cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 9101 results. Next

A054767 Period of the sequence of Bell numbers A000110 (mod n).

Original entry on oeis.org

1, 3, 13, 12, 781, 39, 137257, 24, 39, 2343, 28531167061, 156, 25239592216021, 411771, 10153, 48, 51702516367896047761, 39, 109912203092239643840221, 9372, 1784341, 85593501183, 949112181811268728834319677753, 312, 3905, 75718776648063, 117, 1647084
Offset: 1

Views

Author

Eric W. Weisstein, Feb 09 2002

Keywords

Comments

For p prime, a(p) divides (p^p-1)/(p-1) = A023037(p), with equality at least for p up to 19.
Wagstaff shows that N(p) = (p^p-1)/(p-1) is the period for all primes p < 102 and for primes p = 113, 163, 167 and 173. For p = 7547, N(p) is a probable prime, which means that this p may have the maximum possible period N(p) also. See A088790. - T. D. Noe, Dec 17 2008

Crossrefs

Cf. A000110, A023037, A214810. A146093-A146122 gives Bell numbers read mod 3 to mod 32.

Programs

  • Mathematica
    (* Warning: this program is just a verification of the existing data
     and should not be used to extend the sequence beyond a(28) *)
    BellMod[k_, m_] := Mod[Sum[Mod[StirlingS2[k, j], m], {j, 1, k}], m];
    BellMod[k_, 1] := BellB[k];
    period[nn_List] := Module[{lgmin=2, lgmax=5, nn1},
       lg=If[Length[nn]<=lgmax, lgmin, lgmax];
       nn1 = nn[[1;;lg]];
       km=Length[nn]-lg;
       Catch[Do[If[nn1==nn[[k;;k+lg-1]], Throw[k-1]];
       If[k==km, Throw[0]], {k, 2, km}]]];
    dd[n_] := SelectFirst[Table[{d, n/d},
         {d, Divisors[n][[2;;-2]]}], GCD@@#==1&];
    a[1]=1;
    a[p_?PrimeQ] := a[p] = (p^p-1)/(p-1);
    a[n_/;n>4 && dd[n]!={}] := With[{g = dd[n]}, LCM[a[g[[1]]], a[g[[2]]]]];
    a[n_/;MemberQ[FactorInteger[n][[All, 2]], 1]] := a[n]=
       With[{pp = Select[FactorInteger[n], #1[[2]] ==1 &][[All, 1]]},
          a[n/Times@@pp]*Times@@a/@pp];
    a[n_/;n>4 && GCD @@ FactorInteger[n][[All, 2]]>1] := a[n]=
       With[{g=GCD @@ FactorInteger[n][[All, 2]]}, n^(1/g)*a[n^(1-1/g)]];
    a[n_] := period[Table[BellMod[k, n], {k, 1, 28}]];
    Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 31 2012, updated May 06 2024 *)

Formula

If gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). But the sequence is not in general multiplicative; e.g. a(2) = 3, a(9) = 39 and a(18) = 39. - Franklin T. Adams-Watters, Jun 06 2006
a(2^s) = 3*2^s for s >= 2 (Theorem 6.4 in the Lunnon article). For an odd prime p, if a(p) = (p^p-1)/(p-1) (which is conjectured to hold for all p), then a(p^s) = p^(s-1)*(p^p-1)/(p-1) (Theorem 6.2 in the Lunnon article). - Jianing Song, Jun 18 2025

Extensions

More information from Phil Carmody, Dec 22 2002
Extended by T. D. Noe, Dec 18 2008
a(26) corrected by Jean-François Alcover, Jul 31 2012
a(18) corrected by Charles R Greathouse IV, Jul 31 2012
a(27)-a(28) from Charles R Greathouse IV, Sep 07 2016

A004061 Numbers k such that (5^k - 1)/4 is prime.

Original entry on oeis.org

3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, 13241, 13873, 16519, 201359, 396413, 1888279, 3300593
Offset: 1

Views

Author

Keywords

Comments

With the addition of the 19th prime in the sequence, the new best linear fit to the sequence has G=0.4723, which is slightly closer to the conjectured limit of G=0.56145948, A080130 (see link for Generalized Repunit Conjecture). - Paul Bourdelais, Apr 30 2018

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A080130.

Programs

Extensions

a(13)-a(15) from Kamil Duszenko (kdusz(AT)wp.pl), Mar 25 2003
a(16) corresponds to a probable prime based on trial factoring to 4*10^13 and Fermat primality testing base 2. - Paul Bourdelais, Dec 11 2008
a(17) corresponds to a probable prime discovered by Paul Bourdelais, Jun 01 2010
a(18) corresponds to a probable prime discovered by Paul Bourdelais, Apr 30 2018
a(19) corresponds to a probable prime discovered by Ryan Propper, Jan 02 2022

A054377 Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.

Original entry on oeis.org

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

Primary pseudoperfect numbers are the solutions of the "differential equation" n' = n-1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
Same as n > 1 such that 1 + sum n/p = n (and the only known numbers n > 1 satisfying the weaker condition that 1 + sum n/p is divisible by n). Hence a(n) is squarefree, and is pseudoperfect if n > 1. Remarkably, a(n) has exactly n (distinct) prime factors for n < 9. - Jonathan Sondow, Apr 21 2013
From the Wikipedia article: it is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbers. - Daniel Forgues, May 27 2013
Since the arithmetic derivative of a prime p is p' = 1, 2 is obviously the only prime in the sequence. - Daniel Forgues, May 29 2013
Just as 1 is not a prime number, 1 is also not a primary pseudoperfect number, according to the original definition by Butske, Jaje, and Mayernik, as well as Wikipedia and MathWorld. - Jonathan Sondow, Dec 01 2013
Is it always true that if a primary pseudoperfect number N > 2 is adjacent to a prime N-1 or N+1, then in fact N lies between twin primes N-1, N+1? See A235139. - Jonathan Sondow, Jan 05 2014
Also, integers n > 1 such that A069359(n) = n - 1. - Jonathan Sondow, Apr 16 2014

Examples

			From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
  1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
  1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
  (3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
  1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
  (21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
  1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
  (23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
  a(1) = 2
  a(2) = 2 * 3
  a(3) = 2 * 3 *  7
  a(4) = 2 * 3 *  7 * 43
  a(5) = 2 * 3 * 11 * 23 *  31
  a(6) = 2 * 3 * 11 * 23 *  31 * 47059
  a(7) = 2 * 3 * 11 * 17 * 101 *   149 *       3109
  a(8) = 2 * 3 * 11 * 23 *  31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
		

Crossrefs

Programs

  • Mathematica
    pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
    Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
  • PARI
    isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
  • Python
    from sympy import primefactors
    A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
    

Formula

A031971(a(n)) (mod a(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
A069359(a(n)) = a(n) - 1. - Jonathan Sondow, Apr 16 2014
a(n) == 36*(n-2) + 6 (mod 288) for n = 2,3,..,8. - Kieren MacMillan and Jonathan Sondow, Sep 20 2017

A000104 Number of n-celled free polyominoes without holes.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 35, 107, 363, 1248, 4460, 16094, 58937, 217117, 805475, 3001127, 11230003, 42161529, 158781106, 599563893, 2269506062, 8609442688, 32725637373, 124621833354, 475368834568, 1816103345752, 6948228104703, 26618671505989, 102102788362303
Offset: 0

Views

Author

Keywords

References

  • J. S. Madachy, Pentominoes - Some Solved and Unsolved Problems, J. Rec. Math., 2 (1969), 181-188.
  • George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000105, row sums of A308300, A006746, A056877, A006748, A056878, A006747, A006749, A054361, A070765 (polyiamonds), A018190 (polyhexes), A266549 (by perimeter).

Formula

a(n) = A000105(n) - A001419(n). - John Mason, Sep 06 2022
a(n) = (4*A056879(n) + 4*A056881(n) + 4*A056883(n) + 6*A056880(n) + 6*A056882(n) + 6*A357647(n) + 7*A357648(n) + A006724(n)) / 8. - John Mason, Oct 10 2022

Extensions

Extended to n=26 by Tomás Oliveira e Silva
a(27)-a(28) from Tomás Oliveira e Silva's page added by Andrey Zabolotskiy, Oct 02 2022

A006506 Number of n X n binary matrices with no 2 adjacent 1's, or number of configurations of non-attacking princes on an n X n board, where a "prince" attacks the four adjacent (non-diagonal) squares. Also number of independent vertex sets in an n X n grid.

Original entry on oeis.org

1, 2, 7, 63, 1234, 55447, 5598861, 1280128950, 660647962955, 770548397261707, 2030049051145980050, 12083401651433651945979, 162481813349792588536582997, 4935961285224791538367780371090, 338752110195939290445247645371206783, 52521741712869136440040654451875316861275
Offset: 0

Views

Author

Keywords

Comments

A two-dimensional generalization of the Fibonacci numbers.
Also the number of vertex covers in the n X n grid graph P_n X P_n.
A181030 (Number of n X n binary matrices with no leading bitstring in any row or column divisible by 4) is the same sequence. Proof from Steve Butler, Jan 26 2015: This is trivially true. A181030 is equivalent to this sequence by interchanging the roles of 0 and 1. In particular, A181030 looks for binary matrices with no leading bitstring divisible by 4, but a bitstring is divisible by 4 if and only if its last two digits is 0; in a binary matrix this can only be avoided if there are no two adjacent 0's (i.e., for any two adjacent 0's take the bitstring starting in that row or column and we are done); the present sequence looks for no two adjacent 1's. Similar reasons show that the array A181031 is equivalent to the array A089980.
Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y| <= n+1, and let S(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y-1/2| <= n+2. Further let T be the collection of rectangular tiles with dimensions i X 1 or 1 X i with i arbitrary. Then a(2n) is the number of ways to tile R(n) using tiles from T and a(2n+1) is the number of ways to tile S(n) using tiles from T. (Note R(n) is the Aztec diamond of order n.) - Steve Butler, Jan 26 2015

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A027683 for toroidal version.
Table of values for n x m matrices: A089934.
Cf. A232833 for refinement by number of 1's.
Cf. also A191779.

Programs

  • Maple
    A006506 := proc(N) local i,j,p,q; p := 1+x11;
    if n=0 then return 1 fi;
    for i from 2 to N do
       q := p-select(has,p,x||(i-1)||1);
       p := p+expand(q*x||i||1)
    od;
    for j from 2 to N do
       q := p-select(has,p,x1||(j-1));
       p := subs(x1||(j-1)=1,p)+expand(q*x1||j);
       for i from 2 to N do
          q := p-select(has,p,{x||(i-1)||j,x||i||(j-1)});
          p := subs(x||i||(j-1)=1,p)+expand(q*x||i||j);
       od
    od;
    map(icontent,p)
    end:
    seq(A006506(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = (p = 1 + x[1, 1]; Do[q = p - Select[p, ! FreeQ[#, x[i-1, 1]] &]; p = p + Expand[q*x[i, 1]], {i, 2, n}]; Do[q = p - Select[p, ! FreeQ[#, x[1, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[1, j]]; Do[q = p - Select[ p, ! FreeQ[#, x[i-1, j]] || ! FreeQ[#, x[i, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[i, j]], {i, 2, n}], {j, 2, n}]; p /. x[, ] -> 1); a /@ Range[14] (* Jean-François Alcover, May 25 2011, after Maple prog. *)
    Table[With[{g = GridGraph[{n, n}]}, Count[Subsets[Range[n^2], Length @ First @ FindIndependentVertexSet[g]], ?(IndependentVertexSetQ[g, #] &)]], {n, 5}] (* _Eric W. Weisstein, May 28 2017 *)
  • PARI
    a(n)=L=fibonacci(n+2);p=v=vector(L,i,1);c=0; for(i=0,2^n-1,j=i;while(j&&j%4<3,j\=2);if(j%4<3,p[c++]=i)); for(i=2,n,w=vector(L,j,0); for(j=1,L, for(k=1,L,if(bitand(p[j],p[k])==0,w[j]+=v[k])));v=w); sum(i=1,L,v[i]) \\ Robert Gerbicz, Jun 17 2011

Formula

Limit_{n->oo} a(n)^(1/n^2) = c1 = 1.50304... is the hard square entropy constant A085850. - Benoit Cloitre, Nov 16 2003
a(n) appears to behave like A * c3^n * c1^(n^2) where c1 is as above, c3 = 1.143519129587 approximately, A = 1.0660826 approximately. This is based on numerical analysis of a(n) for n up to 19. - Brendan McKay, Nov 16 2003
From n up to 39 we have A = 1.06608266035... - Vaclav Kotesovec, Jan 29 2024

Extensions

Sequence extended by Paul Zimmermann, Mar 15 1996
Maple program updated and sequence extended by Robert Israel, Jun 16 2011
a(0)=1 prepended by Alois P. Heinz, Jan 29 2024

A127816 a(n) = least k >= 1 such that the remainder when 6^k is divided by k is n.

Original entry on oeis.org

5, 34, 213, 68, 4021227877, 7, 121129, 14, 69, 26, 767, 51, 6191, 22, 201, 20, 1919, 33, 169, 44, 39, 1778, 1926049, 174, 2673413, 50, 63, 451, 1257243481237, 93, 851, 316, 183, 14809, 1969, 38, 1362959, 1826, 177, 289, 65, 87, 5567, 1252, 57, 1651, 6403249
Offset: 1

Views

Author

Alexander Adamchuk, Jan 30 2007, Feb 05 2007

Keywords

Comments

a(7^k-1) = 7^k.

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000}]; k = 1; lst = {}; While[k < 5600000000, a = PowerMod[6, k, k]; If[ a<10001 && t[[a]]==0, t[[a]]=k; Print[{a,k}]]; k++ ]; t

Formula

a(7^k-1) = 7^k.

Extensions

a(5) from Joe K. Crump confirmed and a(6)-a(28) added by Ryan Propper, Feb 21 2007
I combined the two Mathematica codings into one and extended the search limits. - Robert G. Wilson v, Jul 16 2009
a(29) as conjectured by J. K. Crump confirmed by Hagen von Eitzen, Jul 21 2009
Corrected authorship of the a-file - R. J. Mathar, Aug 24 2009

A127818 a(n) is the least k such that the remainder when 10^k is divided by k is n.

Original entry on oeis.org

3, 14, 7, 6, 35, 94, 993, 46, 22963573117, 11, 15084115509707, 22, 21, 86, 99985, 24, 221819, 82, 327, 1996, 28039, 26, 169, 38, 39, 74, 24257, 36, 10191082613, 65, 49, 34, 4739, 66, 99965, 188, 171, 62, 3753219157, 60, 3961, 58, 87, 76, 28315, 159, 10441
Offset: 1

Views

Author

Alexander Adamchuk, Jan 30 2007

Keywords

Comments

a(9) <= 22963573117 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 09 2007
a(11) <= 15084115509707 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 06 2007
a(29) <= 112237795073 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 09 2007
a(39) <= 3753219157 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 10 2007

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[10, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
  • Python
    def a(n):
      k = 1
      while 10**k % k != n: k += 1
      return k
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Mar 14 2021

Extensions

Crump's values for a(9), a(11), a(39) confirmed, a(29) = 10191082613 = 16763 * 607951 by Hagen von Eitzen, Jul 29 2009

A005470 Number of unlabeled planar simple graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 11, 33, 142, 822, 6966, 79853, 1140916, 18681008, 333312451
Offset: 0

Views

Author

Keywords

Comments

Euler transform of A003094. - Christian G. Bower

Examples

			a(2) = 2 since o o and o-o are the two planar simple graphs on two nodes.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Trotter, ed., Planar Graphs, Vol. 9, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Amer. Math. Soc., 1993.
  • Turner, James; Kautz, William H. A survey of progress in graph theory in the Soviet Union. SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 19. - N. J. A. Sloane, Apr 08 2014
  • Vetukhnovskii, F. Ya. "Estimate of the Number of Planar Graphs." In Soviet Physics Doklady, vol. 7, pp. 7-9. 1962. - From N. J. A. Sloane, Apr 08 2014
  • R. J. Wilson, Introduction to Graph Theory. Academic Press, NY, 1972, p. 162.

Crossrefs

Cf. A003094 (connected planar graphs), A034889, A039735 (planar graphs by nodes and edges).
Cf. A126201.

Programs

  • Mathematica
    A003094 = Cases[Import["https://oeis.org/A003094/b003094.txt", "Table"], {, }][[All, 2]];
    (* EulerTransform is defined in A005195 *)
    EulerTransform[Rest @ A003094] (* Jean-François Alcover, Apr 25 2013, updated Mar 17 2020 *)

Extensions

n=8 term corrected and n=9..11 terms calculated by Brendan McKay
Terms a(0) - a(10) confirmed by David Applegate and N. J. A. Sloane, Mar 09 2007
a(12) added by Vaclav Kotesovec after A003094 (computed by Brendan McKay), Dec 06 2014

A007540 Wilson primes: primes p such that (p-1)! == -1 (mod p^2).

Original entry on oeis.org

5, 13, 563
Offset: 1

Views

Author

Keywords

Comments

Suggested by the Wilson-Lagrange Theorem: An integer p > 1 is a prime if and only if (p-1)! == -1 (mod p). Cf. Wilson quotients, A007619.
Sequence is believed to be infinite. Next term is known to be > 2*10^13 (cf. Costa et al., 2013).
Intersection of the Wilson numbers A157250 and the primes A000040. - Jonathan Sondow, Mar 04 2016
Conjecture: Odd primes p such that 1^(p-1) + 2^(p-1) + ... + (p-1)^(p-1) == p-1 (mod p^2). - Thomas Ordowski and Giovanni Resta, Jul 25 2018
From Felix Fröhlich, Nov 16 2018: (Start)
Harry S. Vandiver apparently said about the Wilson primes "It is not known if there are infinitely many Wilson primes. This question seems to be of such a character that if I should come to life any time after my death and some mathematician were to tell me that it had definitely been settled, I think I would immediately drop dead again." (cf. Ribenboim, 2000, p. 217).
Let p be a Wilson prime and let i be the index of p in A000040. For n = 1, 2, 3, the values of i are 3, 6, 103. The primes among those values are Lerch primes, i.e., terms of A197632. Is this a property that necessarily follows if i is prime (cf. Sondow, 2011/2012, 2.5 Open Problems 5)? (End)
From Amiram Eldar, Jun 16 2021: (Start)
Named after the English mathematician John Wilson (1741-1793) after whom "Wilson's theorem" was also named.
The primes 5 and 13 appear in an exercise involving the Wilson congruence in Mathews (1892). [Edited by Felix Fröhlich, Jul 23 2021]
Beeger found that there are no other smaller terms up to 114 (1913) and up to 200 (1930).
a(3) = 563 was found by Goldberg (1953), who used the Bureau of Standards Eastern Automatic Computer (SEAC) to search all primes less than 10000. According to Goldberg, the third prime was discovered independently by Donald Wall six month later. (End)

References

  • N. G. W. H. Beeger, On the Congruence (p-1)! == -1 (mod p^2), Messenger of Mathematics, Vol. 49 (1920), pp. 177-178.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 52.
  • Calvin C. Clawson, Mathematical Mysteries, Plenum Press, 1996, p. 180.
  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 80.
  • G. B. Mathews, Theory of Numbers Part I., Cambridge: Deighton, Bell and Co., London: George Bell and Sons, 1892, page 318.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer Science & Business Media, 2000, ISBN 0-387-98911-0.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 277.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 234-235.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ilan Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 73.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 163.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[500]], Mod[(# - 1)!, #^2] == #^2 - 1 &] (* Harvey P. Dale, Mar 30 2012 *)
  • PARI
    forprime(n=2, 10^9, if(Mod((n-1)!, n^2)==-1, print1(n, ", "))) \\ Felix Fröhlich, Apr 28 2014
    
  • PARI
    is(n)=prod(k=2,n-1,k,Mod(1,n^2))==-1 \\ Charles R Greathouse IV, Aug 03 2014
    
  • Python
    from sympy import prime
    A007540_list = []
    for n in range(1,10**4):
        p, m = prime(n), 1
        p2 = p*p
        for i in range(2,p):
            m = (m*i) % p2
        if m == p2-1:
            A007540_list.append(p) # Chai Wah Wu, Dec 04 2014

A056993 a(n) is the smallest k >= 2 such that k^(2^n)+1 is prime, or -1 if no such k exists.

Original entry on oeis.org

2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444
Offset: 0

Views

Author

Robert G. Wilson v, Sep 06 2000

Keywords

Comments

Smallest base value yielding generalized Fermat primes. - Hugo Pfoertner, Jul 01 2003
The first 5 terms correspond with the known (ordinary) Fermat primes. A probable candidate for the next entry is 62722^131072+1, discovered by Michael Angel in 2003. It has 628808 decimal digits. - Hugo Pfoertner, Jul 01 2003
For any n, a(n+1) >= sqrt(a(n)), because k^(2^(n+1))+1 = (k^2)^(2^n)+1. - Jeppe Stig Nielsen, Sep 16 2015
Does the sequence contain any perfect squares? If a(n) is a perfect square, then a(n+1) = sqrt(a(n)). - Jeppe Stig Nielsen, Sep 16 2015
If for a particular n, a(n) exists, then a(i) exist for all i=0,1,2,...,n. No proof is known that this sequence is infinite. Such a result would clearly imply the infinitude of A002496. - Jeppe Stig Nielsen, Sep 18 2015
919444 is a candidate for a(20). See Zimmermann link. - Serge Batalov, Sep 02 2017
Now PrimeGrid has tested and double checked all b^(2^20) + 1 with b < 919444, so we have proof that a(20) = 919444. - Jeppe Stig Nielsen, Dec 30 2017

Examples

			The primes are 2^(2^0) + 1 = 3, 2^(2^1) + 1 = 5, 2^(2^2) + 1 = 17, 2^(2^3) + 1 = 257, 2^(2^4) + 1 = 65537, 30^(2^5) + 1, 102^(2^6) + 1, ....
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (p = 2^n; k = 2; While[cp = k^p + 1; !PrimeQ@cp, k++ ]; k); Do[ Print[{n, f@n}], {n, 0, 17}] (* Lei Zhou, Feb 21 2005 *)
  • PARI
    a(n)=my(k=2);while(!isprime(k^(2^n)+1),k++);k \\ Anders Hellström, Sep 16 2015

Formula

a(n) = A085398(2^(n+1)). - Jianing Song, Jun 13 2022

Extensions

1534 from Robert G. Wilson v, Oct 30 2000
62722 from Jeppe Stig Nielsen, Aug 07 2005
24518 and 75898 from Lei Zhou, Feb 01 2012
919444 from Jeppe Stig Nielsen, Dec 30 2017
Previous Showing 91-100 of 9101 results. Next