A001353 a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
0, 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244
Offset: 0
Examples
For example, when n = 3: **** .*** .*** can be packed with dominoes in 4 different ways: 3 in which the top row is tiled with two horizontal dominoes and 1 in which the top row has two vertical and one horizontal domino, as shown below, so a(2) = 4. ---- ---- ---- ||-- .||| .--| .|-- .||| .||| .--| .|-- .||| G.f. = x + 4*x^2 + 15*x^3 + 56*x^4 + 209*x^5 + 780*x^6 + 2911*x^7 + 10864*x^8 + ...
References
- Bastida, Julio R., Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 163.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
- Christian Aebi and Grant Cairns, Equable Parallelograms on the Eisenstein Lattice, arXiv:2401.08827 [math.CO], 2024. See p. 14.
- W. K. Alt, Enumeration of Domino Tilings on the Projective Grid Graph, A Thesis Presented to The Division of Mathematics and Natural Sciences, Reed College, May 2013.
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Francesca Arici and Jens Kaad, Gysin sequences and SU(2)-symmetries of C*-algebras, arXiv:2012.11186 [math.OA], 2020.
- Krassimir T. Atanassov and Anthony G. Shannon, On intercalated Fibonacci sequences, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
- J. Austin and L. Schneider, Generalized Fibonacci sequences in Pythagorean triple preserving sequences, Fib. Q., 58:4 (2020), 340-350.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 15, 29.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 12.
- K. S. Bhanu and M. N. Deshpande, Integral triangles with 120° angle Mathematics Spectrum, 45 (3) (2012/2013), 126-128.
- Latham Boyle and Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 48, 56.
- Fabrizio Canfora, Maxim Kurkov, Luigi Rosa, and Patrizia Vitale, The Gribov problem in Noncommutative QED, arXiv preprint arXiv:1505.06342 [hep-th], 2015.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- Z. Cinkir, Effective Resistances, Kirchhoff index and Admissible Invariants of Ladder Graphs, arXiv preprint arXiv:1503.06353 [math.CO], 2015.
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp. 86 (2017), 899-933 (see also paper #10).
- M. N. Deshpande, One Interesting Family of Diophantine Triplets, International Journal of Mathematical Education In Science and Technology, Vol. 33 (No. 2, Mar-Apr), 2002.
- M. N. Deshpande, Hansruedi Widmer and Zachary Franco, Simultaneous Squares from Arithmetic Progressions: 10622, The American Mathematical Monthly Vol. 106, No. 9 (Nov., 1999), 867-868.
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Felix Flicker, Time quasilattices in dissipative dynamical systems, arXiv:1707.09371 [nlin.CD], 2017. Also SciPost Phys. 5, 001 (2018).
- D. Fortin, B-spline Toeplitz Inverse Under Corner Perturbations, International Journal of Pure and Applied Mathematics, Volume 77, No. 1, 2012, 107-118. - From _N. J. A. Sloane_, Oct 22 2012
- Dale Gerdemann, Fractal images from (4, -1) recursion, YouTube, Oct 27 2014.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- Andrew Granville and Zhi-Wei Sun, Values of Bernoulli polynomials, Pacific J. Math. 172 (1996), 117-137, at p. 119.
- T. N. E. Greville, Table for third-degree spline interpolations with equally spaced arguments, Math. Comp., 24 (1970), 179-183.
- Y.-H. Guo, n-Colour even self-inverse compositions, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 27-33.
- B. Hopkins, Spotted tilings and n-color compositions, INTEGERS 12B (2012/2013), #A6.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=4, q=-1.
- W. D. Hoskins, Table for third-degree spline interpolation using equi-spaced knots, Math. Comp., 25 (1971), 797-801.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Germain Kreweras, Complexite et circuits Euleriens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eq.(44), lhs, m=6.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- Hojoo Lee, Problems in elementary number theory Problem I 18.
- E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
- Dino Lorenzini and Z. Xiang, Integral points on variable separated curves, Preprint 2016.
- Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
- László Németh, Trees on hyperbolic honeycombs, arXiv:1510.08311 [math.CO], 2015.
- Hideyuki Ohtskua, proposer, Problem B-1351, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 3 (2024), p. 258.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Ariel D. Procaccia and Jamie Tucker-Foltz, Compact Redistricting Plans Have Many Spanning Trees, Harvard Univ. (2021).
- P. Raff, Analysis of the Number of Spanning Trees of K_2 x P_n. Contains sequence, recurrence, generating function, and more. [From _Paul Raff_, Mar 06 2009]
- Franck Ramaharo, The bracket polynomial of the Celtic link shadow CK_4^(2n), arXiv:2508.10410 [math.GT], 2025. See p. 6.
- Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
- D. P. Walsh, Counting n x 2 Simple Rectangular Mazes
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- Eric Weisstein's World of Mathematics, Ladder Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv preprint arXiv:1507.04917 [math.NT], 2015.
- Index entries for linear recurrences with constant coefficients, signature (4,-1)
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Cf. A001075, A001542, A001571, A001834, A001835, A002531, A003500, A005246, A016064, A019679, A079935, A082840.
A bisection of A002530.
Cf. A125077.
A row of A116469.
Chebyshev sequence U(n, m): A000027 (m=1), this sequence (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
Programs
-
GAP
a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Feb 16 2018
-
Haskell
a001353 n = a001353_list !! n a001353_list = 0 : 1 : zipWith (-) (map (4 *) $ tail a001353_list) a001353_list -- Reinhard Zumkeller, Aug 14 2011
-
Magma
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 06 2019
-
Maple
A001353 := proc(n) option remember; if n <= 1 then n else 4*A001353(n-1)-A001353(n-2); fi; end; A001353:=z/(1-4*z+z**2); # Simon Plouffe in his 1992 dissertation. seq( simplify(ChebyshevU(n-1, 2)), n=0..20); # G. C. Greubel, Dec 23 2019
-
Mathematica
a[n_] := (MatrixPower[{{1, 2}, {1, 3}}, n].{{1}, {1}})[[2, 1]]; Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 13 2005 *) Table[GegenbauerC[n-1, 1, 2], {n, 0, 30}] (* Zerinvary Lajos, Jul 14 2009 *) Table[-((I Sin[n ArcCos[2]])/Sqrt[3]), {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *) Table[Sinh[n ArcCosh[2]]/Sqrt[3], {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *) Table[ChebyshevU[n-1, 2], {n, 0, 30}] (* Eric W. Weisstein, Jul 16 2011 *) a[0]:=0; a[1]:=1; a[n_]:= a[n]= 4a[n-1] - a[n-2]; Table[a[n], {n, 0, 30}] (* Alonso del Arte, Jul 19 2011 *) LinearRecurrence[{4, -1}, {0, 1}, 30] (* Sture Sjöstedt, Dec 06 2011 *) Round@Table[Fibonacci[2n, Sqrt[2]]/Sqrt[2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 15 2016 *)
-
PARI
M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=0,30,print1(([1,0,0]*M^i)[2],",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
-
PARI
{a(n) = real( (2 + quadgen(12))^n / quadgen(12) )}; /* Michael Somos, Sep 19 2008 */
-
PARI
{a(n) = polchebyshev(n-1, 2, 2)}; /* Michael Somos, Sep 19 2008 */
-
PARI
concat(0, Vec(x/(1-4*x+x^2) + O(x^30))) \\ Altug Alkan, Oct 30 2015
-
Python
a001353 = [0, 1] for n in range(30): a001353.append(4*a001353[-1] - a001353[-2]) print(a001353) # Gennady Eremin, Feb 05 2022
-
Sage
[lucas_number1(n,4,1) for n in range(30)] # Zerinvary Lajos, Apr 22 2009
-
Sage
[chebyshev_U(n-1,2) for n in (0..20)] # G. C. Greubel, Dec 23 2019
Formula
G.f.: x/(1-4*x+x^2).
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(2*sqrt(3)).
a(n) = sqrt((A001075(n)^2 - 1)/3).
a(n) = 2*a(n-1) + sqrt(3*a(n-1)^2 + 1). - Lekraj Beedassy, Feb 18 2002
Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 06 2002
Binomial transform of A002605.
E.g.f.: exp(2*x)*sinh(sqrt(3)*x)/sqrt(3).
a(n) = S(n-1, 4) = U(n-1, 2); S(-1, x) := 0, Chebyshev's polynomials of the second kind A049310.
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*4^(n - 2*k). - Paul Barry, Oct 25 2004
a(n) = Sum_{k=0..n-1} binomial(n+k,2*k+1)*2^k. - Paul Barry, Nov 30 2004
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3), n>=3. - Lekraj Beedassy, Jul 13 2006
a(n) = -A106707(n). - R. J. Mathar, Jul 07 2006
M^n * [1,0] = [A001075(n), A001353(n)], where M = the 2 X 2 matrix [2,3; 1,2]; e.g., a(4) = 56 since M^4 * [1,0] = [97, 56] = [A001075(4), A001353(4)]. - Gary W. Adamson, Dec 27 2006
From Michael Somos, Sep 19 2008: (Start)
Sequence satisfies 1 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v.
a(n) = -a(-n) for all integer n. (End)
Rational recurrence: a(n) = (17*a(n-1)*a(n-2) - 4*(a(n-1)^2 + a(n-2)^2))/a(n-3) for n > 3. - Jaume Oliver Lafont, Dec 05 2009
If p[i] = Fibonacci(2i) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j + 1), and A[i,j] = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, May 08 2010
From Eric W. Weisstein, Jul 16 2011: (Start)
a(n) = C_{n-1}^{(1)}(2), where C_n^{(m)}(x) is the Gegenbauer polynomial.
a(n) = -i*sin(n*arccos(2))/sqrt(3).
a(n) = sinh(n*arccosh(2))/sqrt(3). (End)
a(n) = b such that Integral_{x=0..Pi/2} (sin(n*x))/(2-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
a(n) = sqrt(A098301(n)) = sqrt([A055793 / 3]), base 3 analog of A031150. - M. F. Hasler, Jan 16 2012
a(n+1) = Sum_{k=0..n} A101950(n,k)*3^k. - Philippe Deléham, Feb 10 2012
1, 4, 15, 56, 209, ... = INVERT(INVERT(1, 2, 3, 4, 5, ...)). - David Callan, Oct 13 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(3).
Product_{n >= 2} (1 - 1/a(n)) = 1/4*(1 + sqrt(3)). (End)
a(n+1) = (A001834(n) + A001835(n))/2. a(n+1) + a(n) = A001834(n). a(n+1) - a(n) = A001835(n). - Richard R. Forberg, Sep 04 2013
a(n) = -(-i)^(n+1)*Fibonacci(n, 4*i), i = sqrt(-1). - G. C. Greubel, Jun 06 2019
a(n)^2 - a(m)^2 = a(n+m) * a(n-m), a(n+2)*a(n-2) = 16*a(n+1)*a(n-1) - 15*a(n)^2, a(n+3)*a(n-2) = 15*a(n+2)*a(n-1) - 14*a(n+1)*a(n) for all integer n, m. - Michael Somos, Dec 12 2019
a(n) = 2^n*Sum_{k >= n} binomial(2*k,2*n-1)*(1/3)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n) = Sum_{k > 0} (-1)^((k-1)/2)*binomial(2*n, n+k)*(k|12), where (k|12) is the Kronecker symbol. - Greg Dresden, Oct 11 2022
Sum_{k=0..n} a(k) = (a(n+1) - a(n) - 1)/2. - Prabha Sivaramannair, Sep 22 2023
Sum_{n>=1} arctan(1/(4*a(n)^2)) = Pi/12 (A019679) (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024
From Peter Bala, May 21 2025: (Start)
Product_{n >= 1} (1 + 1/a(n))^2 = 2*(2 + sqrt(3)) (telescoping product: (1 + 1/a(2*n-1))^2 * (1 + 1/a(2*n-2))^2 = (4 + 2*A251963(n)/A005246(2*n)^2)/(4 + 2*A251963(n-1)/A005246(2*n-2)^2) ).
Product_{n >= 2} (1 - 1/a(n))^2 = (1/8)*(2 + sqrt(3)).
Product_{n >= 1} ((a(2*n) + 1)/(a(2*n) - 1))^2 = 3 (telescoping product: ((a(2*n) + 1)/(a(2*n) - 1))^2 = (3 - 2/A001835(n+1)^2)/(3 - 2/A001835(n)^2) ).
Product_{n >= 2} ((a(2*n-1) + 1)/(a(2*n-1) - 1))^2 = 4/3.
The o.g.f. A(x) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0. The o.g.f. for A007655 equals -A(sqrt(x))*A(-sqrt(x)). (End)
Comments