A028421
Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Peter Wiggen (wiggen(AT)math.psu.edu)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------------------------------
0: 1
1: 1 2
2: 2 6 3
3: 6 22 18 4
4: 24 100 105 40 5
5: 120 548 675 340 75 6
6: 720 3528 4872 2940 875 126 7
7: 5040 26136 39396 27076 9800 1932 196 8
8: 40320 219168 354372 269136 112245 27216 3822 288 9
9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
Row sums give
A000254(n+1), n >= 0.
The asymptotic expansion of E(x,m=2,n) leads to
A000254 (n=1),
A001705 (n=2),
A001711 (n=3),
A001716 (n=4),
A001721 (n=5),
A051524 (n=6),
A051545 (n=7),
A051560 (n=8),
A051562 (n=9),
A051564 (n=10),
A093905 (triangle) and
A165674 (triangle).
-
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
seq(seq(A028421(n,k), k=0..n), n=0..8);
# Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
# uses[riordan_square from A321620]
riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
A033487
a(n) = n*(n+1)*(n+2)*(n+3)/4.
Original entry on oeis.org
0, 6, 30, 90, 210, 420, 756, 1260, 1980, 2970, 4290, 6006, 8190, 10920, 14280, 18360, 23256, 29070, 35910, 43890, 53130, 63756, 75900, 89700, 105300, 122850, 142506, 164430, 188790, 215760, 245520, 278256, 314160, 353430, 396270, 442890, 493506, 548340, 607620
Offset: 0
G.f. = 6*x + 30*x^2 + 90*x^3 + 210*x^4 + 420*x^5 + 756*x^6 + 1260*x^7 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- Vincenzo Librandi, Table of n, a(n) for n = 0..690
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq., Vol. 13 (2010), Article 10.4.4.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Aleksandar Petojević and Nenad Đapić, The vAm(a,b,c;z) function, Preprint 2013.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Hasan Unal, Proof Without Words: Sums of Products of Three Consecutive Integers, Mathematics Magazine, Vol. 88, No. 1 (February 2015), pp. 37-38.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Crown Party Graph.
- Eric Weisstein's World of Mathematics, Graph Crossing Number.
- Index entries for sequences related to Bessel functions or polynomials
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
A column of the triangle in
A331430.
Sequences of the form binomial(n+k,k)*binomial(n+k+2,k):
A000012 (k=0),
A005563 (k=1), this sequence (k=2),
A027790 (k=3),
A107395 (k=4),
A107396 (k=5),
A107397 (k=6),
A107398 (k=7),
A107399 (k=8).
-
[n*(n+1)*(n+2)*(n+3)/4: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
-
[seq(binomial(n+3,4)*6, n=0..40)]; # Zerinvary Lajos, Jul 18 2006
-
Table[Times @@ (n + Range[0, 3])/4, {n, 0, 40}] (* Harvey P. Dale, Nov 27 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 6, 30, 90, 210}, 40] (* Harvey P. Dale, Nov 27 2013 *)
Table[6 Binomial[n+3, 4], {n,0,40}] (* Eric W. Weisstein, Jun 29 2017 *)
Times @@@ Table[n+k, {n, 0, 40}, {k, 0, 3}]/4 (* Eric W. Weisstein, Apr 29 2019 *)
-
a(n)=6*binomial(n+3,4) \\ Charles R Greathouse IV, Apr 17 2012
-
concat(0, Vec(6*x/(1-x)^5 + O(x^100))) \\ Altug Alkan, Nov 29 2015
-
def A033487(n): return 6*binomial(n+3,4)
print([A033487(n) for n in range(41)]) # G. C. Greubel, Feb 08 2025
A104712
Pascal's triangle, with the first two columns removed.
Original entry on oeis.org
1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 78, 286, 715
Offset: 2
The triangle a(n, k) begins:
n\k 2 3 4 5 6 7 8 9 10 11 12 13
2: 1
3: 3 1
4: 6 4 1
5: 10 10 5 1
6: 15 20 15 6 1
7: 21 35 35 21 7 1
8: 28 56 70 56 28 8 1
9: 36 84 126 126 84 36 9 1
10: 45 120 210 252 210 120 45 10 1
11: 55 165 330 462 462 330 165 55 11 1
12: 66 220 495 792 924 792 495 220 66 12 1
13: 78 286 715 1287 1716 1716 1287 715 286 78 13 1
... reformatted. - _Wolfdieter Lang_, Mar 20 2015
- G. C. Greubel, Rows n=2..100 of triangle, flattened
- D. Dugger, A Geometric Introduction to K-Theory
- Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
- T. Saito, The discriminant and the determinant of a hypersurface of even dimension (p. 4), arXiv:1110.1717 [math.AG], 2011-2012.
-
/* As triangle */ [[Binomial(n, k): k in [2..n]]: n in [2..10]]; // G. C. Greubel, May 15 2018
-
t[n_, k_] := Binomial[n, k]; Table[ t[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* Robert G. Wilson v, Apr 16 2011 *)
-
for(n=2, 10, for(k=2,n, print1(binomial(n,k), ", "))) \\ G. C. Greubel, May 15 2018
A208535
Square array read by descending antidiagonals: T(n,k) is the number of n-bead necklaces of k colors not allowing reversal, with no adjacent beads having the same color (n, k >= 1).
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 6, 2, 1, 0, 6, 10, 8, 6, 0, 0, 7, 15, 20, 24, 6, 1, 0, 8, 21, 40, 70, 48, 14, 0, 0, 9, 28, 70, 165, 204, 130, 18, 1, 0, 10, 36, 112, 336, 624, 700, 312, 36, 0, 0, 11, 45, 168, 616, 1554, 2635, 2340, 834, 58, 1, 0, 12, 55, 240, 1044, 3360, 7826, 11160
Offset: 1
Table T(n,k) (with rows n >= 1 and columns k >= 1) starts:
1 2 3 4 5 6 7 8 9 10 11 12 13 ...
0 1 3 6 10 15 21 28 36 45 55 66 78 ...
0 0 2 8 20 40 70 112 168 240 330 440 572 ...
0 1 6 24 70 165 336 616 1044 1665 2530 3696 5226 ...
0 0 6 48 204 624 1554 3360 6552 11808 19998 32208 49764 ...
0 1 14 130 700 2635 7826 19684 43800 88725 166870 295526 498004 ...
0 0 18 312 2340 11160 39990 117648 299592 683280 1428570 2783880 5118828 ...
0 1 36 834 8230 48915 210126 720916 2097684 5381685 12501280 26796726 53750346 ...
...
All solutions for n = 4 and k = 3:
1 2 1 1 1 1
3 3 2 2 3 2
2 2 3 1 1 1
3 3 2 2 3 3
-
T[n_, k_] := If[n == 1, k, Sum[ EulerPhi[n/d]*(k-1)^d, {d, Divisors[n]}]/n - If[OddQ[n], k-1, 0]]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
-
T(n,k) = if(n==1, k, sumdiv(n,d,eulerphi(n/d)*(k-1)^d)/n - if(n%2, k-1));
for(n=1, 10, for(k=1, 10, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 14 2017
A055137
Regard triangle of rencontres numbers (see A008290) as infinite matrix, compute inverse, read by rows.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -2, -3, 0, 1, -3, -8, -6, 0, 1, -4, -15, -20, -10, 0, 1, -5, -24, -45, -40, -15, 0, 1, -6, -35, -84, -105, -70, -21, 0, 1, -7, -48, -140, -224, -210, -112, -28, 0, 1, -8, -63, -216, -420, -504, -378, -168, -36, 0, 1, -9, -80, -315, -720
Offset: 0
1; 0,1; -1,0,1; -2,-3,0,1; -3,-8,-6,0,1; ...
(Bagula's matrix has a different sign convention from the list.)
From _Roger L. Bagula_, Feb 20 2009: (Start)
{ 1},
{ 0, 1},
{-1, 0, 1},
{ 2, -3, 0, 1},
{-3, 8, -6, 0, 1},
{ 4, -15, 20, -10, 0, 1},
{-5, 24, -45, 40, -15, 0, 1},
{ 6, -35, 84, -105, 70, -21, 0, 1},
{-7, 48, -140, 224, -210, 112, -28, 0, 1},
{ 8, -63, 216, -420, 504, -378, 168, -36, 0, 1},
{-9, 80, -315, 720, -1050, 1008, -630, 240, -45, 0, 1}
(End)
R(3,x) = (-1)^3*Sum_{permutations p in S_3} sign(p)*(-x)^(fix(p)).
p | fix(p) | sign(p) | (-1)^3*sign(p)*(-x)^fix(p)
========+========+=========+===========================
(123) | 3 | +1 | x^3
(132) | 1 | -1 | -x
(213) | 1 | -1 | -x
(231) | 0 | +1 | -1
(312) | 0 | +1 | -1
(321) | 1 | -1 | -x
========+========+=========+===========================
| R(3,x) = x^3 - 3*x - 2
- _Peter Bala_, Aug 08 2011
- Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. p. 17.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p.184 problem 3.
- Problem B6, The 66th William Lowell Putnam Mathematical Competition Saturday, Dec 03 2005
- M. Bhargava, K. Kedlaya, and L. Ng, Solutions to the 66th William Lowell Putnam Mathematical Competition Saturday, Dec 03 2005
- T. Copeland, Cycling through the Zeta Garden: Zeta functions for graphs, cycle index polynomials, and determinants
- T. Copeland, Riemann zeta function at positive integers and an Appell sequence of polynomials related to fractional calculus
-
M[n_] := Table[If[i == j, x, 1], {i, 1, n}, {j, 1, n}]; a = Join[{{1}}, Flatten[Table[CoefficientList[Det[M[n]], x], {n, 1, 10}]]] (* Roger L. Bagula, Feb 20 2009 *)
t[n_, k_] := (k-n+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2013, after Pari *)
-
T(n,k)=(1-n+k)*if(k<0 || k>n,0,n!/k!/(n-k)!)
A111492
Triangle read by rows: a(n,k) = (k-1)! * C(n,k).
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 6, 8, 6, 5, 10, 20, 30, 24, 6, 15, 40, 90, 144, 120, 7, 21, 70, 210, 504, 840, 720, 8, 28, 112, 420, 1344, 3360, 5760, 5040, 9, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 10, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880
Offset: 1
a(3,3) = 2 because (3-1)!C(3,3) = 2.
1;
2 1;
3 3 2;
4 6 8 6;
5 10 20 30 24;
6 15 40 90 144 120;
7 21 70 210 504 840 720;
8 28 112 420 1344 3360 5760 5040;
9 36 168 756 3024 10080 25920 45360 40320;
-
/* As triangle: */ [[Factorial(k-1)*Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 21 2014
-
Flatten[Table[(k - 1)!Binomial[n, k], {n, 10}, {k, n}]]
A092271
Triangle read by rows. First in a series of triangular arrays counting permutations of partitions.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 8, 6, 1, 24, 30, 20, 10, 1, 120, 144, 90, 40, 15, 1, 720, 840, 504, 210, 70, 21, 1, 5040, 5760, 3360, 1344, 420, 112, 28, 1, 40320, 45360, 25920, 10080, 3024, 756, 168, 36, 1, 362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45, 1, 3628800, 3991680, 2217600, 831600, 237600, 55440, 11088, 1980, 330, 55, 1
Offset: 1
The triangle begins:
1: 1
2: 1 1
3: 2 3 1
4: 6 8 6 1
5: 24 30 20 10 1
6: 120 144 90 40 15 1
...
From _Peter Luschny_, Nov 19 2020: (Start):
The combinatorial interpretation is illustrated by this computation of row 6:
6! / aut([6]) = 720 / A339033(6, 1) = 720/6 = 120 = T(6, 1)
6! / aut([5, 1]) = 720 / A339033(6, 2) = 720/5 = 144 = T(6, 2)
6! / aut([4, 1, 1]) = 720 / A339033(6, 3) = 720/8 = 90 = T(6, 3)
6! / aut([3, 1, 1, 1]) = 720 / A339033(6, 4) = 720/18 = 40 = T(6, 4)
6! / aut([2, 1, 1, 1, 1]) = 720 / A339033(6, 5) = 720/48 = 15 = T(6, 5)
6! / aut([1, 1, 1, 1, 1, 1]) = 720 / A339033(6, 6) = 720/720 = 1 = T(6, 6)
-------------------------------------------------------------------------------
Sum: 410 = A121726(6)
(End)
- Abramowitz and Stegun, p. 831.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Cf.
A007290,
A025487,
A086141,
A090774,
A008290,
A111492,
A211603,
A238363,
A121726,
A339016,
A339033.
-
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!];Table[Append[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]], 1], {n,1, 10}] // Grid (* Geoffrey Critzer, Nov 07 2015 *)
-
def A092271(n, k):
if n == k: return 1
return factorial(n) // ((n + 1 - k)*factorial(k - 1))
for n in (1..9): print(n, [A092271(n, k) for k in (1..n)])
def A092271Row(n):
if n == 0: return [1]
f = factorial(n); S = []
for k in range(n,0,-1):
for p in Partitions(n, max_part=k, inner=[k], length=n+1-k):
S.append(f // p.aut())
return S
for n in (1..9): print(A092271Row(n)) # Peter Luschny, Nov 20 2020
A235706
(I + A132440)^3: Coefficients for normalized generalized Laguerre polynomials n!*Lag(n, 3-n, -x).
Original entry on oeis.org
1, 3, 1, 6, 6, 1, 6, 18, 9, 1, 0, 24, 36, 12, 1, 0, 0, 60, 60, 15, 1, 0, 0, 0, 120, 90, 18, 1, 0, 0, 0, 0, 210, 126, 21, 1, 0, 0, 0, 0, 0, 336, 168, 24, 1, 0, 0, 0, 0, 0, 0, 504, 216, 27, 1, 0, 0, 0, 0, 0, 0, 0, 720, 270, 30, 1
Offset: 0
Triangle begins:
1;
3, 1;
6, 6, 1;
6, 18, 9, 1;
0, 24, 36, 12, 1;
0, 0, 60, 60, 15, 1;
...
....................................
With 0th row: 1
n-th row: n!*Lag(n,3-n,-x)
....................................
1st: 1!*Lag(1,2,-x) =
A062139(1,k,-x)
2nd: 2!*Lag(2,1,-x) =
A105278(2,k,x)
3rd: 3!*Lag(3,0,-x) =
A021009(3,k,-x)
4th: 4!*Lag(4,-1,-x) =
A111596(4,k,-x)
5th: 5!*Lag(5,-2,-x) = cf. x^2*
A062139(3,k,x)
6th: 6!*Lag(6,-3,-x) = cf. x^3*
A062137(3,k,-x)
....................................
n-th row: x^(n-3)*3!*Lag(3,n-3,-x)
....................................
1st: x^(-2)*3!Lag(3,-2,-x) = cf. x^(-2)*[x^2*
A062139(1,k,x)]
2nd: x^(-1)*3!Lag(3,-1,-x) = x^(-1)*
A111596(3,k,-x)
3rd: x^0*3!Lag(3,0,-x) = x^0*
A021009(3,k,-x)
4th: x^1*3!Lag(3,1,-x) = x^1*
A105278(3,k,x)
5th: x^2*3!Lag(3,2,-x) = x^2*
A062139(3,k,-x)
6th: x^3*3!Lag(3,3,-x) = x^3*
A062137(3,k,-x)
-
/* As triangle */ [[Binomial(3, n-k)*Factorial(n)/Factorial(k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 28 2017
-
Table[Binomial[3, n - k] n! / k!, {n, 0, 9}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Jul 28 2017 *)
-
T(n,k) = binomial(3,n-k)*n!/k!
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017
-
row(n) = Vecrev(n!*pollaguerre(n, 3-n, -x)); \\ Michel Marcus, Feb 06 2021
A211603
Triangular array read by rows: T(n,k) is the number of n-permutations that are pure cycles having exactly k fixed points; n>=2, 0<=k<=n-2.
Original entry on oeis.org
1, 2, 3, 6, 8, 6, 24, 30, 20, 10, 120, 144, 90, 40, 15, 720, 840, 504, 210, 70, 21, 5040, 5760, 3360, 1344, 420, 112, 28, 40320, 45360, 25920, 10080, 3024, 756, 168, 36, 362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45, 3628800, 3991680, 2217600, 831600, 237600, 55440, 11088, 1980, 330, 55
Offset: 2
T(3,1) = 3 because we have (1)(2,3), (2)(1,3), (3)(1,2).
1;
2, 3;
6, 8, 6;
24, 30, 20, 10;
120, 144, 90, 40, 15;
720, 840, 504, 210, 70, 21;
5040, 5760, 3360, 1344, 420, 112, 28;
40320, 45360, 25920, 10080, 3024, 756, 168, 36;
362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45;
-
T:= (n, k)-> binomial(n, k)*(n-k-1)!:
seq(seq(T(n,k), k=0..n-2), n=2..12); # Alois P. Heinz, Feb 10 2013
-
nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x](Log[1/(1-x)]-x),{x,0,nn}],{x,y}]]//Grid
A238474
a(n) = (-1)^n*(n+3)!/(2*(n+1)) for n >= 0.
Original entry on oeis.org
3, -6, 20, -90, 504, -3360, 25920, -226800, 2217600, -23950080, 283046400, -3632428800, 50295168000, -747242496000, 11856247603200, -200074178304000, 3577797070848000, -67580611338240000, 1344498478202880000, -28100018194440192000, 615524208068689920000
Offset: 0
-
Fold[Append[#1, (-1)^#2 (#2 + 3)!/(2 (#2 + 1))] &, {3}, Range@ 20] (* Michael De Vlieger, Dec 18 2017 *)
Comments