A001844 Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.
1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
Offset: 0
Examples
G.f.: 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ... The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ... The first four such partitions, corresponding to n = 0,1,2,3, i.e., to a(n) = 1,5,13,25, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1. - _Augustine O. Munagi_, Dec 18 2008
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
- Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Ahmed, J. De Loera and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, arXiv:math/0201108 [math.CO], 2002.
- U. Alfred, n and n+1 consecutive integers with equal sums of squares, Math. Mag., 35 (1962), 155-164.
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Matthias Beck, Moshe Cohen, Jessica Cuomo, and Paul Gribelyuk, The number of "magic" squares and hypercubes, arXiv:math/0201013 [math.CO], 2002-2005.
- Arthur T. Benjamin and Doron Zeilberger, Pythagorean Primes and Palindromic Continued Fractions, Electronic Journal of Combinatorial Number Theory, 5(1) 2005, #A30.
- J. A. De Loera, D. C. Haws and M. Koppe, Ehrhart Polynomials of Matroid Polytopes and Polymatroids, arXiv:0710.4346 [math.CO], 2007; Discrete Comput. Geom., 42 (2009), 670-702.
- FiveThirtyEight, "Riddler Express" paper cutting problem and solution, Jan 28 2022.
- D. C. Haws, Matroids [Broken link, Oct 30 2017]
- D. C. Haws, Matroids [Copy on website of Matthias Koeppe]
- D. C. Haws, Matroids [Cached copy, pdf file only]
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, pp. 22 and 36.
- Milan Janjic, Two Enumerative Functions. [Broken link; WayBackMachine archive.]
- Milan Janjic, On a class of polynomials with integer coefficients, JIS 11 (2008) 08.5.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- Ron Knott, Pythagorean Triples and Online Calculators.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.
- Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- John A. Jr. Rochowicz, Harmonic Numbers: Insights, Approximations and Applications, Spreadsheets in Education (eJSiE), 2015, Vol. 8: Iss. 2, Article 4.
- Amelia Carolina Sparavigna, Groupoid of OEIS A001844 Numbers (centered square numbers), Politecnico di Torino, Italy (2019).
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- David James Sycamore, Triangular array
- Leo Tavares, Illustration: Diamond Rows
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Centered Polygonal Number, Centered Square Number, Diamond, Pythagorean Triple, and von Neumann Neighborhood.
- Index entries for sequences related to centered polygonal numbers
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Nicolay Avilov, Graphical representation of the sequence members
Crossrefs
Cf. A069894, A000217, A000290, A001263, A001788, A001845, A002061, A002144, A003215, A005448, A005891, A005917, A008844 (square terms), A027862 (prime terms), A048395, A051890, A056106, A101096, A127876, A128064, A132778, A147973, A153869, A240876, A251599, A000982, A080827.
Subsequence of A004431.
Row n=2 (or column k=2) of A008288.
Cf. A016754.
Programs
-
Haskell
a001844 n = 2 * n * (n + 1) + 1 a001844_list = zipWith (+) a000290_list $ tail a000290_list -- Reinhard Zumkeller, Dec 04 2012
-
Magma
[2*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Jan 19 2013
-
Magma
[n: n in [0..4400] | IsSquare(2*n-1)]; // Juri-Stepan Gerasimov, Apr 06 2016
-
Maple
A001844:=-(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[2n(n + 1) + 1, {n, 0, 50}] FoldList[#1 + #2 &, 1, 4 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *) maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n - 1, n - 1}]] (* L. Edson Jeffery, Aug 24 2014 *) CoefficientList[ Series[-(x^2 + 2x + 1)/(x - 1)^3, {x, 0, 48}], x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 5, 13}, 48] (* Robert G. Wilson v, Aug 01 2018 *) Total/@Partition[Range[0,50]^2,2,1] (* Harvey P. Dale, Dec 05 2020 *) Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x, j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
-
PARI
{a(n) = 2*n*(n+1) + 1};
-
PARI
x='x+O('x^200); Vec((1+x)^2/(1-x)^3) \\ Altug Alkan, Mar 23 2016
-
Python
print([2*n*(n+1)+1 for n in range(48)]) # Michael S. Branicky, Jan 05 2021
-
Sage
[i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008
Formula
a(n) = 2*n^2 + 2*n + 1 = n^2 + (n+1)^2.
a(n) = 1 + 3 + 5 + ... + 2*n-1 + 2*n+1 + 2*n-1 + ... + 3 + 1. - Amarnath Murthy, May 28 2001
a(n) = 1/real(z(n+1)) where z(1)=i, (i^2=-1), z(k+1) = 1/(z(k)+2i). - Benoit Cloitre, Aug 06 2002
Nearest integer to 1/Sum_{k>n} 1/k^3. - Benoit Cloitre, Jun 12 2003
G.f.: (1+x)^2/(1-x)^3.
E.g.f.: exp(x)*(1+4x+2x^2).
a(n) = a(n-1) + 4n.
a(-n) = a(n-1).
a(n) = A064094(n+3, n) (fourth diagonal).
a(n) = 1 + Sum_{j=0..n} 4*j. - Xavier Acloque, Oct 08 2003
a(n) = Sum_{k=0..n+1} (-1)^k*binomial(n, k)*Sum_{j=0..n-k+1} binomial(n-k+1, j)*j^2. - Paul Barry, Dec 22 2004
a(n) = ceiling((2n+1)^2/2). - Paul Barry, Jul 16 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=5, a(2)=13. - Jaume Oliver Lafont, Dec 02 2008
a(n)*a(n-1) = 4*n^4 + 1 for n > 0. - Reinhard Zumkeller, Feb 12 2009
Prefaced with a "1" (1, 1, 5, 13, 25, 41, ...): a(n) = 2*n*(n-1)+1. - Doug Bell, Feb 27 2009
a(n) = floor(2*(n+1)^3/(n+2)). - Gary Detlefs, May 20 2010
a(n) = A069894(n)/2. - J. M. Bergot, Jun 11 2012
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Jun 12 2012
a(n) = A209297(2*n+1,n+1). - Reinhard Zumkeller, Jan 19 2013
a(n) = A000217(2n+1) - n. - Ivan N. Ianakiev, Nov 08 2013
a(n) = A251599(3*n+1). - Reinhard Zumkeller, Dec 13 2014
a(n) = A101321(4,n). - R. J. Mathar, Jul 28 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = Sum_{k=0..n} A008574(k).
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = exp(-1) = A068985. (End)
a(n) = 4 * A000217(n) + 1. - Bruce J. Nicholson, Jul 10 2017
Sum_{n>=0} a(n)/n! = 7*e. Sum_{n>=0} 1/a(n) = A228048. - Amiram Eldar, Jun 20 2020
a(n) = Integral_{x=0..2n+2} |1-x| dx. - Pedro Caceres, Dec 29 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi)*sinh(Pi/2). (End)
For n>0, a(n) = A101096(n+2) / 30. - Andy Nicol, Feb 06 2025
From Rémi Guillaume, Apr 21 2025: (Start)
a(n) = (2*A003215(n)+1)/3.
a(n) = (4*A005448(n+1)-1)/3.
a(n) = (A005917(n+1))/(2n+1). (End)
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Comments