cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 66 results. Next

A013662 Decimal expansion of zeta(4).

Original entry on oeis.org

1, 0, 8, 2, 3, 2, 3, 2, 3, 3, 7, 1, 1, 1, 3, 8, 1, 9, 1, 5, 1, 6, 0, 0, 3, 6, 9, 6, 5, 4, 1, 1, 6, 7, 9, 0, 2, 7, 7, 4, 7, 5, 0, 9, 5, 1, 9, 1, 8, 7, 2, 6, 9, 0, 7, 6, 8, 2, 9, 7, 6, 2, 1, 5, 4, 4, 4, 1, 2, 0, 6, 1, 6, 1, 8, 6, 9, 6, 8, 8, 4, 6, 5, 5, 6, 9, 0, 9, 6, 3, 5, 9, 4, 1, 6, 9, 9, 9, 1
Offset: 1

Views

Author

Keywords

Examples

			1.082323233711138191516003696541167...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
  • L. D. Landau and E. M. Lifschitz, Band V, Statistische Physik, Akademie Verlag, 1966, pp. 172 and 180-181.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 162.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(110)); L:=RiemannZeta(); Evaluate(L,4); // G. C. Greubel, May 30 2019
    
  • Maple
    evalf(Pi^4/90,120); # Muniru A Asiru, Sep 19 2018
  • Mathematica
    RealDigits[Zeta[4],10,120][[1]] (* Harvey P. Dale, Dec 18 2012 *)
  • Maxima
    ev(zeta(4),numer) ; /* R. J. Mathar, Feb 27 2012 */
    
  • PARI
    default(realprecision, 20080); x=Pi^4/90; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013662.txt", n, " ", d)); \\ Harry J. Smith, Apr 29 2009
    
  • Sage
    numerical_approx(zeta(4), digits=100) # G. C. Greubel, May 30 2019

Formula

zeta(4) = Pi^4/90 = A092425/90. - Harry J. Smith, Apr 29 2009
From Peter Bala, Dec 03 2013: (Start)
Definition: zeta(4) := Sum_{n >= 1} 1/n^4.
zeta(4) = (4/17)*Sum_{n >= 1} ( (1 + 1/2 + ... + 1/n)/n )^2 and
zeta(4) = (16/45)*Sum_{n >= 1} ( (1 + 1/3 + ... + 1/(2*n-1))/n )^2 (see Borwein and Borwein).
zeta(4) = (256/90)*Sum_{n >= 1} n^2*(4*n^2 + 3)*(12*n^2 + 1)/(4*n^2 - 1)^5.
Series acceleration formulas:
zeta(4) = (36/17)*Sum_{n >= 1} 1/( n^4*binomial(2*n,n) ) (Comtet)
= (36/17)*Sum_{n >= 1} P(n)/( (2*n*(2*n - 1))^4*binomial(4*n,2*n) )
= (36/17)*Sum_{n >= 1} Q(n)/( (3*n*(3*n - 1)*(3*n - 2))^4*binomial(6*n,3*n) ),
where P(n) = 80*n^4 - 48*n^3 + 24*n^2 - 8*n + 1 and Q(n) = 137781*n^8 - 275562*n^7 + 240570*n^6 - 122472*n^5 + 41877*n^4 - 10908*n^3 + 2232*n^2 - 288*n + 16 (see section 8 in the Bala link). (End)
zeta(4) = 2/3*2^4/(2^4 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^5 ), where p(n) = 3*n^4 + 10*n^2 + 3 is a row polynomial of A091043. See A013664, A013666, A013668 and A013670. - Peter Bala, Dec 05 2013
zeta(4) = Sum_{n >= 1} ((floor(sqrt(n))-floor(sqrt(n-1)))/n^2). - Mikael Aaltonen, Jan 18 2015
zeta(4) = Product_{k>=1} 1/(1 - 1/prime(k)^4). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020: (Start)
zeta(4) = (1/3!)*Integral_{x=0..oo} x^3/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=2, p. 807, and Landau-Lifschitz, Band V, p. 172, eq. (4), for x=4. See also A231535.
zeta(4) = (4/21)*Integral_{x=0..oo} x^3/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=2, p. 807, and Landau-Lifschitz, Band V, p. 172, eq. (1), for x=4. See also A337711. (End)
zeta(4) = (72/17) * Integral_{x=0..Pi/3} x*(log(2*sin(x/2)))^2. See Richard K. Guy reference. - Bernard Schott, Jul 20 2022
From Peter Bala, Nov 12 2023: (Start)
zeta(4) = 1 + (4/3)*Sum_{k >= 1} (1 - 2*(-1)^k)/(k*(k + 1)^4*(k + 2)) = 35053/32400 + 48*Sum_{k >= 1} (1 - 2*(-1)^k)/(k*(k + 1)*(k + 2)*(k + 3)^4*(k + 4)*(k + 5)*(k + 6)).
More generally, it appears that for n >= 0, zeta(4) = c(n) + (4/3)*(2*n + 1)!^2 * Sum_{k >= 1} (1 - 2*(-1)^k)/( (k + 2*n + 1)^3*Product_{i = 0..4*n+2} (k + i) ), where {c(n) : n >= 0} is a sequence of rational approximations to zeta(4) beginning [1, 35053/32400, 2061943067/ 1905120000, 18594731931460103/ 17180389306080000, 257946156103293544441/ 238326360453941760000, ...]. (End)
From Peter Bala, Apr 27 2025: (Start)
zeta(4) = 1/4! * Integral_{x >= 0} x^4 * exp(x)/(exp(x) - 1)^2 dx = 8/7 * 1/4! * Integral_{x >= 0} x^4 * exp(x)/(exp(x) + 1)^2 dx.
zeta(4) = 1/5! * Integral_{x >= 0} x^5 * exp(x)*(exp(x) + 1)/(exp(x) - 1)^3 dx = 1/(3*5*7) * Integral_{x >= 0} x^5 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)
10*zeta(4) = Sum_{k>=1} H(k)^3/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Ramachandra, 1981). - Amiram Eldar, May 30 2025
zeta(4) = Integral_{x=0..1} Li(3,x)/x dx, where Li(n,x) is the polylogarithm function. - Kritsada Moomuang, Jun 14 2025
zeta(4) = Sum_{i, j >= 1} 1/(i^3*j*binomial(i+j, i)) = 4/3 * Sum_{i, j >= 1} 1/(i^2*j^2*binomial(i+j, i)). - Peter Bala, Aug 03 2025

A013663 Decimal expansion of zeta(5).

Original entry on oeis.org

1, 0, 3, 6, 9, 2, 7, 7, 5, 5, 1, 4, 3, 3, 6, 9, 9, 2, 6, 3, 3, 1, 3, 6, 5, 4, 8, 6, 4, 5, 7, 0, 3, 4, 1, 6, 8, 0, 5, 7, 0, 8, 0, 9, 1, 9, 5, 0, 1, 9, 1, 2, 8, 1, 1, 9, 7, 4, 1, 9, 2, 6, 7, 7, 9, 0, 3, 8, 0, 3, 5, 8, 9, 7, 8, 6, 2, 8, 1, 4, 8, 4, 5, 6, 0, 0, 4, 3, 1, 0, 6, 5, 5, 7, 1, 3, 3, 3, 3
Offset: 1

Views

Author

Keywords

Comments

In a widely distributed May 2011 email, Wadim Zudilin gave a rebuttal to v1 of Kim's 2011 preprint: "The mistake (unfixable) is on p. 6, line after eq. (3.3). 'Without loss of generality' can be shown to work only for a finite set of n_k's; as the n_k are sufficiently large (and N is fixed), the inequality for epsilon is false." In a May 2013 email, Zudilin extended his rebuttal to cover v2, concluding that Kim's argument "implies that at least one of zeta(2), zeta(3), zeta(4) and zeta(5) is irrational, which is trivial." - Jonathan Sondow, May 06 2013
General: zeta(2*s + 1) = (A000364(s)/A331839(s)) * Pi^(2*s + 1) * Product_{k >= 1} (A002145(k)^(2*s + 1) + 1)/(A002145(k)^(2*s + 1) - 1), for s >= 1. - Dimitris Valianatos, Apr 27 2020

Examples

			1/1^5 + 1/2^5 + 1/3^5 + 1/4^5 + 1/5^5 + 1/6^5 + 1/7^5 + ... =
1 + 1/32 + 1/243 + 1/1024 + 1/3125 + 1/7776 + 1/16807 + ... = 1.036927755143369926331365486457...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.
  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

Formula

From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(5) = Sum_{n >= 1} 1/n^5.
zeta(5) = 2^5/(2^5 - 1)*(Sum_{n even} n^5*p(n)*p(1/n)/(n^2 - 1)^6 ), where p(n) = n^2 + 3. See A013667, A013671 and A013675. (End)
zeta(5) = Sum_{n >= 1} (A010052(n)/n^(5/2)) = Sum_{n >= 1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n^(5/2)). - Mikael Aaltonen, Feb 22 2015
zeta(5) = Product_{k>=1} 1/(1 - 1/prime(k)^5). - Vaclav Kotesovec, Apr 30 2020
From Artur Jasinski, Jun 27 2020: (Start)
zeta(5) = (-1/30)*Integral_{x=0..1} log(1-x^4)^5/x^5.
zeta(5) = (1/24)*Integral_{x=0..infinity} x^4/(exp(x)-1).
zeta(5) = (2/45)*Integral_{x=0..infinity} x^4/(exp(x)+1).
zeta(5) = (1/(1488*zeta(1/2)^5))*(-5*Pi^5*zeta(1/2)^5 + 96*zeta'(1/2)^5 - 240*zeta(1/2)*zeta'(1/2)^3*zeta''(1/2) + 120*zeta(1/2)^2*zeta'(1/2)*zeta''(1/2)^2 + 80*zeta(1/2)^2*zeta'(1/2)^2*zeta'''(1/2)- 40*zeta(1/2)^3*zeta''(1/2)*zeta'''(1/2) - 20*zeta(1/2)^3*zeta'(1/2)*zeta''''(1/2)+4*zeta(1/2)^4*zeta'''''(1/2)). (End).
From Peter Bala, Oct 29 2023: (Start)
zeta(3) = (8/45)*Integral_{x >= 1} x^3*log(x)^3*(1 + log(x))*log(1 + 1/x^x) dx = (2/45)*Integral_{x >= 1} x^4*log(x)^4*(1 + log(x))/(1 + x^x) dx.
zeta(5) = 131/128 + 26*Sum_{n >= 1} (n^2 + 2*n + 40/39)/(n*(n + 1)*(n + 2))^5.
zeta(5) = 5162893/4976640 - 1323520*Sum_{n >= 1} (n^2 + 4*n + 56288/12925)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4))^5. Taking 10 terms of the series gives a value for zeta(5) correct to 20 decimal places.
Conjecture: for k >= 1, there exist rational numbers A(k), B(k) and c(k) such that zeta(5) = A(k) + B(k)*Sum_{n >= 1} (n^2 + 2*k*n + c(k))/(n*(n + 1)*...*(n + 2*k))^5. A similar conjecture can be made for the constant zeta(3). (End)
zeta(5) = (694/204813)*Pi^5 - Sum_{n >= 1} (6280/3251)*(1/(n^5*(exp(4*Pi*n)-1))) + Sum_{n >= 1} (296/3251)*(1/(n^5*(exp(5*Pi*n)-1))) - Sum_{n >= 1} (1073/6502)*(1/(n^5*(exp(10*Pi*n)-1))) + Sum_{n >= 1} (37/6502)*(1/(n^5*(exp(20*Pi*n)-1))). - Simon Plouffe, Jan 06 2024
From Peter Bala, Apr 27 2025: (Start)
zeta(5) = 1/5! * Integral_{x >= 0} x^5 * exp(x)/(exp(x) - 1)^2 dx = (16/15) * 1/5! * Integral_{x >= 0} x^5 * exp(x)/(exp(x) + 1)^2 dx.
zeta(5) = 1/6! * Integral_{x >= 0} x^6 * exp(x)*(exp(x) + 1)/(exp(x) - 1)^3 dx = 1/(3^3 * 5^2) * Integral_{x >= 0} x^6 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)
zeta(5) = Sum_{i, j >= 1} 1/((i^4)*j*binomial(i+j, i)). More generally, zeta(n+1) = Sum_{i, j >= 1} 1/((i^n)*j*binomial(i+j, i)) for n >= 1. - Peter Bala, Aug 07 2025

A013664 Decimal expansion of zeta(6).

Original entry on oeis.org

1, 0, 1, 7, 3, 4, 3, 0, 6, 1, 9, 8, 4, 4, 4, 9, 1, 3, 9, 7, 1, 4, 5, 1, 7, 9, 2, 9, 7, 9, 0, 9, 2, 0, 5, 2, 7, 9, 0, 1, 8, 1, 7, 4, 9, 0, 0, 3, 2, 8, 5, 3, 5, 6, 1, 8, 4, 2, 4, 0, 8, 6, 6, 4, 0, 0, 4, 3, 3, 2, 1, 8, 2, 9, 0, 1, 9, 5, 7, 8, 9, 7, 8, 8, 2, 7, 7, 3, 9, 7, 7, 9, 3, 8, 5, 3, 5, 1, 7
Offset: 1

Views

Author

Keywords

Examples

			1.01734306198444913...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.

Crossrefs

Programs

Formula

Equals Pi^6/945 = A092732/945. - Mohammad K. Azarian, Mar 03 2008
zeta(6) = 8/3*2^6/(2^6 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^7 ), where p(n) = n^6 + 7*n^4 + 7*n^2 + 1 is a row polynomial of A091043. See A013662, A013666, A013668 and A013670. - Peter Bala, Dec 05 2013
Definition: zeta(6) = Sum_{n >= 1} 1/n^6. - Bruno Berselli, Dec 05 2013
zeta(6) = Sum_{n >= 1} (A010052(n)/n^3). - Mikael Aaltonen, Feb 20 2015
zeta(6) = Sum_{n >= 1} (A010057(n)/n^2). - A.H.M. Smeets, Sep 19 2018
zeta(6) = Product_{k>=1} 1/(1 - 1/prime(k)^6). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020: (Start)
zeta(6) = (1/5!)*Integral_{x=0..infinity} x^5/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=6, p. 807. See also A337710 for the value of the integral.
zeta(6) = (4/465)*Integral_{x=0..infinity} x^5/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=6, p. 807. The value of the integral is (31/252)*Pi^6 = 118.2661309... . (End)
From Peter Bala, Apr 27 2025: (Start)
zeta(6) = 1/6! * Integral_{x >= 0} x^6 * exp(x)/(exp(x) - 1)^2 dx = 2^5/(2^5 - 1) * 1/6! * Integral_{x >= 0} x^6 * exp(x)/(exp(x) + 1)^2 dx.
zeta(6) = 1/7! * Integral_{x >= 0} x^7 * exp(x)*(exp(x) + 1) /(exp(x) - 1)^3 dx = 2/(3*7*15*31) * Integral_{x >= 0} x^7 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)

A013954 a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.

Original entry on oeis.org

1, 65, 730, 4161, 15626, 47450, 117650, 266305, 532171, 1015690, 1771562, 3037530, 4826810, 7647250, 11406980, 17043521, 24137570, 34591115, 47045882, 65019786, 85884500, 115151530, 148035890, 194402650, 244156251, 313742650, 387952660, 489541650, 594823322, 741453700
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Inverse Mobius transform of A001014. - R. J. Mathar, Oct 13 2011

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^5)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(6*e+6)-1)/(p^6-1).
Dirichlet g.f.: zeta(s)*zeta(s-6).
Sum_{k=1..n} a(k) = zeta(7) * n^7 / 7 + O(n^8). (End)

A001015 Seventh powers: a(n) = n^7.

Original entry on oeis.org

0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171, 35831808, 62748517, 105413504, 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000, 1801088541, 2494357888, 3404825447, 4586471424, 6103515625, 8031810176
Offset: 0

Views

Author

Keywords

Comments

For n>0, (a(3*n-1)^7-a(2*n-1)^7-a(n)^7)/(7*(3*n-1)*(2*n-1)*n) = (2*A001106(n)+1)^2 (see Barisien reference, problem 173). - Bruno Berselli, Feb 01 2011
Number of the form a(n) + a(n+1) + ... + a(n+k) is never prime for all n, k>=0. This could be proved by the method indicated in the comment in A256581. - Vladimir Shevelev and Peter J. C. Moses, Apr 04 2015

References

  • E.-N. Barisien, Supplemento al Periodico di Matematica, Raffaello Giusti Editore (Livorno), July 1913, p. 135 (Problem 173).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000584 (5th powers), A013665 (zeta(7)), A275710 (eta(7)), A300785.
Cf. A003369 - A003379 (sums of 2, ..., 12 positive seventh powers).

Programs

Formula

Multiplicative with a(p^e) = p^(7e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^7 for primes p. - Jaroslav Krizek, Nov 01 2009
a(n) = 7*a(n-1) - 21* a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + 5040. - Ant King, Sep 24 2013
a(n) = n + Sum_{j=0..n-1}{k=1..6}binomial(7,k)*j^(7-k). - Patrick J. McNab, Mar 28 2016
G.f.: x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/(1-x)^8. See the Maple program. - Wolfdieter Lang, Oct 14 2016
From Kolosov Petro, Oct 22 2018: (Start)
a(n) = Sum_{k=1..n} A300785(n,k).
a(n) = Sum_{k=0..n-1} A300785(n,k). (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(7) (A013665).
Sum_{n>=1} (-1)^(n+1)/a(n) = 63*zeta(7)/64 (A275710). (End)

Extensions

More terms from James Sellers, Sep 19 2000

A013667 Decimal expansion of zeta(9).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 8, 3, 9, 2, 8, 2, 6, 0, 8, 2, 2, 1, 4, 4, 1, 7, 8, 5, 2, 7, 6, 9, 2, 3, 2, 4, 1, 2, 0, 6, 0, 4, 8, 5, 6, 0, 5, 8, 5, 1, 3, 9, 4, 8, 8, 8, 7, 5, 6, 5, 4, 8, 5, 9, 6, 6, 1, 5, 9, 0, 9, 7, 8, 5, 0, 5, 3, 3, 9, 0, 2, 5, 8, 3, 9, 8, 9, 5, 0, 3, 9, 3, 0, 6, 9, 1, 2, 7, 1, 6, 9, 5, 8
Offset: 1

Views

Author

Keywords

Examples

			1.0020083928260822...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

  • Maple
    evalf(Zeta(9)) ; # R. J. Mathar, Oct 16 2015
  • Mathematica
    RealDigits[Zeta[9],10,100][[1]] (* Harvey P. Dale, Aug 27 2014 *)

Formula

From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(9) = Sum_{n >= 1} 1/n^9.
zeta(9) = 2^9/(2^9 - 1)*( Sum_{n even} n^7*p(n)*p(1/n)/(n^2 - 1)^10 ), where p(n) = n^4 + 10*n^2 + 5. See A013663, A013671 and A013675. (End)
zeta(9) = Sum_{n >= 1} (A010052(n)/n^(9/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(9/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(9) = Product_{k>=1} 1/(1 - 1/prime(k)^9). - Vaclav Kotesovec, May 02 2020
From Peter Bala, Apr 27 2025: (Start)
zeta(9) = 1/9! * Integral_{x >= 0} x^9 * exp(x)/(exp(x) - 1)^2 dx = 2^9/(2^9 - 1) * 1/9! * Integral_{x >= 0} x^9 * exp(x)/(exp(x) + 1)^2 dx.
zeta(9) = 1/10! * Integral_{x >= 0} x^10 * exp(x)*(exp(x) + 1)/(exp(x) - 1)^3 dx = 1/(3^5 * 5^3 * 7 * 17) * Integral_{x >= 0} x^10 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)

A013666 Decimal expansion of zeta(8).

Original entry on oeis.org

1, 0, 0, 4, 0, 7, 7, 3, 5, 6, 1, 9, 7, 9, 4, 4, 3, 3, 9, 3, 7, 8, 6, 8, 5, 2, 3, 8, 5, 0, 8, 6, 5, 2, 4, 6, 5, 2, 5, 8, 9, 6, 0, 7, 9, 0, 6, 4, 9, 8, 5, 0, 0, 2, 0, 3, 2, 9, 1, 1, 0, 2, 0, 2, 6, 5, 2, 5, 8, 2, 9, 5, 2, 5, 7, 4, 7, 4, 8, 8, 1, 4, 3, 9, 5, 2, 8, 7, 2, 3, 0, 3, 7, 2, 3, 7, 1, 9, 7
Offset: 1

Views

Author

Keywords

Comments

This sequence is also the decimal expansion of Pi^8/9450. - Mohammad K. Azarian, Mar 03 2008

Examples

			1.00407735619794433937868523850865246525896079064985002032911020265...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

  • Maple
    Digits := 100 : evalf(Pi^8/9450) ; # R. J. Mathar, Jan 07 2021
  • Mathematica
    RealDigits[Zeta[8], 10, 100][[1]] (* Vincenzo Librandi, Feb 15 2015 *)

Formula

zeta(8) = 2/3*2^8/(2^8 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^9 ), where p(n) = 5*n^8 + 60*n^6 + 126*n^4 + 60*n^2 + 5 is a row polynomial of A091043. See A013662, A013664, A013668 and A013670. - Peter Bala, Dec 05 2013
zeta(8) = Sum_{n >= 1} (A010052(n)/n^4). - Mikael Aaltonen, Feb 20 2015
zeta(8) = Product_{k>=1} 1/(1 - 1/prime(k)^8). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020 (Start):
zeta(8) = (1/7!)*Integral_{0..infinity} x^7/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=8, p. 807. The value of the integral is 8*Pi^8/15 = 5060.54987... .
zeta(8) = (2^7/(127*7!))*Integral_{0..infinity} x^7/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=8, p. 807. The prefactor is 8/40005. The value of the integral is (127/240)*Pi^8 = 5021.014329... .(End)
Equals A092736/9450. - R. J. Mathar, Jan 07 2021
From Peter Bala, Apr 27 2025: (Start)
zeta(8) = 1/8! * Integral_{x >= 0} x^8 * exp(x)/(exp(x) - 1)^2 dx = 2^7/(2^7 - 1) * 1/8! * Integral_{x >= 0} x^8 * exp(x)/(exp(x) + 1)^2 dx.
zeta(8) = 1/9! * Integral_{x >= 0} x^9 * exp(x)*(exp(x) + 1) /(exp(x) - 1)^3 dx = 1/(3*15*63*127) * Integral_{x >= 0} x^9 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)

A092759 a(n) = prime(n)^7.

Original entry on oeis.org

128, 2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1

Views

Author

Jorge Coveiro, Apr 13 2004

Keywords

Comments

Seventh powers of prime numbers. - Wesley Ivan Hurt, Mar 27 2014

Examples

			a(1) = 128 since the seventh power of the first prime is 2^7 = 128. - _Wesley Ivan Hurt_, Mar 27 2014
		

Crossrefs

Subsequence of A030626.

Programs

Formula

a(n) = A086874(n-1), n>1. - R. J. Mathar, Sep 08 2008
a(n) = A000040(n)^7 = A001015(A000040(n)). - Wesley Ivan Hurt, Mar 27 2014
Sum_{n>=1} 1/a(n) = P(7) = 0.0082838328... (A085967). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 24 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(7)/zeta(14) = A013665/A013672.
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(7) = 1/A013665. (End)

A085967 Decimal expansion of the prime zeta function at 7.

Original entry on oeis.org

0, 0, 8, 2, 8, 3, 8, 3, 2, 8, 5, 6, 1, 3, 3, 5, 9, 2, 5, 3, 5, 1, 2, 4, 1, 3, 8, 7, 2, 9, 4, 4, 8, 7, 2, 3, 0, 8, 9, 1, 8, 3, 3, 2, 8, 8, 8, 5, 3, 0, 7, 8, 0, 6, 2, 4, 4, 6, 4, 1, 9, 2, 1, 6, 3, 8, 6, 5, 5, 4, 8, 9, 4, 1, 1, 0, 0, 7, 8, 5, 8, 1, 8, 4, 3, 1, 6, 6, 1, 3, 4, 1, 8, 1, 9, 1, 8, 2, 0, 0, 4, 3, 2, 8, 1
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 07 2017

Examples

			0.0082838328561335925351...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085966 (at 6), this sequence (at 7), A085968 (at 8), A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    [0] cat Reverse(IntegerToSequence(Floor(PrimeZeta(7,47)*10^105)));
    // Jason Kimberley, Dec 30 2016
    
  • Mathematica
    s[n_] := s[n] = Join[{0, 0}, Sum[ MoebiusMu[k]*Log[Zeta[7*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104] & // First]; s[100]; s[n = 200]; While[ s[n] != s[n - 100], n = n + 100]; s[n] (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[ PrimeZetaP[ 7], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
  • PARI
    sumeulerrat(1/p,7) \\ Hugo Pfoertner, Feb 03 2020

Formula

P(7) = Sum_{p prime} 1/p^7 = Sum_{n>=1} mobius(n)*log(zeta(7*n))/n.
Equals Sum_{k>=1} 1/A092759(k). - Amiram Eldar, Jul 27 2020

A266553 Decimal expansion of the generalized Glaisher-Kinkelin constant A(6).

Original entry on oeis.org

1, 0, 0, 5, 9, 1, 7, 1, 9, 6, 9, 9, 8, 6, 7, 3, 4, 6, 8, 4, 4, 4, 0, 1, 3, 9, 8, 3, 5, 5, 4, 2, 5, 5, 6, 5, 6, 3, 9, 0, 6, 1, 5, 6, 5, 5, 0, 0, 6, 9, 3, 2, 1, 1, 4, 0, 0, 9, 8, 0, 5, 1, 5, 7, 4, 0, 8, 1, 4, 6, 8, 7, 0, 3, 4, 2, 9, 9, 4, 6, 3, 2, 7, 7, 1, 9, 6, 7, 0, 8, 1, 7, 0, 8, 8, 4, 1, 4, 6, 8, 7, 3, 5, 4, 1, 1, 1, 0, 0, 2, 2, 4, 0, 3
Offset: 1

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 6th Bendersky constant.

Examples

			1.00591719699867346844401398355425565639061565500693211400980...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[6]/4)*(Zeta[7]/Zeta[6]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(6) = exp(- zeta'(-6)) = exp((B(6)/4)*(zeta(7)/zeta(6))).
A(6) = exp(6! * Zeta(7) / (2^7 * Pi^6)). - Vaclav Kotesovec, Jan 01 2016
Showing 1-10 of 66 results. Next