A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.
0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0
Examples
Illustration of initial terms: . . o . o o . o o o o . o o o o o o . o o o o o o o o o . o o o o o o o o o o o . o o o o o o o o o o o o o . o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o . . 1 5 12 22 35 - _Philippe Deléham_, Mar 30 2013
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
- Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
- André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
- Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
Links
- Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
- George E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
- S. Barbero, U. Cerruti and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.
- Jordan Bell, Euler and the pentagonal number theorem, arXiv:math/0510054 [math.HO], 2005-2006.
- Anicius Manlius Severinus Boethius, De institutione arithmetica libri duo, Book 2, sections 13-14.
- Charles K. Cook and Michael R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 33.
- Stephan Eberhart, Letter to N. J. A. Sloane, Jan 06 1978, also scanned copy of Mathematical-Physical Correspondence, No. 22, Christmas 1977.
- Leonhard Euler, De mirabilibus proprietatibus numerorum pentagonalium, par. 1
- Leonhard Euler, Observatio de summis divisorum p. 8.
- Leonhard Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004, 2009. See p. 8.
- Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- Shyam Sunder Gupta, Beauty of Number 153, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 15, 399-410.
- Rodney T. Hansen, Arithmetic of pentagonal numbers, Fib. Quart., 8 (1970), 83-87.
- Alfred Hoehn, Illustration of initial terms of A000326, A005449, A045943, A115067
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 339
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Jangwon Ju and Daejun Kim, The pentagonal theorem of sixty-three and generalizations of Cauchy's lemma, arXiv:2010.16123 [math.NT], 2020.
- Bir Kafle, Florian Luca and Alain Togbé, Pentagonal and heptagonal repdigits, Annales Mathematicae et Informaticae. pp. 137-145.
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- R. P. Loh, A. G. Shannon and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567
- Cliff Reiter, Polygonal Numbers and Fifty One Stars, Lafayette College, Easton, PA (2019).
- Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
- W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Royale Sciences Liège, 33 (No. 9-10, 1964), 513-517. [Annotated scanned copy]
- N. J. A. Sloane, Illustration of initial terms of A000217, A000290, A000326.
- Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Pentagonal Number.
- Wikipedia, Mycielskian.
- Wikipedia, Pentagonal number
- Index entries for "core" sequences
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for two-way infinite sequences
Crossrefs
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.
Programs
-
GAP
List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
-
Haskell
a000326 n = n * (3 * n - 1) `div` 2 -- Reinhard Zumkeller, Jul 07 2012
-
Magma
[n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
-
Maple
A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100); A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
-
Mathematica
Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *) Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *) LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *) pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *) Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *) (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *) CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *) PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
-
PARI
a(n)=n*(3*n-1)/2
-
PARI
vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
-
PARI
is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
-
Python
# Intended to compute the initial segment of the sequence, not isolated terms. def aList(): x, y = 1, 1 yield 0 while True: yield x x, y = x + y + 3, y + 3 A000326 = aList() print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019
Formula
Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024
Extensions
Incorrect example removed by Joerg Arndt, Mar 11 2010
Comments