[With[{c = 2^#}, c - NextPrime[c, -1]] &, 80, 2] (* Harvey P. Dale, Jul 23 2013 *)
    Table[2^n - Prime[PrimePi[2^n]], {n, 80}] (* Alonso del Arte, Dec 10 2016 *)
  • PARI
    a(n) = 2^n - precprime(2^n); \\ Michel Marcus, Apr 04 2020

Formula

a(n) = A049711(2^n). - R. J. Mathar, Nov 28 2016
a(n) = 2^n - prevprime(2^n) = 2^n - prime(primepi(2^n)). - Alonso del Arte, Dec 10 2016

Extensions

Extended to a(1) = 0 by M. F. Hasler, Sep 09 2015
Previous Showing 11-20 of 132 results. Next