cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A033189 Smallest first term of arithmetic progression of n primes with difference A033188(n).

Original entry on oeis.org

2, 2, 3, 5, 5, 7, 7, 199, 199, 199, 60858179, 147692845283, 14933623, 834172298383, 894476585908771, 1275290173428391, 259268961766921, 1027994118833642281, 1424014323012131633, 1424014323012131633, 28112131522731197609
Offset: 1

Views

Author

Keywords

Comments

The entries shown have been proved to be correct.

Crossrefs

Extensions

More terms from David W. Wilson
a(14) corrected by Gennady Gusev, Jul 07 2004
Oct 05 2004: Gennady Gusev reports that Jens Kruse Andersen found a(15) and that Gennady Gusev and Jens Kruse Andersen together found a(16) and a(17).
a(19)=a(20) found by Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Dec 02 2008
a(21) found by Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Dec 12 2008

A113872 Last term of n-term arithmetic progression of primes described in A033188 and A033189.

Original entry on oeis.org

2, 3, 7, 23, 29, 157, 907, 1669, 1879, 2089, 60881279, 147692870693, 15293983, 834172688773, 894476586329191, 1275290173878841, 259268969935081, 1027994118842320951, 1424014323186726053, 1424014323196425743, 28112131522925191409
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2006

Keywords

Comments

The entries shown have been proved to be correct.
See A033188 and A033189 for further information.

Formula

a(n) = A033189(n) + (n-1)*A033188(n). - Jens Kruse Andersen, Jun 14 2014

Extensions

a(19)-a(21) found by Jaroslaw Wroblewski, added by Jens Kruse Andersen, Jun 14 2014

A133276 Triangle read by rows: row n gives the first arithmetic progression of n primes with minimal distance, cf. A033188.

Original entry on oeis.org

2, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 7, 157, 307, 457, 607, 757, 907, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 60858179, 60860489, 60862799, 60865109, 60867419, 60869729, 60872039, 60874349, 60876659, 60878969, 60881279
Offset: 1

Views

Author

N. J. A. Sloane, Oct 17 2007

Keywords

Comments

The first 10 rows (i.e., 55 terms) are the same as for A133277 (where the final term is minimal), but here a(56) = T(11,1) = 608581797 while A133277(11,1) = 110437. - M. F. Hasler, Jan 02 2020

Examples

			Triangle begins:
    2
    2   3
    3   5   7
    5  11  17  23
    5  11  17  23   29
    7  37  67  97  127  157
    7 157 307 457  607  757  907
  199 409 619 829 1039 1249 1459 1669
  199 409 619 829 1039 1249 1459 1669 1879
  199 409 619 829 1039 1249 1459 1669 1879 2089
  ...
Row 10 is the same as in A086786, A113470, A133277, and listed as A033168. - _M. F. Hasler_, Jan 02 2020
		

Crossrefs

For common differences see A033188, for initial terms see A033189.
Different from A133277 (from T(11,1) = a(56) on).

Programs

  • Maple
    AP:=proc(i,d,l) [seq(i + (j-1)*d, j=1..l )]; end;

A354743 Smallest first term of arithmetic progression of exactly n primes with difference A033188(n).

Original entry on oeis.org

2, 2, 3, 41, 5, 7, 7, 881, 3499, 199, 60858179, 147692845283, 14933623, 834172298383, 894476585908771, 1275290173428391, 259268961766921, 1027994118833642281
Offset: 1

Views

Author

Bernard Schott, Jun 05 2022

Keywords

Comments

Equivalently: Let i, i+d, i+2d, ..., i+(n-1)d be an arithmetic progression of exactly n primes; choose the first one which minimizes the common difference d; then a(n) = i.
The word "exactly" requires both i-d and i+n*d to be nonprime.
For the corresponding values of the last term, see A354744.
Without "exactly", we get A033189.
The primes in these arithmetic progressions need not be consecutive.
a(n) != A033189(n) for n = 4, 8, 9, 19 because in these particular cases A113872(n) + A033188(n) is prime.
a(8) = 881 and a(9) = 3499 found by Michael S. Branicky come from A354377.
a(19) > A033189(19) = 1424014323012131633 is not known, it is the smallest first term of an arithmetic progression of exactly 19 primes with a common difference d = 9699690; then a(20) = 1424014323012131633 and a(21) = 28112131522731197609.

Examples

			The first few corresponding arithmetic progressions are:
n = 1 and d = 0:   (2);
n = 2 and d = 1:   (2, 3);
n = 3 and d = 2:   (3, 5, 7);
n = 4 and d = 6:   (41, 47, 53, 59);
n = 5 and d = 6:   (5, 11, 17, 23, 29);
n = 6 and d = 30:  (7, 37, 67, 97, 127, 157);
n = 7 and d = 150: (7, 157, 307, 457, 607, 757, 907);
n = 8 and d = 210: (881, 1091,1301, 1511, 1721, 1931, 2141, 2351).
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A5, Arithmetic progressions of primes, pp. 25-28.

Crossrefs

A354744 Last term of arithmetic progression of exactly n primes with difference A033188(n) and first term = A354743(n).

Original entry on oeis.org

2, 3, 7, 59, 29, 157, 907, 2351, 5179, 2089, 60881279, 147692870693, 15293983, 834172688773, 894476586329191, 1275290173878841, 259268969935081, 1027994118842320951
Offset: 1

Views

Author

Bernard Schott, Jun 05 2022

Keywords

Comments

Equivalently: Let i, i+d, i+2d, ..., i+(n-1)d be an arithmetic progression of exactly n primes; choose the first one which minimizes the common difference d; then a(n) = i+(n-1)d.
The word "exactly" requires both i-d and i+n*d to be nonprime.
Without "exactly", we get A113872.
The primes in these arithmetic progressions need not be consecutive.
a(n) != 113872(n) for n = 4, 8, 9, 19 because in these particular cases A113872(n) + A033188(n) is prime.
a(8) = 2351 and a(9) = 5179, found by Michael S. Branicky come from A354376.
a(19) > A113872(19) = 1424014323186726053 is not known, it is the last term of the arithmetic progression of exactly 19 primes with a common difference d = 9699690 and first term = A354743(19); then a(20) = 1424014323196425743 and a(21) = 28112131522925191409.

Examples

			The first few corresponding arithmetic progressions are:
n = 1 and d = 0:   (2);
n = 2 and d = 1:   (2, 3);
n = 3 and d = 2:   (3, 5, 7);
n = 4 and d = 6:   (41, 47, 53, 59);
n = 5 and d = 6:   (5, 11, 17, 23, 29);
n = 6 and d = 30:  (7, 37, 67, 97, 127, 157);
n = 7 and d = 150: (7, 157, 307, 457, 607, 757, 907);
n = 8 and d = 210: (881, 1091,1301, 1511, 1721, 1931, 2141, 2351).
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A5, Arithmetic progressions of primes, pp. 25-28.

Crossrefs

A002110 Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0

Views

Author

Keywords

Comments

See A034386 for the second definition of primorial numbers: product of primes in the range 2 to n.
a(n) is the least number N with n distinct prime factors (i.e., omega(N) = n, cf. A001221). - Lekraj Beedassy, Feb 15 2002
Phi(n)/n is a new minimum for each primorial. - Robert G. Wilson v, Jan 10 2004
Smallest number stroked off n times after the n-th sifting process in an Eratosthenes sieve. - Lekraj Beedassy, Mar 31 2005
Apparently each term is a new minimum for phi(x)*sigma(x)/x^2. 6/Pi^2 < sigma(x)*phi(x)/x^2 < 1 for n > 1. - Jud McCranie, Jun 11 2005
Let f be a multiplicative function with f(p) > f(p^k) > 1 (p prime, k > 1), f(p) > f(q) > 1 (p, q prime, p < q). Then the record maxima of f occur at n# for n >= 1. Similarly, if 0 < f(p) < f(p^k) < 1 (p prime, k > 1), 0 < f(p) < f(q) < 1 (p, q prime, p < q), then the record minima of f occur at n# for n >= 1. - David W. Wilson, Oct 23 2006
Wolfe and Hirshberg give ?, ?, ?, ?, ?, 30030, ?, ... as a puzzle.
Records in number of distinct prime divisors. - Artur Jasinski, Apr 06 2008
For n >= 2, the digital roots of a(n) are multiples of 3. - Parthasarathy Nambi, Aug 19 2009 [with corrections by Zak Seidov, Aug 30 2015]
Denominators of the sum of the ratios of consecutive primes (see A094661). - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Where record values occur in A001221. - Melinda Trang (mewithlinda(AT)yahoo.com), Apr 15 2010
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i = 0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
The above comment from Parthasarathy Nambi follows from the observation that digit summing produces a congruent number mod 9, so the digital root of any multiple of 3 is a multiple of 3. prime(n)# is divisible by 3 for n >= 2. - Christian Schulz, Oct 30 2013
The peaks (i.e., local maximums) in a graph of the number of repetitions (i.e., the tally of values) vs. value, as generated by taking the differences of all distinct pairs of odd prime numbers within a contiguous range occur at regular periodic intervals given by the primorial numbers 6 and greater. Larger primorials yield larger (relative) peaks, however the range must be >50% larger than the primorial to be easily observed. Secondary peaks occur at intervals of those "near-primorials" divisible by 6 (e.g., 42). See A259629. Also, periodicity at intervals of 6 and 30 can be observed in the local peaks of all possible sums of two, three or more distinct odd primes within modest contiguous ranges starting from p(2) = 3. - Richard R. Forberg, Jul 01 2015
If a number k and a(n) are coprime and k < (prime(n+1))^b < a(n), where b is an integer, then k has fewer than b prime factors, counting multiplicity (i.e., bigomega(k) < b, cf. A001222). - Isaac Saffold, Dec 03 2017
If n > 0, then a(n) has 2^n unitary divisors (A034444), and a(n) is a record; i.e., if k < a(n) then k has fewer unitary divisors than a(n) has. - Clark Kimberling, Jun 26 2018
Unitary superabundant numbers: numbers k with a record value of the unitary abundancy index, A034448(k)/k > A034448(m)/m for all m < k. - Amiram Eldar, Apr 20 2019
Psi(n)/n is a new maximum for each primorial (psi = A001615) [proof in link: Patrick Sole and Michel Planat, proposition 1 page 2]; compare with comment 2004: Phi(n)/n is a new minimum for each primorial. - Bernard Schott, May 21 2020
The term "primorial" was coined by Harvey Dubner (1987). - Amiram Eldar, Apr 16 2021
a(n)^(1/n) is approximately (n log n)/e. - Charles R Greathouse IV, Jan 03 2023
Subsequence of A267124. - Frank M Jackson, Apr 14 2023

Examples

			a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
  • D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.

Crossrefs

A034386 gives the second version of the primorial numbers.
Subsequence of A005117 and of A064807. Apart from the first term, a subsequence of A083207.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Cf. A061720 (first differences), A143293 (partial sums).
Cf. also A276085, A276086.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Haskell
    a002110 n = product $ take n a000040_list
    a002110_list = scanl (*) 1 a000040_list
    -- Reinhard Zumkeller, Feb 19 2012, May 03 2011
    
  • Magma
    [1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
    
  • Magma
    [1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
    
  • Maple
    A002110 := n -> mul(ithprime(i),i=1..n);
  • Mathematica
    FoldList[Times, 1, Prime[Range[20]]]
    primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *)
    Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
    
  • PARI
    p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) )  \\ Harry J. Smith, Nov 13 2009
    
  • PARI
    a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
    
  • Python
    from sympy import primorial
    def a(n): return 1 if n < 1 else primorial(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Mar 29 2017
    
  • Sage
    [sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
    
  • Scheme
    ; with memoization-macro definec
    (definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016

Formula

Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A054842(A002275(n)).
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
a(A051838(n)) = A116536(n) * A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
a(n) = A035345(n) - A005235(n) for n > 0. - Jonathan Sondow, Dec 02 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
A054841(a(n)) = A002275(n). - Michael De Vlieger, Aug 31 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
Theta being Chebyshev's theta function, a(0) = exp(theta(1)), and for n > 0, a(n) = exp(theta(m)) for A000040(n) <= m < A000040(n+1) where m is an integer. - Miles Englezou, Nov 26 2024

A005115 Let i, i+d, i+2d, ..., i+(n-1)d be an n-term arithmetic progression of primes; choose the one which minimizes the last term; then a(n) = last term i+(n-1)d.

Original entry on oeis.org

2, 3, 7, 23, 29, 157, 907, 1669, 1879, 2089, 249037, 262897, 725663, 36850999, 173471351, 198793279, 4827507229, 17010526363, 83547839407, 572945039351, 6269243827111
Offset: 1

Views

Author

Keywords

Comments

In other words, smallest prime which is at the end of an arithmetic progression of n primes.
For the corresponding values of the first term and the common difference, see A113827 and A093364. For the actual arithmetic progressions, see A133277.
One may also minimize the common difference: this leads to A033189, A033188 and A113872.
One may also specify that the first term is the n-th prime and then minimize the common difference (or, equally, the last term): this leads to A088430 and A113834.
One may also ask for n consecutive primes in arithmetic progression: this gives A006560.

Examples

			n, AP, last term
1 2 2
2 2+j 3
3 3+2j 7
4 5+6j 23
5 5+6j 29
6 7+30j 157
7 7+150j 907
8 199+210j 1669
9 199+210j 1879
10 199+210j 2089
11 110437+13860j 249037
12 110437+13860j 262897
..........................
a(11)=249037 since 110437,124297,...,235177,249037 is an arithmetic progression of 11 primes ending with 249037 and it is the least number with this property.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For the associated gaps, see A093364. For the initial terms, see A113827. For the arithmetic progressions, see A133277.

Programs

  • Mathematica
    (* This program will generate the 4 to 12 terms to use a[n_] to generate term 13 or higher, it will have a prolonged run time. *) a[n_] := Module[{i, p, found, j, df, k}, i = 1; While[i++; p = Prime[i]; found = 0; j = 0; While[j++; df = 6*j; (p > ((n - 1)*df)) && (found == 0), found = 1; Do[If[! PrimeQ[p - k*df], found = 0], {k, 1, n - 1}]]; found == 0]; p]; Table[a[i], {i, 4, 12}]

Formula

Green & Tao prove that this sequence is infinite, and further a(n) < 2^2^2^2^2^2^2^2^O(n). Granville conjectures that a(n) <= n! + 1 for n >= 3 and give a heuristic suggesting a(n) is around (exp(1-gamma) n/2)^(n/2). - Charles R Greathouse IV, Feb 26 2013

Extensions

a(11)-a(13) from Michael Somos, Mar 14 2004
a(14) and corrected version of a(7) from Hugo Pfoertner, Apr 27 2004
a(15)-a(17) from Don Reble, Apr 27 2004
a(18)-a(21) from Granville's paper, Jan 26 2006
Entry revised by N. J. A. Sloane, Jan 26 2006, Oct 17 2007

A204189 Benoît Perichon's 26 primes in arithmetic progression.

Original entry on oeis.org

43142746595714191, 48425980631694091, 53709214667673991, 58992448703653891, 64275682739633791, 69558916775613691, 74842150811593591, 80125384847573491, 85408618883553391, 90691852919533291, 95975086955513191, 101258320991493091, 106541555027472991, 111824789063452891, 117108023099432791, 122391257135412691, 127674491171392591, 132957725207372491, 138240959243352391, 143524193279332291, 148807427315312191, 154090661351292091, 159373895387271991, 164657129423251891, 169940363459231791, 175223597495211691
Offset: 1

Views

Author

Jonathan Sondow, Jan 14 2012

Keywords

Comments

Longest known arithmetic progression of primes as of Jan 14, 2012.
Discovered on Apr 12 2010 by Benoît Perichon using software by Jaroslaw Wroblewski and Geoff Reynolds in a distributed PrimeGrid project.

References

  • R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag, 1994, A5 and A6.
  • P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1989, p. 224.

Crossrefs

Programs

  • Mathematica
    a[1] := 43142746595714191; a[n_] := a[n] = a[n - 1] + 5283234035979900; Table[a[n], {n, 26}] (* Alonso del Arte, Jan 14 2012 *)
    Range[ 43142746595714191, 175223597495211691, 5283234035979900] (* Michael Somos, Jan 15 2012 *)
  • PARI
    a(n)=5283234035979900*n+37859512559734291 \\ Charles R Greathouse IV, Jan 15 2012

Formula

a(n) = 43142746595714191 + 5283234035979900*(n-1) for n = 1, 2, ..., 26.
a(n) = 43142746595714191 + 23681770*23#*(n-1) for n = 1..26, where 23# = 2*3*5*7*11*13*17*19*23 = 223092870 = A002110(9).

A261140 a(n) = 3486107472997423 + (n-1)*371891575525470.

Original entry on oeis.org

3486107472997423, 3857999048522893, 4229890624048363, 4601782199573833, 4973673775099303, 5345565350624773, 5717456926150243, 6089348501675713, 6461240077201183, 6833131652726653, 7205023228252123, 7576914803777593, 7948806379303063, 8320697954828533
Offset: 1

Views

Author

Marco Ripà, Aug 10 2015

Keywords

Comments

The terms n = 1..26 are prime. This is the longest sequence of primes in arithmetic progression with smallest end, a(26)=12783396861134173, known as of August 10, 2015.

Examples

			a(26) = 3486107472997423 + 25*371891575525470 = 12783396861134173 is prime.
		

Crossrefs

Programs

  • Magma
    [3486107472997423+(n-1)*371891575525470: n in [1..20]];
    
  • Mathematica
    Table[3486107472997423 + (n - 1) 371891575525470, {n, 1, 20}]
    LinearRecurrence[{2,-1},{3486107472997423,3857999048522893},20] (* Harvey P. Dale, May 14 2022 *)
  • PARI
    Vec(-x*(3114215897471953*x-3486107472997423)/(x-1)^2 + O(x^40)) \\ Colin Barker, Aug 25 2015

Formula

a(n) = 3486107472997423 + (n-1)*1666981*A002110(9).
G.f.: -x*(3114215897471953*x-3486107472997423) / (x-1)^2. - Colin Barker, Aug 25 2015

A033290 Ten consecutive primes in arithmetic progression.

Original entry on oeis.org

100996972469714247637786655587969840329509324689190041803603417758904341703348882159067229719, 100996972469714247637786655587969840329509324689190041803603417758904341703348882159067229929, 100996972469714247637786655587969840329509324689190041803603417758904341703348882159067230139
Offset: 0

Views

Author

Keywords

Comments

This was the first known case, found in 1998. The full 10 terms are linked below. - Jens Kruse Andersen, Jun 30 2014

Crossrefs

Formula

N*m + x + 210*b, b = 0..9.
a(n) = a(0)+210*n, and a(n+1) = nextprime(a(n)+1). - Jens Kruse Andersen, Jun 30 2014
Showing 1-10 of 15 results. Next