cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A349483 Length of cycle reached when iterating the mapping x-> n*A035116(x) on 1.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 5, 2, 2, 7, 2, 1, 2, 5, 6, 1, 2, 2, 2, 3, 2, 2, 2, 1, 1, 2, 4, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 3, 2, 4, 2, 1, 3, 2, 2, 4, 3, 6, 1, 1, 2, 2, 3, 3, 1, 2, 2, 4, 2, 2, 1, 3, 3, 3, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 2, 8, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 1, 1, 1, 2, 3, 1, 2, 4, 1, 2
Offset: 1

Views

Author

Tejo Vrush, Nov 19 2021

Keywords

Comments

The terms 1-25 all appear below 10^8; the last of these are a(12545280) = 21, a(12684672) = 24, and a(96940800) = 25. - Charles R Greathouse IV, Nov 23 2021

Examples

			For n = 2, 1 --> 2 --> 8 --> 32 --> 72 --> 288 --> 648 --> 800 --> 648. The cycle reached has just two terms: 648 and 800. Therefore, a(2) = 2.
		

Crossrefs

Cf. A035116.
Similar sequences: A349410.

Programs

  • Mathematica
    a[n_] := Module[{s = NestWhileList[n*DivisorSigma[0, #]^2 &, 1, UnsameQ, All]}, Differences[Position[s, s[[-1]]]][[1, 1]]]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    brent(f,x)=my(pow=1,lam=1,tortoise=x,hare=f(x)); while(tortoise!=hare, if(pow==lam, tortoise=hare; pow<<=1; lam=0); hare=f(hare); lam++); lam
    a(n)=brent(k->n*numdiv(k)^2,1) \\ Charles R Greathouse IV, Nov 19 2021

A048691 a(n) = d(n^2), where d(k) = A000005(k) is the number of divisors of k.

Original entry on oeis.org

1, 3, 3, 5, 3, 9, 3, 7, 5, 9, 3, 15, 3, 9, 9, 9, 3, 15, 3, 15, 9, 9, 3, 21, 5, 9, 7, 15, 3, 27, 3, 11, 9, 9, 9, 25, 3, 9, 9, 21, 3, 27, 3, 15, 15, 9, 3, 27, 5, 15, 9, 15, 3, 21, 9, 21, 9, 9, 3, 45, 3, 9, 15, 13, 9, 27, 3, 15, 9, 27, 3, 35, 3, 9, 15, 15, 9, 27, 3, 27
Offset: 1

Views

Author

Keywords

Comments

Inverse Moebius transform of A034444: Sum_{d|n} 2^omega(d), where omega(n) = A001221(n) is the number of distinct primes dividing n.
Number of elements in the set {(x,y): x|n, y|n, gcd(x,y)=1}.
Number of elements in the set {(x,y): lcm(x,y)=n}.
Also gives total number of positive integral solutions (x,y), order being taken into account, to the optical or parallel resistor equation 1/x + 1/y = 1/n. Indeed, writing the latter as X*Y=N, with X=x-n, Y=y-n, N=n^2, the one-to-one correspondence between solutions (X, Y) and (x, y) is obvious, so that clearly, the solution pairs (x, y) are tau(N)=tau(n^2) in number. - Lekraj Beedassy, May 31 2002
Number of ordered pairs of positive integers (a,c) such that n^2 - ac = 0. Therefore number of quadratic equations of the form ax^2 + 2nx + c = 0 where a,n,c are positive integers and each equation has two equal (rational) roots, -n/a. (If a and c are positive integers, but, instead, the coefficient of x is odd, it is impossible for the equation to have equal roots.) - Rick L. Shepherd, Jun 19 2005
Problem A1 on the 21st Putnam competition in 1960 (see John Scholes link) asked for the number of pairs of positive integers (x,y) such that xy/(x+y) = n: the answer is a(n); for n = 4, the a(4) = 5 solutions (x,y) are (5,20), (6,12), (8,8), (12,6), (20,5). - Bernard Schott, Feb 12 2023
Numbers k such that a(k)/d(k) is an integer are in A217584 and the corresponding quotients are in A339055. - Bernard Schott, Feb 15 2023

References

  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competitions, Problems & Solutions:1938-1960 Soln. to Prob. 1 1960, p. 516, MAA, 1980.
  • Ross Honsberger, More Mathematical Morsels, Morsel 43, pp. 232-3, DMA No. 10 MAA, 1991.
  • Loren C. Larson, Problem-Solving Through Problems, Prob. 3.3.7, p. 102, Springer 1983.
  • Alfred S. Posamentier and Charles T. Salkind, Challenging Problems in Algebra, Prob. 9-9 pp. 143 Dover NY, 1988.
  • D. O. Shklarsky et al., The USSR Olympiad Problem Book, Soln. to Prob. 123, pp. 28, 217-8, Dover NY.
  • Wacław Sierpiński, Elementary Theory of Numbers, pp. 71-2, Elsevier, North Holland, 1988.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.
  • Charles W. Trigg, Mathematical Quickies, Question 194, pp. 53, 168, Dover, 1985.

Crossrefs

Partial sums give A061503.
For similar LCM sequences, see A070919, A070920, A070921.
For the earliest occurrence of 2n-1 see A016017.

Programs

Formula

a(n) = A000005(A000290(n)).
tau(n^2) = Sum_{d|n} mu(n/d)*tau(d)^2, where mu(n) = A008683(n), cf. A061391.
Multiplicative with a(p^e) = 2e+1. - Vladeta Jovovic, Jul 23 2001
Also a(n) = Sum_{d|n} (tau(d)*moebius(n/d)^2), Dirichlet convolution of A000005 and A008966. - Benoit Cloitre, Sep 08 2002
a(n) = A055205(n) + A000005(n). - Reinhard Zumkeller, Dec 08 2009
Dirichlet g.f.: (zeta(s))^3/zeta(2s). - R. J. Mathar, Feb 11 2011
a(n) = Sum_{d|n} 2^omega(d). Inverse Mobius transform of A034444. - Enrique Pérez Herrero, Apr 14 2012
G.f.: Sum_{k>=1} 2^omega(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 10 2018
Sum_{k=1..n} a(k) ~ n*(6/Pi^2)*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023

Extensions

Additional comments from Vladeta Jovovic, Apr 29 2001

A062319 Number of divisors of n^n, or of A000312(n).

Original entry on oeis.org

1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

From Gus Wiseman, May 02 2021: (Start)
Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5)
(2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1)
(3,1,1) (1,1,2,1) (1,1,5,1,1)
(1,1,4,1) (1,5,1,1,1)
(1,2,1,1) (5,1,1,1,1)
(1,4,1,1)
(2,1,1,1)
(4,1,1,1)
The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654.
(End)

Examples

			From _Gus Wiseman_, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
  1  1  1   1    1
     2  3   2    5
     4  9   4    25
        27  8    125
            16   625
            32   3125
            64
            128
            256
(End)
		

Crossrefs

Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.

Programs

  • Magma
    [NumberOfDivisors(n^n): n in  [0..60]]; // Vincenzo Librandi, Nov 09 2014
    
  • Mathematica
    A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
    Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
  • PARI
    je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
    
  • PARI
    { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
    
  • PARI
    a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A000005(A000312(n)). - Enrique Pérez Herrero, Nov 09 2010
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021

A184389 a(n) = Sum_{k=1..tau(n)} k, where tau is the number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 3, 6, 3, 10, 3, 10, 6, 10, 3, 21, 3, 10, 10, 15, 3, 21, 3, 21, 10, 10, 3, 36, 6, 10, 10, 21, 3, 36, 3, 21, 10, 10, 10, 45, 3, 10, 10, 36, 3, 36, 3, 21, 21, 10, 3, 55, 6, 21, 10, 21, 3, 36, 10, 36, 10, 10, 3, 78, 3, 10, 21, 28, 10, 36, 3, 21, 10, 36, 3, 78
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Comments

Length of row n in triangle A187207. - Omar E. Pol, Aug 07 2011
Number of pairs of even divisors of 2n, (d1,d2), such that d1<=d2. - Wesley Ivan Hurt, Aug 24 2020

Examples

			For n = 4; tau(4) = 3; a(4) = 1+2+3 = 6.
		

Crossrefs

Cf. A000005 (tau), A000217 (triangular numbers).

Programs

Formula

a(n) = A000217(A000005(n)) = (1/2)*A000005(n)*(A000005(n)+1).
a(n) = A066446(n) + A000005(n) = A035116(n) - A066446(n). - Reinhard Zumkeller, Sep 08 2015
Dirichlet g.f.: zeta(s)^2*(zeta(s)^2 + zeta(2*s))/(2*zeta(2*s)). - Ilya Gutkovskiy, Jun 25 2016
a(n) = Sum_{d1|(2*n), d2|(2*n), d1 and d2 even, d1<=d2} 1. - Wesley Ivan Hurt, Aug 24 2020
a(n) = Sum_{d|n} A018892(d). - Daniel Suteu, Jan 08 2021
a(n) = Sum_{d|n} A135539(n,d). - Ridouane Oudra, May 29 2025
a(n) = A337362(n) + A129308(n). - Ridouane Oudra, May 30 2025

A061502 a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.

Original entry on oeis.org

1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
  • Mathematica
    Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *)
    Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
    

Formula

a(n) = Sum_{k=1..n} tau(k^2)*floor(n/k).
Asymptotic to A*n*log(n)^3 + B*n*log(n)^2 + C*n*log(n) + D*n + O(n^(1/2+eps)) where A = 1/Pi^2 and B = (12*gamma-3)/Pi^2 - 36*zeta'(2)/Pi^4. [corrected by Vaclav Kotesovec, Aug 30 2018]
C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2 and D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 10 2018
See Cully-Hugill & Trudgian, Theorem 2, for an explicit version of the asymptotic given above. - Charles R Greathouse IV, Nov 19 2019

Extensions

Definition corrected by N. J. A. Sloane, May 25 2008

A066446 Number of unordered divisor pairs of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 6, 3, 6, 1, 15, 1, 6, 6, 10, 1, 15, 1, 15, 6, 6, 1, 28, 3, 6, 6, 15, 1, 28, 1, 15, 6, 6, 6, 36, 1, 6, 6, 28, 1, 28, 1, 15, 15, 6, 1, 45, 3, 15, 6, 15, 1, 28, 6, 28, 6, 6, 1, 66, 1, 6, 15, 21, 6, 28, 1, 15, 6, 28, 1, 66, 1, 6, 15, 15, 6, 28, 1, 45, 10, 6, 1, 66, 6, 6, 6, 28
Offset: 1

Views

Author

Robert G. Wilson v, Dec 28 2001

Keywords

Examples

			The divisors of 6 are 1, 2, 3 & 6. In unordered pairs they are {1, 2}, {1, 3}, {1, 6}, {2, 3}, {2, 6}, & {3, 6}. Since there are six pairs, a(6) = 6. Also d(6) = 4. 4*3/2 = 6.
		

Crossrefs

Programs

  • Haskell
    a066446 = a000217 . subtract 1 . a000005'
    -- Reinhard Zumkeller, Sep 08 2015
  • Maple
    with(numtheory): seq(tau(n)*(tau(n)-1)/2, n=1..60); # Ridouane Oudra, Apr 15 2023
  • Mathematica
    Table[ Binomial[ DivisorSigma[0, n], 2], {n, 1, 100}]
  • PARI
    { for (n=1, 1000, a=binomial(numdiv(n), 2); write("b066446.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 15 2010
    

Formula

a(p) = 1 iff p is a prime.
Combinations of d(n), the number of divisors of n (A000005), taken two at a time. If the canonical factorization of n into prime powers is Product p^e(p) then d(n) = Product (e(p) + 1). Therefore a(n) = C(d(n), 2) = d(n)*{ d(n)-1 }/2 which is a triangular number (A000217).
a(n) = A184389(n) - A000005(n) = A035116(n) - A184389(n). - Reinhard Zumkeller, Sep 08 2015
a(n) = A000217(A000005(n)-1). - Antti Karttunen, Sep 21 2018
a(n) = Sum_{k|n, i|n, i < k} 1. - Wesley Ivan Hurt, Aug 20 2020
a(n) = Sum_{d|n} A063647(d). - Ridouane Oudra, Apr 15 2023

A061391 a(n) = t(n,3) = Sum_{d|n} tau(d^3), where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 5, 5, 12, 5, 25, 5, 22, 12, 25, 5, 60, 5, 25, 25, 35, 5, 60, 5, 60, 25, 25, 5, 110, 12, 25, 22, 60, 5, 125, 5, 51, 25, 25, 25, 144, 5, 25, 25, 110, 5, 125, 5, 60, 60, 25, 5, 175, 12, 60, 25, 60, 5, 110, 25, 110, 25, 25, 5, 300, 5, 25, 60, 70, 25, 125, 5, 60, 25, 125, 5, 264
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2001

Keywords

Comments

Inverse Mobius transform of A048785. - R. J. Mathar, Feb 09 2011

Crossrefs

Cf. t(n, 0) = A000005(n), t(n, 1) = A007425(n), t(n, 2) = A035116(n).
Cf. A048691.

Programs

  • Mathematica
    f[p_, e_] := (3*e^2 + 5*e + 2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    A061391 = n -> sumdiv(n, d, numdiv(d^3));
    for(n=1, 10000, write("b061391.txt", n, " ", A061391(n)));
    \\ Antti Karttunen, Jan 17 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^5)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021

Formula

t(n, k) = Sum_{d|n} tau(d^k) is multiplicative: if the canonical factorization of n = Product p^e(p) over primes then t(n, k) = Product t(p^e(p), k), t(p^e(p), k) = (1/2) *(k*e(p)+2)*(e(p)+1).
For k=2 we get an interesting identity: Sum_{d|n} tau(d^2)=(tau(n))^2, cf. A048691, A035116.
a(n) = Sum_{d|n} tau(n*d). - Benoit Cloitre, Nov 30 2002
G.f.: Sum_{n>=1} tau(n^3)*x^n/(1-x^n). - Joerg Arndt, Jan 01 2011
Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 + 2/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021

A062367 Multiplicative with a(p^e) = (e+1)*(e+2)*(2*e+3)/6.

Original entry on oeis.org

1, 5, 5, 14, 5, 25, 5, 30, 14, 25, 5, 70, 5, 25, 25, 55, 5, 70, 5, 70, 25, 25, 5, 150, 14, 25, 30, 70, 5, 125, 5, 91, 25, 25, 25, 196, 5, 25, 25, 150, 5, 125, 5, 70, 70, 25, 5, 275, 14, 70, 25, 70, 5, 150, 25, 150, 25, 25, 5, 350, 5, 25, 70, 140, 25, 125, 5, 70, 25, 125, 5
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Crossrefs

Programs

  • Maple
    A062367 := proc(n)
        add(numtheory[tau](d)^2,d=numtheory[divisors](n)) ;
    end proc:
    seq(A062367(n),n=1..40) ; # R. J. Mathar, May 15 2025
  • Mathematica
    {1}~Join~Array[Times @@ Map[((# + 1) (# + 2) (2 # + 3))/6 &, FactorInteger[#][[All, -1]] ] &, 70, 2] (* or *)
    Array[DivisorSum[#, DivisorSigma[0, #]^2 &] &, 71] (* Michael De Vlieger, Mar 05 2021 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d)^2) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = Sum_{i|n, j|n} tau(gcd(i, j)) = Sum_{d|n} tau(d)^2.
a(n) = Sum_{i|n, j|n} tau(i)*tau(j)/tau(lcm(i, j)), where tau(n) = number of divisors of n, cf. A000005.
Dirichlet convolution of A035116 and A000012 (i.e., inverse Mobius transform of A035116). Dirichlet g.f.: zeta^5(s)/zeta(2s). - R. J. Mathar, Feb 03 2011
G.f.: Sum_{n>=1} A000005(n)^2*x^n/(1-x^n). - Mircea Merca, Feb 26 2014
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(tau(k)^2/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
Dirichlet convolution of A007426 and A008966. Dirichlet convolution of A007425 and A034444. - R. J. Mathar, Jun 05 2020
Let b(n), n > 0, be Dirichlet inverse of a(n). Then b(n) is multiplicative with b(p^e) = (-1)^e*(Sum_{i=0..e} binomial(4,i)) for prime p and e >= 0, where binomial(n,k)=0 if n < k; abs(b(n)) is multiplicative and has the Dirichlet g.f.: (zeta(s))^5/(zeta(2*s))^4. - Werner Schulte, Feb 07 2021
a(n) = Sum_{d divides n} tau(d^2)*tau(n/d), Dirichlet convolution of A048691 and A000005. - Peter Bala, Jan 26 2024

A062369 Dirichlet convolution of n and tau^2(n).

Original entry on oeis.org

1, 6, 7, 21, 9, 42, 11, 58, 30, 54, 15, 147, 17, 66, 63, 141, 21, 180, 23, 189, 77, 90, 27, 406, 54, 102, 106, 231, 33, 378, 35, 318, 105, 126, 99, 630, 41, 138, 119, 522, 45, 462, 47, 315, 270, 162, 51, 987, 86, 324, 147, 357, 57, 636, 135, 638, 161, 198, 63, 1323
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Comments

Dirichlet convolution of A000027 and A035116.
Inverse Mobius transform of A060724. - R. J. Mathar, Oct 15 2011

Crossrefs

Programs

  • Magma
    [&+[d*#Divisors(Floor(n/d))^2:d in Divisors(n)]:n in [1..60]]; // Marius A. Burtea, Aug 25 2019
  • Mathematica
    a[n_] := Sum[ DivisorSigma[1, i]*DivisorSigma[1, j] / DivisorSigma[1, LCM[i, j]], {i, Divisors[n]}, {j, Divisors[n]}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 26 2013 *)
  • PARI
    a(n) = sumdiv(n, d, d*numdiv(n/d)^2); \\ Michel Marcus, Nov 03 2018
    

Formula

a(n) = Sum_{i|n, j|n} sigma(i)*sigma(j)/sigma(lcm(i,j)), where sigma(n) = sum of divisors of n.
a(n) = Sum_{i|d, j|d} sigma(gcd(i, j));
a(n) = Sum_{d|n} d*tau(n/d)^2, where tau(n) = number of divisors of n.
Multiplicative with a(p^e) = (1-p^(3+e)-p^(2+e)+e^2+4*p^2+p^2*e^2+2*e-3*p+4*p^2*e-6*e*p-2*e^2*p)/(1-p)^3.
Dirichlet g.f.: (zeta(s))^4*zeta(s-1)/zeta(2*s). - R. J. Mathar, Feb 09 2011
G.f.: Sum_{k>=1} tau(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
Sum_{k=1..n} a(k) ~ 5 * Pi^4 * n^2 / 144. - Vaclav Kotesovec, Jan 28 2019
a(n) = Sum_{d|n} tau(d^2)*sigma(n/d), where tau(n) = number of divisors of n, and sigma(n) = sum of divisors of n. - Ridouane Oudra, Aug 25 2019

A321348 a(n) = Sum_{d|n} tau(d^n), where tau() is the number of divisors (A000005).

Original entry on oeis.org

1, 4, 5, 15, 7, 64, 9, 52, 30, 144, 13, 546, 15, 256, 289, 165, 19, 1140, 21, 1386, 529, 576, 25, 3848, 78, 784, 166, 2610, 31, 32768, 33, 486, 1225, 1296, 1369, 12321, 39, 1600, 1681, 10248, 43, 85184, 45, 6210, 6486, 2304, 49, 24250, 150, 7956
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 06 2018

Keywords

Comments

a(n) is prime iff n is in A001359, which makes the sequence a supersequence of A006512. - Ivan N. Ianakiev, Nov 07 2018

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(d^n): d in Divisors(n)]: n in [1..50]]; // Vincenzo Librandi, Nov 08 2018
    
  • Maple
    with(numtheory): seq(coeff(series(add(tau(k^n)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
  • Mathematica
    Table[Sum[DivisorSigma[0, d^n], {d, Divisors[n]}], {n, 50}]
    a[n_] := Times @@ ((#[[2]] + 1) (n #[[2]] + 2)/2 & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 50}]
  • PARI
    a(n) = sumdiv(n, d, numdiv(d^n)); \\ Michel Marcus, Nov 06 2018
    
  • Python
    from math import prod
    from sympy import factorint
    def A321348(n): return prod((e+1)*(n*e+2)>>1 for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022

Formula

a(n) = [x^n] Sum_{k>=1} tau(k^n)*x^k/(1 - x^k).
If n = Product (p_j^k_j) then a(n) = Product ((k_j + 1)*(n*k_j + 2)/2).
a(prime(n)) = prime(n) + 2 = A052147(n). - Michel Marcus, Nov 25 2018
Showing 1-10 of 32 results. Next