cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A016777 a(n) = 3*n + 1.

Original entry on oeis.org

1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Numbers k such that the concatenation of the first k natural numbers is not divisible by 3. E.g., 16 is in the sequence because we have 123456789101111213141516 == 1 (mod 3).
Ignoring the first term, this sequence represents the number of bonds in a hydrocarbon: a(#of carbon atoms) = number of bonds. - Nathan Savir (thoobik(AT)yahoo.com), Jul 03 2003
n such that Sum_{k=0..n} (binomial(n+k,n-k) mod 2) is even (cf. A007306). - Benoit Cloitre, May 09 2004
Hilbert series for twisted cubic curve. - Paul Barry, Aug 11 2006
If Y is a 3-subset of an n-set X then, for n >= 3, a(n-3) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n) = A144390 (1, 9, 23, 43, 69, ...) - A045944 (0, 5, 16, 33, 56, ...). From successive spectra of hydrogen atom. - Paul Curtz, Oct 05 2008
Number of monomials in the n-th power of polynomial x^3+x^2+x+1. - Artur Jasinski, Oct 06 2008
A145389(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2008
Union of A035504, A165333 and A165336. - Reinhard Zumkeller, Sep 17 2009
Hankel transform of A076025. - Paul Barry, Sep 23 2009
From Jaroslav Krizek, May 28 2010: (Start)
a(n) = numbers k such that the antiharmonic mean of the first k positive integers is an integer.
A169609(a(n-1)) = 1. See A146535 and A169609. Complement of A007494.
See A005408 (odd positive integers) for corresponding values A146535(a(n)). (End)
Apart from the initial term, A180080 is a subsequence; cf. A180076. - Reinhard Zumkeller, Aug 14 2010
Also the maximum number of triangles that n + 2 noncoplanar points can determine in 3D space. - Carmine Suriano, Oct 08 2010
A089911(4*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
The number of partitions of 6*n into at most 2 parts. - Colin Barker, Mar 31 2015
For n >= 1, a(n)/2 is the proportion of oxygen for the stoichiometric combustion reaction of hydrocarbon CnH2n+2, e.g., one part propane (C3H8) requires 5 parts oxygen to complete its combustion. - Kival Ngaokrajang, Jul 21 2015
Exponents n > 0 for which 1 + x^2 + x^n is reducible. - Ron Knott, Oct 13 2016
Also the number of independent vertex sets in the n-cocktail party graph. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-ladder rung graph. - Eric W. Weisstein, Nov 29 2017
Also the number of maximal and maximum cliques in the n-book graph. - Eric W. Weisstein, Dec 01 2017
For n>=1, a(n) is the size of any snake-polyomino with n cells. - Christian Barrientos and Sarah Minion, Feb 27 2018
The sum of two distinct terms of this sequence is never a square. See Lagarias et al. p. 167. - Michel Marcus, May 20 2018
It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(a(n)*z) = digit_sum(a(n)+z). - Max Lacoma, Sep 18 2019
For n > 2, a(n-2) is the number of distinct values of the magic constant in a normal magic triangle of order n (see formula 5 in Trotter). - Stefano Spezia, Feb 18 2021
Number of 3-permutations of n elements avoiding the patterns 132, 231, 312. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Erdős & Sárközy conjecture that a set of n positive integers with property P must have some element at least a(n-1) = 3n - 2. Property P states that, for x, y, and z in the set and z < x, y, z does not divide x+y. An example of such a set is {2n-1, 2n, ..., 3n-2}. Bedert proves this for large enough n. (This is an upper bound, and is exact for all known n; I have verified it for n up to 12.) - Charles R Greathouse IV, Feb 06 2023
a(n-1) = 3*n-2 is the dimension of the vector space of all n X n tridiagonal matrices, equals the number of nonzero coefficients: n + 2*(n-1) (see Wikipedia link). - Bernard Schott, Mar 03 2023

Examples

			G.f. = 1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + ... - _Michael Somos_, May 27 2019
		

References

  • W. Decker, C. Lossen, Computing in Algebraic Geometry, Springer, 2006, p. 22.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.

Crossrefs

Cf. A007559 (partial products), A051536 (lcm).
First differences of A000326.
Row sums of A131033.
Complement of A007494. - Reinhard Zumkeller, Oct 10 2008
Some subsequences: A002476 (primes), A291745 (nonprimes), A135556 (squares), A016779 (cubes).

Programs

  • Haskell
    a016777 = (+ 1) . (* 3)
    a016777_list = [1, 4 ..]  -- Reinhard Zumkeller, Feb 28 2013, Feb 10 2012
    
  • Magma
    [3*n+1 : n in [1..70]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    Range[1, 199, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
    (* Start from Eric W. Weisstein, Sep 21 2017 *)
    3 Range[0, 70] + 1
    Table[3 n + 1, {n, 0, 70}]
    LinearRecurrence[{2, -1}, {1, 4}, 70]
    CoefficientList[Series[(1 + 2 x)/(-1 + x)^2, {x, 0, 70}], x]
    (* End *)
  • Maxima
    A016777(n):=3*n+1$
    makelist(A016777(n),n,0,30); /* Martin Ettl, Oct 31 2012 */
    
  • PARI
    a(n)=3*n+1 \\ Charles R Greathouse IV, Jul 28 2015
    
  • SageMath
    [3*n+1 for n in range(1,71)] # G. C. Greubel, Mar 15 2024

Formula

G.f.: (1+2*x)/(1-x)^2.
a(n) = A016789(n) - 1.
a(n) = 3 + a(n-1).
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) + log(2)). [Jolley, p. 16, (79)] - Benoit Cloitre, Apr 05 2002
(1 + 4*x + 7*x^2 + 10*x^3 + ...) = (1 + 2*x + 3*x^2 + ...)/(1 - 2*x + 4*x^2 - 8*x^3 + ...). - Gary W. Adamson, Jul 03 2003
E.g.f.: exp(x)*(1+3*x). - Paul Barry, Jul 23 2003
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=4. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Nov 20 2010
Sum_{n>=0} 1/a(n)^2 = A214550. - R. J. Mathar, Jul 21 2012
a(n) = A238731(n+1,n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-5)^k. - Philippe Deléham, Mar 05 2014
Sum_{i=0..n} (a(i)-i) = A000290(n+1). - Ivan N. Ianakiev, Sep 24 2014
From Wolfdieter Lang, Mar 09 2018: (Start)
a(n) = denominator(Sum_{k=0..n-1} 1/(a(k)*a(k+1))), with the numerator n = A001477(n), where the sum is set to 0 for n = 0. [Jolley, p. 38, (208)]
G.f. for {n/(1 + 3*n)}_{n >= 0} is (1/3)*(1-hypergeom([1, 1], [4/3], -x/(1-x)))/(1-x). (End)
a(n) = -A016789(-1-n) for all n in Z. - Michael Somos, May 27 2019

Extensions

Better description from T. D. Noe, Aug 15 2002
Partially edited by Joerg Arndt, Mar 11 2010

A016778 a(n) = (3*n+1)^2.

Original entry on oeis.org

1, 16, 49, 100, 169, 256, 361, 484, 625, 784, 961, 1156, 1369, 1600, 1849, 2116, 2401, 2704, 3025, 3364, 3721, 4096, 4489, 4900, 5329, 5776, 6241, 6724, 7225, 7744, 8281, 8836, 9409, 10000, 10609, 11236, 11881, 12544, 13225, 13924, 14641, 15376, 16129, 16900, 17689
Offset: 0

Views

Author

Keywords

Comments

From Paul Curtz, Mar 28 2019: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777:
.
\
100--97--94--91
\ \
49--46--43 88
/ \ \ \
52 16--13 40 85
/ / \ \ \ \
55 19 1 10 37 82
/ / / / / /
58 22 4---7 34 79
\ \ / /
61 25--28--31 76
\ /
64--67--70--73
(End)

Crossrefs

Programs

Formula

a(n) = a(n-1) + 3*(6*n-1); a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=16, a(2)=49. - Harvey P. Dale, Mar 03 2013
a(n) = A247792(n) + 6*n. - Miquel Cerda, Oct 23 2016
G.f.: (1 + 13*x + 4*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Oct 23 2016
a(n) = A000212(3*n) + A000212(1+3*n) + A000212(2+3*n). - Paul Curtz, Mar 28 2019
From Amiram Eldar, Nov 12 2020: (Start)
Sum_{n>=0} 1/a(n) = A214550.
Sum_{n>=0} (-1)^n/a(n) = A262178. (End)
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: exp(x)*(1 + 15*x + 9*x^2).
a(n) = A000290(A016777(n)) = A016777(n)^2. (End)

A173983 a(n) = numerator((Zeta(2, 1/3) - Zeta(2, n + 1/3))/9), where Zeta(n, z) is the Hurwitz Zeta function.

Original entry on oeis.org

0, 1, 17, 849, 21421, 3639749, 58443009, 21150924649, 2564044988129, 64193725627641, 64267546517641, 61818987781213001, 17879592076327397289, 24493235278827913928641, 24506988360923903264741
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Comments

From Wolfdieter Lang, Nov 12 2017: (Start)
a(n+1)/A173984(n+1) gives, for n >= 0, the partial sum Sum_{k=0..n} 1/(1+3*k)^2.
The limit n -> infinity is given in A214550 as the Hurwitz Zeta function or the Polygamma function (1/9)*Zeta(2, 1/3) = (1/9)*Psi(1, 1/3) = 1.121733... (End)

Examples

			The rationals a(n)/A173984(n) begin 0/1, 1/1, 17/16, 849/784, 21421/19600, 3639749/3312400, 58443009/52998400, 21150924649/19132422400, ... - _Wolfdieter Lang_, Nov 12 2017
		

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[1/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    a := n -> numer((Zeta(0,2,1/3) - Zeta(0,2,n+1/3))/9):
    seq(a(n), n=0..14); # Peter Luschny, Nov 12 2017
  • Mathematica
    Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]]/9, {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)
    Numerator[Table[Sum[1/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of (1/9)(2(Pi^2)/3 + J - Zeta(2,(3n+1)/3)) where J is the constant A173973.
a(n) = numerator of Sum_{k=0..(n-1)} 1/(3*k+1)^2. - G. C. Greubel, Aug 23 2018

Extensions

Name simplified by Peter Luschny, Nov 12 2017

A222183 Decimal expansion of Sum_{k >= 0} 1/(4*k+1)^2.

Original entry on oeis.org

1, 0, 7, 4, 8, 3, 3, 0, 7, 2, 1, 5, 6, 6, 9, 4, 4, 2, 1, 2, 0, 4, 4, 5, 7, 4, 4, 4, 9, 5, 8, 4, 5, 1, 5, 0, 1, 3, 4, 4, 1, 8, 0, 9, 0, 0, 0, 9, 3, 3, 8, 5, 4, 8, 1, 2, 8, 4, 0, 8, 3, 3, 9, 5, 8, 2, 4, 6, 3, 4, 3, 1, 1, 2, 8, 9, 3, 2, 7, 7, 1, 2, 4, 2, 7, 2, 8
Offset: 1

Views

Author

Bruno Berselli, Feb 11 2013

Keywords

Examples

			1.074833072156694421204457444958451501344... = 1 + 1/25 + 1/81 + 1/169 + 1/289 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (8*Catalan(R) + Pi(R)^2)/16; // G. C. Greubel, Aug 23 2018
  • Mathematica
    RealDigits[Catalan/2 + Pi^2/16, 10, 90][[1]] (* or *) RealDigits[PolyGamma[1, 1/4]/16, 10, 90]
  • PARI
    (8*Catalan + Pi^2)/16 \\ G. C. Greubel, Aug 23 2018
    

Formula

Equals A006752/2 + A222068.
Equals -Integral_{x=0..1} log(x)/(1 - x^4) dx. - Amiram Eldar, Jul 17 2020
Equals 3F2(1/4,1/4,1;5/4,5/4;1). [Krupnikov] - R. J. Mathar, Jun 12 2024
Equals psi'(1/4)/16 (see Shamos). - Stefano Spezia, Nov 12 2024

A086730 Decimal expansion of sum(1/(6*m+4)^2,m=0..infinity).

Original entry on oeis.org

0, 8, 5, 1, 0, 7, 6, 5, 0, 2, 5, 9, 9, 6, 4, 3, 7, 2, 4, 9, 9, 6, 4, 7, 7, 0, 0, 9, 2, 4, 3, 2, 4, 5, 8, 7, 5, 8, 9, 7, 9, 7, 0, 8, 5, 8, 4, 3, 7, 0, 5, 8, 1, 5, 5, 5, 3, 9, 6, 6, 1, 8, 4, 2, 8, 1, 3, 6, 2, 1, 7, 9, 1, 8, 5, 5, 7, 0, 0, 4, 2, 0, 5, 3, 2, 3, 8, 9, 5, 9, 2, 7, 0, 3, 9, 1, 4, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			0.085107650259964...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

.085107650259964... = Psi'(2/3)/36 where Psi'(x) denotes the first derivative of the digamma function - R. Piyo (nagoya314(AT)yahoo.com), Dec 12 2004
8*Zeta(2)/9 = A214550 +4*(this constant) with Zeta(2) = A013661. - R. J. Mathar, Sep 15 2012

A294967 Decimal expansion of (1/9)*Hurwitz Zeta(2, 2/3) = (1/9)*Psi(1, 2/3), with the Polygamma function Psi.

Original entry on oeis.org

3, 4, 0, 4, 3, 0, 6, 0, 1, 0, 3, 9, 8, 5, 7, 4, 8, 9, 9, 9, 8, 5, 9, 0, 8, 0, 3, 6, 9, 7, 2, 9, 8, 3, 5, 0, 3, 5, 9, 1, 8, 8, 3, 4, 3, 3, 7, 4, 8, 2, 3, 2, 6, 2, 2, 1, 5, 8, 6, 4, 7, 3, 7, 1, 2, 5, 4, 4, 8, 7, 1, 6, 7, 4, 2, 2, 8, 0, 1, 6, 8, 2, 1, 2, 9, 5, 5, 8, 3, 7, 0, 8, 1, 5, 6, 5, 6, 0, 5, 1, 8, 0, 1, 4, 7, 4, 1, 1, 0, 7, 7, 2, 2, 8, 6, 7, 7, 9, 7, 3, 1, 7, 9, 8, 3, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 12 2017

Keywords

Comments

This is the value of the series Sum_{n=0..infinity} 1/(3*n+2)^2. For (3*n+2)^2 see A016790.
For the partial sums see A173986(n+1)/A173987(n+1), n >= 0.

Examples

			0.340430601039857489998590803697298350359188343374823262215864737125448716...
		

Crossrefs

Programs

Formula

From Amiram Eldar, Oct 02 2020: (Start)
Equals Integral_{1..oo} log(x)/(x^3-1) dx.
Equals 4*Pi^2/27 - A214550. (End)

Extensions

Data corrected by Amiram Eldar, Oct 02 2020

A086728 Decimal expansion of sum(1/(6*m+2)^2,m=0..infinity).

Original entry on oeis.org

2, 8, 0, 4, 3, 3, 2, 5, 3, 4, 8, 4, 0, 8, 5, 9, 4, 6, 7, 1, 6, 4, 4, 4, 5, 5, 8, 3, 3, 0, 3, 4, 7, 6, 7, 6, 6, 8, 1, 0, 8, 0, 6, 6, 9, 9, 8, 0, 0, 2, 7, 1, 7, 0, 6, 0, 9, 4, 9, 1, 2, 0, 0, 0, 2, 3, 0, 8, 3, 9, 2, 5, 3, 4, 8, 4, 7, 4, 5, 9, 6, 5, 7, 6, 4, 5, 6, 3, 5, 1, 9, 7, 8, 4, 4, 3, 8, 6, 6
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			.2804332534840859467...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

Equals A214550 divided by 4. - R. J. Mathar, Sep 15 2012
Showing 1-7 of 7 results.