cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 605 results. Next

A036740 a(n) = (n!)^n.

Original entry on oeis.org

1, 1, 4, 216, 331776, 24883200000, 139314069504000000, 82606411253903523840000000, 6984964247141514123629140377600000000, 109110688415571316480344899355894085582848000000000, 395940866122425193243875570782668457763038822400000000000000000000
Offset: 0

Views

Author

Keywords

Comments

(-1)^n*a(n) is the determinant of the n X n matrix m_{i,j} = T(n+i,j), 1 <= i,j <= n, where T(n,k) are the signed Stirling numbers of the first kind (A008275). Derived from methods given in Krattenthaler link. - Benoit Cloitre, Sep 17 2005
a(n) is also the number of binary operations on an n-element set which are right (or left) cancellative. These are also called right (left) cancellative magma or groupoids. The multiplication table of a right (left) cancellative magma is an n X n matrix with entries from an n element set such that the elements in each column (or row) are distinct. - W. Edwin Clark, Apr 09 2009
This sequence is mentioned in "Experimentation in Mathematics" as a sum-of-powers determinant. - John M. Campbell, May 07 2011
Determinant of the n X n matrix M_n = [m_n(i,j)] with m_n(i,j) = Stirling2(n+i,j) for 1<=i,j<=n. - Alois P. Heinz, Jul 26 2013

References

  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., 2004, p. 207.

Crossrefs

Main diagonal of A225816.

Programs

  • Maple
    a:= n-> n!^n:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 25 2013
  • Mathematica
    Table[(n!)^n,{n,0,10}] (* Harvey P. Dale, Sep 29 2013 *)
  • Maxima
    makelist(n!^n,n,0,10); /* Martin Ettl, Jan 13 2013 */
  • PARI
    a(n)=n!^n;
    

Formula

a(n) = a(n-1)*n^n*(n-1)! = a(n-1)*A000169(n)*A000142(n) = A036740(n-1) * A000312(n)*A000142(n-1). - Henry Bottomley, Dec 06 2001
From Benoit Cloitre, Sep 17 2005: (Start)
a(n) = Product_{k=1..n} (k-1)!*k^k;
a(n) = A000178(n-1)*A002109(n) for n >= 1. (End)
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12). - Vaclav Kotesovec, Nov 14 2014
a(n) = Product_{k=1..n} k^n. - José de Jesús Camacho Medina, Jul 12 2016
Sum_{n>=0} 1/a(n) = A261114. - Amiram Eldar, Nov 16 2020

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A062457 a(n) = prime(n)^n.

Original entry on oeis.org

2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
Offset: 1

Views

Author

Labos Elemer, Jul 09 2001

Keywords

Comments

Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 14 2018
Main diagonal of A182944. - Omar E. Pol, Sep 12 2018
Second diagonal of A319075. - Omar E. Pol, Sep 13 2018

Crossrefs

Programs

Formula

a(n) = A062006(n) - 1. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A093358.
Sum_{n>=1} (-1)^(n+1)/a(n) = A201614. (End)

A014566 Sierpiński numbers of the first kind: n^n + 1.

Original entry on oeis.org

2, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 10000000001, 285311670612, 8916100448257, 302875106592254, 11112006825558017, 437893890380859376, 18446744073709551617, 827240261886336764178, 39346408075296537575425, 1978419655660313589123980
Offset: 0

Views

Author

Keywords

Comments

Sierpiński primes of the form n^n + 1 are {2,5,257,...} = A121270. The prime p divides a((p-1)/2) for p = {5,7,13,23,29,31,37,47,53,61,71,...} = A003628 Primes congruent to {5, 7} mod 8. p^2 divides a((p-1)/2) for prime p = {29,37,3373,...}. - Alexander Adamchuk, Sep 11 2006
n divides a(n-1) for even n, or 2n divides a(2n-1). a(2n-1)/(2n) = A124899(n) = {1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, ...}. 2^n divides a(2^n-1). A014566[2^n - 1] / 2^n = A081216[2^n - 1] = A122000[n] = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}. p+1 divides a(p) for prime p. a(p)/(p+1) = A056852[n] = {7, 521, 102943, 23775972551, 21633936185161, ...}. p^2 divides a((p-1)/2) for prime p = {29, 37, 3373} = A121999(n). - Alexander Adamchuk, Nov 12 2006

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Maohua Le, Primes in the sequences n^n+1 and n^n-1, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 156-157.
  • Paulo Ribenboim, The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, p. 74, 1989.

Crossrefs

Programs

Formula

For n>0, resultant of x^n+1 and nx-1. - Ralf Stephan, Nov 20 2004
E.g.f.: exp(x) + 1/(1+LambertW(-x)). - Vaclav Kotesovec, Dec 20 2014
Sum_{n>=1} 1/a(n) = A134883. - Amiram Eldar, Nov 15 2020

Extensions

More terms from Erich Friedman

A052852 Expansion of e.g.f.: (x/(1-x))*exp(x/(1-x)).

Original entry on oeis.org

0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156, 56410454014314490981, 1399496554158060983080
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple grammar.
Number of {121,212}-avoiding n-ary words of length n. - Ralf Stephan, Apr 20 2004
The infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n) when n is a positive integer. - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008
a(n) is the total number of components summed over all nilpotent partial permutations of [n]. - Geoffrey Critzer, Feb 19 2022

Crossrefs

Row sums of unsigned triangle A062139 (generalized a=2 Laguerre).

Programs

  • Magma
    [n eq 0 select 0 else Factorial(n)*Evaluate(LaguerrePolynomial(n-1, 0), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
  • Maple
    spec := [S,{B=Set(C),C=Sequence(Z,1 <= card),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    a := n -> ifelse(n = 0, 0, n!*hypergeom([-n+1], [1], -1)): seq(simplify(a(n)), n = 0..18);  # Peter Luschny, Dec 30 2024
  • Mathematica
    Table[n!*SeriesCoefficient[(x/(1-x))*E^(x/(1-x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 09 2012 *)
    Table[If[n==0, 0, n!*LaguerreL[n-1, 0, -1]], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace((x/(1-x))*exp(x/(1-x))))) \\ G. C. Greubel, May 15 2018
    
  • Sage
    [0 if n==0 else factorial(n)*gen_laguerre(n-1, 0, -1) for n in (0..30)] # G. C. Greubel, Feb 23 2021
    

Formula

D-finite with recurrence: a(1)=1, a(0)=0, (n^2+2*n)*a(n)+(-4-2*n)*a(n+1)+ a(n+2)=0.
a(n) = Sum_{m=0..n} n!*binomial(n+2, n-m)/m!. - Wolfdieter Lang, Jun 19 2001
a(n) = n*A002720(n-1). [Riordan] - Vladeta Jovovic, Mar 18 2005
Related to an n-dimensional series: for n>=1, a(n) = (n!/e)*Sum_{k_n>=k_{n-1}>=...>=k_1>=0} 1/(k_n)!. - Benoit Cloitre, Sep 30 2006
E.g.f.: (x/(1-x))*exp((x/(1-x))) = (x/(1-x))*G(0); G(k)=1+x/((2*k+1)*(1-x)-x*(1-x)*(2*k+1)/(x+(1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
a(n) = D^n(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000262 and A005493. - Peter Bala, Nov 25 2011
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012
a(n) = n!*hypergeom([-n+1], [1], -1) for n>=1. - Peter Luschny, Oct 18 2014 [Simplified by Natalia L. Skirrow, 30 December 2024]
a(n) = Sum_{k=0..n} L(n,k)*k; L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n!*LaguerreL(n-1, 0, -1) for n>=1. - Peter Luschny, Apr 08 2015, simplified Dec 30 2024
The series reversion of the e.g.f. equals W(x)/(1 + W(x)) = x - 2^2*x^2/2! + 3^3*x^3/3! - 4^4*x^4/4! + ..., essentially the e.g.f. for a signed version of A000312, where W(x) is Lambert's W-function (see A000169). - Peter Bala, Jun 14 2016
Equals column A059114(n, 2) for n >= 1. - G. C. Greubel, Feb 23 2021
a(n) = Sum_{k=1..n} k * A271703(n,k). - Geoffrey Critzer, Feb 19 2022

A086331 Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 2, 7, 43, 393, 4721, 69853, 1225757, 24866481, 572410513, 14738647221, 419682895325, 13094075689225, 444198818128313, 16278315877572141, 640854237634448101, 26973655480577228769, 1208724395795734172705, 57453178877303382607717, 2887169565412587866031533
Offset: 0

Views

Author

Vladeta Jovovic, Sep 01 2003

Keywords

Comments

Binomial transform of A000312. - Tilman Neumann, Dec 13 2008
a(n) is the number of partial functions on {1,2,...,n} that are endofunctions. See comments in A000169 and A126285 by Franklin T. Adams-Watters. - Geoffrey Critzer, Dec 19 2011

Examples

			a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*k^k, k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 30 2021
  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[x]/(1-t),{x,0,nn}],x]  (* Geoffrey Critzer, Dec 19 2011 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n, k)*k^k ); \\ Joerg Arndt, May 10 2013
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*k^k.
a(n) ~ e^(1/e)*n^n * (1 + 1/(2*e*n)) ~ 1.444667861... * n^n. - Vaclav Kotesovec, Nov 27 2012
G.f.: Sum_{k>=0} (k * x)^k/(1 - x)^(k+1). - Seiichi Manyama, Jul 04 2022

A001372 Number of unlabeled mappings (or mapping patterns) from n points to themselves; number of unlabeled endofunctions.

Original entry on oeis.org

1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993, 1269755237948, 3687025544605, 10712682919341, 31143566495273, 90587953109272, 263627037547365
Offset: 0

Views

Author

Keywords

Examples

			The a(3) = 7 mappings are:
1->1, 2->2, 3->3
1->1, 2->2, 3->1 (equiv. to 1->1, 2->2, 3->2, or 1->1, 2->1, 3->3, etc.)
1->1, 2->3, 3->2
1->1, 2->1, 3->2
1->1, 2->1, 3->1
1->2, 2->3, 3->1
1->2, 2->1, 3->1
		

References

  • F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 41, 209.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.401.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): M[ 2671 ] := [ F,{F=Set(K), K=Cycle(T), T=Prod(Z,Set(T))},unlabeled ]:
    a:=seq(count(M[2671],size=n),n=0..27); # added by W. Edwin Clark, Nov 23 2010
  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
    max = 40; A[n_] := A[n] = If[n <= 1, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1}]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, max}]; F = 1 / Product[1 - H[x^n], {n, 1, max}] + O[x]^max; CoefficientList[F, x] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    F=1/prod(n=1,N, 1 - H(x^n));
    Vec(F)
    \\ Joerg Arndt, Jul 10 2014

Formula

Euler transform of A002861.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148... (Otter's rooted tree constant), c = 0.442876769782206479836... (for a closed form see "Mathematical Constants", p.308). - Vaclav Kotesovec, Mar 17 2015

Extensions

More terms etc. from Paul Zimmermann, Mar 15 1996
Name edited by Keith J. Bauer, Jan 07 2024

A008276 Triangle of Stirling numbers of first kind, s(n, n-k+1), n >= 1, 1 <= k <= n. Also triangle T(n,k) giving coefficients in expansion of n!*binomial(x,n)/x in powers of x.

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -6, 11, -6, 1, -10, 35, -50, 24, 1, -15, 85, -225, 274, -120, 1, -21, 175, -735, 1624, -1764, 720, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 1, -36, 546, -4536, 22449, -67284, 118124, -109584, 40320, 1, -45
Offset: 1

Views

Author

Keywords

Comments

n-th row of the triangle = charpoly of an (n-1) X (n-1) matrix with (1,2,3,...) in the diagonal and the rest zeros. - Gary W. Adamson, Mar 19 2009
From Daniel Forgues, Jan 16 2016: (Start)
For n >= 1, the row sums [of either signed or absolute values] are
Sum_{k=1..n} T(n,k) = 0^(n-1),
Sum_{k=1..n} |T(n,k)| = T(n+1,1) = n!. (End)
The moment generating function of the probability density function p(x, m=q, n=1, mu=q) = q^q*x^(q-1)*E(x, q, 1)/(q-1)!, with q >= 1, is M(a, m=q, n=1, mu=q) = Sum_{k=0..q}(A000312(q) / A000142(q-1)) * A008276(q, k) * polylog(k, a) / a^q , see A163931 and A274181. - Johannes W. Meijer, Jun 17 2016
Triangle of coefficients of the polynomial x(x-1)(x-2)...(x-n+1), also denoted as falling factorial (x)n, expanded into decreasing powers of x. - _Ralf Stephan, Dec 11 2016

Examples

			3!*binomial(x,3) = x*(x-1)*(x-2) = x^3 - 3*x^2 + 2*x.
Triangle begins
  1;
  1,  -1;
  1,  -3,   2;
  1,  -6,  11,   -6;
  1, -10,  35,  -50,  24;
  1, -15,  85, -225, 274, -120;
...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), p. 257.

Crossrefs

See A008275 and A048994, which are the main entries for this triangle of numbers.
See A008277 triangle of Stirling numbers of the second kind, S2(n,k).

Programs

  • Haskell
    a008276 n k = a008276_tabl !! (n-1) !! (k-1)
    a008276_row n = a008276_tabl !! (n-1)
    a008276_tabl = map init $ tail a054654_tabl
    -- Reinhard Zumkeller, Mar 18 2014
    
  • Maple
    seq(seq(coeff(expand(n!*binomial(x,n)),x,j),j=n..1,-1),n=1..15); # Robert Israel, Jan 24 2016
    A008276 := proc(n, k): combinat[stirling1](n, n-k+1) end: seq(seq(A008276(n, k), k=1..n), n=1..9); # Johannes W. Meijer, Jun 17 2016
  • Mathematica
    len = 47; m = Ceiling[Sqrt[2*len]]; t[n_, k_] = StirlingS1[n, n-k+1]; Flatten[Table[t[n, k], {n, 1, m}, {k, 1, n}]][[1 ;; len]] (* Jean-François Alcover, May 31 2011 *)
    Flatten@Table[CoefficientList[Product[1-k x, {k, 1, n}], x], {n, 0, 8}] (* Oliver Seipel, Jun 14 2024 *)
    Flatten@Table[Coefficient[Product[x-k, {k, 0, n-1}], x, Reverse@Range[n]], {n, Range[9]}] (* Oliver Seipel, Jun 14 2024, after  Ralf Stephan *)
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(binomial(x,n),n-k+1))
    
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(polcoeff(y*(1+y*x+x*O(x^n))^(1/y),n),k))
    
  • Sage
    def T(n,k): return falling_factorial(x,n).expand().coefficient(x,n-k+1) # Ralf Stephan, Dec 11 2016

Formula

n!*binomial(x, n) = Sum_{k=1..n-1} T(n, k)*x^(n-k).
|A008276(n, k)| = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...]; A008276(n, k) = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [ -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, ...]. Here DELTA is the operator defined in A084938. - Philippe Deléham, Dec 30 2003
|T(n, k)| = Sum_{m=0..n} A008517(k, m+1)*binomial(n+m, 2*(k-1)), n >= k >= 1. A008517 is the second-order Eulerian triangle. See the Graham et al. reference p. 257, eq. (6.44).
A094638 formula for unsigned T(n, k).
|T(n, k)| = Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*binomial(n-1, k-1+m) if n >= k >= 1, else 0. - Wolfdieter Lang, Sep 12 2005, see A112486.
|T(n, k)| = (f(n-1, k-1)/(2*(k-1))!)* Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*f(2*(k-1), k-1-m)*f(n-k, m) if n >= k >= 1, else 0, where f(n, k) stands for the falling factorial n*(n-1)*...*(n-(k-1)) and f(n, 0):=1. - Wolfdieter Lang, Sep 12 2005, see A112486.
With P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = (1-t)*(1-2*t)*...*(1-(n-1)t) and P(0,t) = 1, exp(P(.,t)*x) = (1+t*x)^(1/t) . Compare A094638. T(n,k+1) = (1/k!) (D_t)^k (D_x)^n ( (1+t*x)^(1/t) - 1 ) evaluated at t=x=0 . - Tom Copeland, Dec 09 2007
Product_{i=1..n} (x-i) = Sum_{k=0..n} T(n,k)*x^k. - Reinhard Zumkeller, Dec 29 2007
E.g.f.: Sum_{n>=0} (Sum_{k=0..n} T(n,n-k)*t^k)/n!) = Sum_{n>=0} (x)n * t^k/n! = exp(x * log(1+t)), with (x)_n the n-th falling factorial polynomial. - _Ralf Stephan, Dec 11 2016
Sum_{j=0..m} T(m, m-j)*s2(j+k+1, m) = m^k, where s2(j, m) are Stirling numbers of the second kind. - Tony Foster III, Jul 25 2019
For n>=2, Sum_{k=1..n} k*T(n,k) = (-1)^(n-1)*(n-2)!. - Zizheng Fang, Dec 27 2020

A181162 Number of commuting functions: the number of ordered pairs (f,g) of functions from {1..n} to itself such that fg=gf (i.e., f(g(i))=g(f(i)) for all i).

Original entry on oeis.org

1, 1, 10, 141, 2824, 71565, 2244096, 83982199, 3681265792, 186047433225, 10716241342240, 697053065658411, 50827694884298784, 4129325095108122637, 371782656333674104624, 36918345387693628911375, 4025196918605160943576576, 479796375191949916361466897
Offset: 0

Views

Author

Jeffrey Norden, Oct 07 2010

Keywords

Comments

Also, the total number of endomorphisms of all directed graphs on n labeled vertices with outdegree of each vertex equal 1. - Max Alekseyev, Jan 09 2015
Seems to be relatively hard to compute for large n. (a(n)-n^n)/2 is always an integer, since it gives the number of unordered pairs of distinct commuting functions.
a(n) is divisible by n as proved by Holloway and Shattuck (2015).
From Joerg Arndt, Jul 21 2014: (Start)
Multiply fg=gf from the right by f to obtain fgf=gff, and use f(gf)=f(fg)=ffg to see ffg=gff; iterate to see f^k g = g f^k for all k>=1; by symmetry g^k f = f g^k holds as well.
More generally, if X and Y are words of length w over the alphabet {f,g}, then X = Y (as functional composition) whenever both words contain j symbols f and k symbols g (and j+k=w). (End)
Functions with the same mapping pattern have the same number of commuting functions, so there is no need to check every pair. - Martin Fuller, Feb 01 2015

Examples

			The a(2) = 10 pairs of maps [2] -> [2] are:
01:  [ 1 1 ]  [ 1 1 ]
02:  [ 1 1 ]  [ 1 2 ]
03:  [ 1 2 ]  [ 1 1 ]
04:  [ 1 2 ]  [ 1 2 ]
05:  [ 1 2 ]  [ 2 1 ]
06:  [ 1 2 ]  [ 2 2 ]
07:  [ 2 1 ]  [ 1 2 ]
08:  [ 2 1 ]  [ 2 1 ]
09:  [ 2 2 ]  [ 1 2 ]
10:  [ 2 2 ]  [ 2 2 ]
- _Joerg Arndt_, Jul 22 2014
		

Crossrefs

A053529 is a similar count for permutations. A254529 is for permutations commuting with functions.

Programs

  • Mathematica
    (* This brute force code allows to get a few terms *)
    a[n_] := a[n] = If[n == 0, 1, Module[{f, g, T}, T = Tuples[Range[n], n]; Table[f = T[[j, #]]&; g = T[[k, #]] &; Table[True, {n}] == Table[f[g[i]] == g[f[i]], {i, n}], {j, n^n}, {k, n^n}] // Flatten // Count[#, True]&]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* Jean-François Alcover, Sep 24 2022 *)

Extensions

a(11)-a(20) from Martin Fuller, Feb 01 2015

A001923 a(n) = Sum_{k=1..n} k^k.

Original entry on oeis.org

0, 1, 5, 32, 288, 3413, 50069, 873612, 17650828, 405071317, 10405071317, 295716741928, 9211817190184, 312086923782437, 11424093749340453, 449317984130199828, 18896062057839751444, 846136323944176515621
Offset: 0

Views

Author

Keywords

Comments

Starting from the second term, 1, the terms could be described as the special case (n=1; j=1) of the following general formula: a(n) = Sum [(n + k - 1)]^(k) n=1; j=1; i=1,2,3,...,... For (n=0; j=1) the formula yields A062815 n=0; j=1; i=2,3,4,... For (n=2; j=0) we get A060946 and for (n=3; j=0) A117887. - Alexander R. Povolotsky, Sep 01 2007
From Luan Alberto Ferreira, Aug 01 2017: (Start)
If n == 0 or 3 (mod 4), then a(n) == 0 (mod 4).
If n == 0, 4, 7, 14, 15 or 17 (mod 18), then a(n) == 0 (mod 3). (End)
Called the hypertriangular function by M. K. Azarian. - Light Ediand, Nov 19 2021

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, p. 308.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A073825, A062970 (another version).

Programs

  • Haskell
    a001923 n = a001923_list !! n
    a001923_list = scanl (+) 0 $ tail a000312_list
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Mathematica
    Accumulate[Join[{0},Table[k^k,{k,20}]]] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    for(n=1,20,print1(sum(x=1,n,x^x), ", ")) \\ Jorge Coveiro, Dec 24 2004
    
  • Python
    # generates initial segment of sequence
    from itertools import accumulate
    def f(k): return 0 if k == 0 else k**k
    def aupton(nn): return list(accumulate(f(k) for k in range(nn+1)))
    print(aupton(17)) # Michael S. Branicky, Feb 12 2022

Formula

a(n) = A062970(n) - 1.
a(n+1)/a(n) > e*n and a(n+1)/a(n) is asymptotic to e*n. - Benoit Cloitre, Sep 29 2002
For n > 0: a(n) = a(n-1) + A000312(n). - Reinhard Zumkeller, Jul 11 2014
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022
Previous Showing 21-30 of 605 results. Next