cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 298 results. Next

A043276 a(n) = maximal run length in base-2 representation of n.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 2
Offset: 1

Views

Author

Keywords

Comments

First occurrence of k is when n=2^k-1 and there is no last occurrence. - Robert G. Wilson v, Dec 14 2008
Sequences A000975, A037969, A037970, A037971 list numbers for which a(n)=1, a(n)=2, a(n)=3, a(n)=4. - M. F. Hasler, Jul 23 2013
a(n) = max(A101211(n,k): k = 1..A005811(n)). - Reinhard Zumkeller, Dec 16 2013

Crossrefs

Cf. A043277-A043290 for base-3 to base-16 analogs.

Programs

  • Haskell
    a043276 = maximum . a101211_row  -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    A043276 := proc(n)
        local a,rl,i ;
        if n > 0 then
            rl := 1 ;
        else
            rl := 0 ;
        end if;
        a := rl ;
        dgs := convert(n,base,2) ;
        for i from 2 to nops(dgs) do
            if op(i,dgs) = op(i-1,dgs) then
                rl := rl+1 ;
                a := max(a,rl) ;
            else
                a := max(a,rl) ;
                rl := 1;
            end if;
        end do:
        a ;
    end proc:
    seq(A043276(n),n=1...80) ; # R. J. Mathar, Jun 04 2021
  • Mathematica
    f[n_] := Max @@ Length /@ Split@IntegerDigits[n, 2]; Array[f, 105] (* Robert G. Wilson v, Dec 14 2008 *)
  • PARI
    A043276(n,b=2)={my(m,c=1);while(n>0,n%b==(n\=b)%b && c++ && next;m=max(m,c);c=1);m} \\ M. F. Hasler, Jul 23 2013
    
  • PARI
    a(n)=my(r,t); while(n, t=valuation(n,2); if(t>r, r=t); n>>=t; t=valuation(n+1,2); if(t>r, r=t); n>>=t); r \\ Charles R Greathouse IV, Nov 02 2016
    
  • Python
    from itertools import groupby
    def A043276(n): return max(len(list(g)) for k, g in groupby(bin(n)[2:])) # Chai Wah Wu, Mar 09 2023

Extensions

More terms from Robert G. Wilson v, Dec 14 2008

A000980 Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.

Original entry on oeis.org

2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0

Views

Author

Keywords

Comments

The 4-term sequence 2,4,8,20 is the answer to the "Solitaire Army" problem, or checker-jumping puzzle. It is too short to have its own entry. See Conway et a;., Winning Ways, Vol. 2, pp. 715-717. - N. J. A. Sloane, Mar 01 2018
Number of subsets of {-n..n} with sum 0. Also the number of subsets of {0..2n} that are empty or have mean n. For median instead of mean we have twice A024718. - Gus Wiseman, Apr 23 2023

Examples

			From _Gus Wiseman_, Apr 23 2023: (Start)
The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are:
  {}   {}        {}
  {0}  {0}       {0}
       {-1,1}    {-1,1}
       {-1,0,1}  {-2,2}
                 {-1,0,1}
                 {-2,0,2}
                 {-2,-1,1,2}
                 {-2,-1,0,1,2}
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A047653(n) = a(n)/2.
Bisection of A084239. Cf. A063865, A141000.
A007318 counts subsets by length, A327481 by integer mean.
A327475 counts subsets with integer mean, A000975 integer median.

Programs

  • Haskell
    a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
        end:
    a:=n-> 2*b(0, n):
    seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *)
    nmax = 26; d = {2}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
        2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
      , {n, nmax}];
    a1 (* Ray Chandler, Mar 15 2014 *)
    Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
  • PARI
    a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
    

Formula

Constant term of Product_{k=-n..n} (1+x^k).
a(n) = Sum_i A067059(2n+1-i, i) = 2+2*Sum_j A047997(n, j); i.e., sum of alternate antidiagonals of A067059 and two more than twice row sums of A047997. - Henry Bottomley, Aug 11 2002
a(n) = A004171(n) - 2*A181765(n).
Coefficient of x^(n*(n+1)/2) in 2*Product_{k=1..n} (1+x^k)^2. - Sean A. Irvine, Oct 03 2011
From Gus Wiseman, Apr 23 2023: (Start)
a(n) = 2*A047653(n).
a(n) = A070925(2n+1) + 1.
a(n) = 2*A133406(2n+1).
a(n) = 2*(A212352(n) + 1).
a(n) = A222955(2n+1).
a(n) = 2*(A362046(2n) + 1).
(End)

Extensions

More terms from Michael Somos, Jun 10 2000

A013580 Triangle formed in same way as Pascal's triangle (A007318) except 1 is added to central element in even-numbered rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 9, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 29, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 99, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 351, 286, 155, 54, 11, 1, 1, 12, 65, 209, 441, 637, 637, 441, 209, 65
Offset: 0

Views

Author

Martin Hecko (bigusm(AT)interramp.com)

Keywords

Comments

From Gus Wiseman, Apr 19 2023: (Start)
Appears to be the number of nonempty subsets of {1,...,n} with median k, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {2} {3} {4} {5}
{1,3} {1,5} {3,5}
{1,2,3} {2,4} {1,4,5}
{1,2,4} {1,3,4} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Including half-steps gives A231147.
For mean instead of median we have A327481.
(End)

Examples

			Triangle begins:
   1
   1   1
   1   3   1
   1   4   4   1
   1   5   9   5   1
   1   6  14  14   6   1
   1   7  20  29  20   7   1
   1   8  27  49  49  27   8   1
   1   9  35  76  99  76  35   9   1
   1  10  44 111 175 175 111  44  10   1
   1  11  54 155 286 351 286 155  54  11   1
   1  12  65 209 441 637 637 441 209  65  12   1
		

Crossrefs

Row sums give A000975, A054106.
Central diagonal T(2n+1,n+1) appears to be A006134.
Central diagonal T(2n,n) appears to be A079309.
For partitions instead of subsets we have A359901, row sums A325347.
A000975 counts subsets with integer median.
A007318 counts subsets by length, A359893 by twice median.

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x)/(1 - y*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)

Formula

G.f.: 1/(1-(1+y)*x)/(1-y*x^2). - Vladeta Jovovic, Oct 12 2003

Extensions

More terms from James Sellers

A026644 a(n) = a(n-1) + 2*a(n-2) + 2, for n>=3, where a(0)= 1, a(1)= 2, a(2)= 4.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 84, 170, 340, 682, 1364, 2730, 5460, 10922, 21844, 43690, 87380, 174762, 349524, 699050, 1398100, 2796202, 5592404, 11184810, 22369620, 44739242, 89478484, 178956970, 357913940, 715827882, 1431655764, 2863311530, 5726623060
Offset: 0

Views

Author

Keywords

Comments

Number of moves to solve Chinese rings puzzle.
a(n-1) (with a(0):=0) enumerates all sequences of length m=1,2,...,floor(n/2) with nonzero integer entries n_i satisfying sum |n_i| <= n-m. Rephrasing K. A. Meissner's example p. 6. Example n=4: from length m=1: [1], [2], [3], each in 2 signed versions; from m=2: [1,1] in 2^2 = 4 signed versions. Hence a(3) = a(4-1) = 3*2 + 1*4 = 10.
Also the number of different 3-colorings (out of 4 colors) for the vertices of all triangulated planar polygons on a base with n+1 vertices if the colors of the two base vertices are fixed. - Patrick Labarque, Mar 23 2010
For n > 0, also the total distance that the disks travel from the leftmost peg to the rightmost peg in the Tower of Hanoi puzzle, in the unique solution with 2^n-1 moves (see links). - Sela Fried, Dec 17 2023

References

  • Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
  • Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.

Crossrefs

Row sums of A026637.
For n >= 1, equals twice A000975, also A001045 - 1.
A167030 is an essentially identical sequence.

Programs

  • Magma
    [n eq 0 select 1 else (2^(n+2) -3-(-1)^n)/3 : n in [0..40]]; // G. C. Greubel, Jun 28 2024
    
  • Maple
    f:=n-> if n mod 2 = 0 then (2^(n+2)-4)/3 else (2^(n+2)-2)/3; fi;
  • Mathematica
    Join[{1}, Floor[(2^Range[3, 40] - 2)/3]] (* or *) LinearRecurrence[{2,1,-2},{1,2,4,10},40] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
    CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-x-2x^2)),{x,0,1001}],x] (* Vincenzo Librandi, Apr 04 2012 *)
  • PARI
    Vec((1-x^2+2*x^3)/(1-x)/(1-x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Apr 04 2012
    
  • Python
    def A026644(n): return ((4<Chai Wah Wu, Apr 17 2025
  • SageMath
    [(2^(n+2)-3-(-1)^n)/3 + int(n==0) for n in range(41)] # G. C. Greubel, Jun 28 2024
    

Formula

a(2*k) = 2*a(2*k-1), a(2*k+1) = 2*a(2*k) + 2. - Peter Shor, Apr 11 2002
For n>0: a(n+1) = a(n) + 2*b(n+1) + 4*b(n), where b(k) = A001045(k). - N. J. A. Sloane, May 16 2003
For n>0: if n mod 2 = 0 then (2^(n+2)-4)/3 else (2^(n+2)-2)/3. - Richard Hess
a(2*n) = 2*n-1 + Sum_{k=0..2*n-1} a(k), n>0; a(2*n+1) = 2*n+1 + Sum_{k=0..n} a(k). - Lee Hae-hwang, Sep 17 2002; corrected by R. J. Mathar, Oct 21 2008
a(n) = 2*n + 2*Sum_{k=1..n-2} a(k), n>0. - Lee Hae-hwang, Sep 19 2002; corrected by R. J. Mathar, Oct 21 2008
From Paul Barry, Oct 24 2007: (Start)
G.f.: (1 - x^2 + 2*x^3)/((1 - x)*(1 - x - 2*x^2)).
a(n) = J(n+2) - 1 + 0^n, where J(n) = A001045(n) (Jacobsthal numbers).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n) = 0^n + Sum_{k=0..n} (2 - 2*0^(n-k))*J(k+1). (End)
a(n) = A052953(n+1) - 2, n>0. [Moved from A020988, R. J. Mathar, Oct 21 2008]
a(n) = floor(A097074(n+1)/2), n>0. - Gary Detlefs, Dec 19 2010
a(n) = A169969(2*n-1) - 1, n>=2; a(n) = 3*2^(n-1) - 1 - A169969(2*n-7), n>=5 . - Yosu Yurramendi, Jul 05 2016
a(n+3) = 3*2^(n+2) - 2 - a(n), n>=1, a(1)=2, a(2)=4, a(3)=10 . - Yosu Yurramendi, Jul 05 2016
a(n) + A084170(n) = 3*2^n - 2, n>=1. - Yosu Yurramendi, Jul 05 2016
E.g.f: (3 - 4*cosh(x) + 4*cosh(2*x) - 2*sinh(x) + 4*sinh(2*x))/3. - Ilya Gutkovskiy, Jul 05 2016
a(n+3) = 9*2^n + A084170(n), n>=0. - Yosu Yurramendi, Jul 07 2016
a(n) = A000975(n+1) - A000035(n+1), n>0, a(0)=1. - Yuchun Ji, Aug 05 2020

Extensions

Recurrence in definition line found by Lee Hae-hwang, Apr 03 2002

A035317 Pascal-like triangle associated with A000670.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 1, 11, 56, 174, 367, 553, 610, 496, 295, 125
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jul 20 2011: (Start)
The triangle sums, see A180662 for their definitions, link this "Races with Ties" triangle with several sequences, see the crossrefs. Observe that the Kn4 sums lead to the golden rectangle numbers A001654 and that the Fi1 and Fi2 sums lead to the Jacobsthal sequence A001045.
The series expansion of G(x, y) = 1/((y*x-1)*(y*x+1)*((y+1)*x-1)) as function of x leads to this sequence, see the second Maple program. (End)
T(2n,k) = the number of hatted frog arrangements with k frogs on the 2xn grid. See the linked paper "Frogs, hats and common subsequences". - Chris Cox, Apr 12 2024

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  2;
  1,  3,  4,   2;
  1,  4,  7,   6,   3;
  1,  5, 11,  13,   9,   3;
  1,  6, 16,  24,  22,  12,   4;
  1,  7, 22,  40,  46,  34,  16,   4;
  1,  8, 29,  62,  86,  80,  50,  20,  5;
  1,  9, 37,  91, 148, 166, 130,  70, 25,  5;
  1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6;
  ...
		

Crossrefs

Row sums are A000975, diagonal sums are A080239.
Central terms are A014300.
Similar to the triangles A059259, A080242, A108561, A112555.
Cf. A059260.
Triangle sums (see the comments): A000975 (Row1), A059841 (Row2), A080239 (Kn11), A052952 (Kn21), A129696 (Kn22), A001906 (Kn3), A001654 (Kn4), A001045 (Fi1, Fi2), A023435 (Ca2), Gi2 (A193146), A190525 (Ze2), A193147 (Ze3), A181532 (Ze4). - Johannes W. Meijer, Jul 20 2011
Cf. A181971.

Programs

  • Haskell
    a035317 n k = a035317_tabl !! n !! k
    a035317_row n = a035317_tabl !! n
    a035317_tabl = map snd $ iterate f (0, [1]) where
       f (i, row) = (1 - i, zipWith (+) ([0] ++ row) (row ++ [i]))
    -- Reinhard Zumkeller, Jul 09 2012
    
  • Maple
    A035317 := proc(n,k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(A035317(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
    A035317 := proc(n,k): coeff(coeftayl(1/((y*x-1)*(y*x+1)*((y+1)*x-1)), x=0, n), y, k) end: seq(seq(A035317(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
  • Mathematica
    t[n_, k_] := (-1)^k*(((-1)^k*(n+2)!*Hypergeometric2F1[1, n+3, k+2, -1])/((k+1)!*(n-k+1)!) + 2^(k-n-2)); Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011, after Johannes W. Meijer *)
  • PARI
    {T(n,k)=if(n==k,(n+2)\2,if(k==0,1,if(n>k,T(n-1,k-1)+T(n-1,k))))}
    for(n=0,12,for(k=0,n,print1(T(n,k),","));print("")) \\ Paul D. Hanna, Jul 18 2012
    
  • Sage
    def A035317_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n+2, k) for k in (1..n)]
    for n in (1..11): print(A035317_row(n)) # Peter Luschny, Mar 16 2016

Formula

T(n,k) = Sum_{j=0..floor(n/2)} binomial(n-2j, k-2j). - Paul Barry, Feb 11 2003
From Johannes W. Meijer, Jul 20 2011: (Start)
T(n, k) = Sum_{i=0..k}((-1)^(i+k) * binomial(i+n-k+1,i)). (Mendelson)
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = floor(n/2) + 1. (Mendelson)
Sum_{k = 0..n}((-1)^k * (n-k+1)^n * T(n, k)) = A000670(n). (Mendelson)
T(n, n-k) = A128176(n, k); T(n+k, n-k) = A158909(n, k); T(2*n-k, k) = A092879(n, k). (End)
T(2*n+1,n) = A014301(n+1); T(2*n+1,n+1) = A026641(n+1). - Reinhard Zumkeller, Jul 19 2012

Extensions

More terms from James Sellers

A217302 Minimal natural number (in decimal representation) with n prime substrings in binary representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 5, 7, 11, 15, 27, 23, 31, 55, 47, 63, 111, 95, 187, 127, 223, 191, 381, 255, 447, 503, 383, 511, 1015, 895, 767, 1023, 1533, 1791, 1535, 1919, 3039, 3069, 3067, 3839, 3967, 6079, 6139, 6135, 7679, 8063, 8159, 12159, 12271, 15359, 16127
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings in binary representation is not empty. Proof: A000975(n+1) has exactly n prime substrings in binary representation (see A000975).
All terms with n > 1 are odd.

Examples

			a(1) = 2 = 10_2, since 2 is the least number with 1 prime substring (=10_2) in binary representation.
a(2) = 5 = 101_2, since 5 is the least number with 2 prime substrings in binary representation (10_2 and 101_2).
a(4) = 11 = 1011_2, since 11 is the least number with 4 prime substrings in binary representation (10_2, 11_2, 101_2 and 1011_2).
a(8) = 31 = 11111_2, since 31 is the least number with 8 prime substrings in binary representation (4 times 11_2, 3 times 111_2, and 11111_2).
a(9) = 47 = 101111_2, since 47 is the least number with 9 prime substrings in binary representation (10_2, 3 times 11_2, 101_2, 2 times 111_2, 1011_2, and 10111_2).
		

Crossrefs

Formula

a(n) >= 2^ceiling(sqrt(8*n+1)-1)/2).
a(n) <= A000975(n+1).
a(n+1) <= 2*a(n)+1.

A360248 Numbers for which the prime indices do not have the same median as the distinct prime indices.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192, 200
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A242416 in lacking 180, with prime indices {1,1,2,2,3}.
First differs from A360246 in lacking 126 and having 1950.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  28: {1,1,4}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
  50: {1,3,3}
  52: {1,1,6}
  54: {1,2,2,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is not in the sequence.
The prime indices of 1950 are {1,2,3,3,6} with median 3 and distinct prime indices {1,2,3,6} with median 5/2, so 1950 is in the sequence.
		

Crossrefs

These partitions are counted by A360244.
The complement is A360249, counted by A360245.
For multiplicities instead of parts: complement of A360453.
For multiplicities instead of distinct parts: complement of A360454.
For mean instead of median we have A360246, counted by A360242.
The complement for mean instead of median is A360247, counted by A360243.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A325347 = partitions with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[prix[#]]!=Median[Union[prix[#]]]&]

A075157 Run lengths in the binary expansion of n gives the vector of exponents in prime factorization of a(n)+1, with the least significant run corresponding to the exponent of the least prime, 2; with one subtracted from each run length, except for the most significant run of 1's.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 8, 7, 11, 14, 6, 9, 17, 24, 26, 15, 23, 44, 34, 29, 13, 10, 20, 19, 35, 74, 48, 49, 53, 124, 80, 31, 47, 134, 174, 89, 69, 76, 104, 59, 27, 32, 12, 21, 41, 54, 62, 39, 71, 224, 244, 149, 97, 120, 146, 99, 107, 374, 342, 249, 161, 624, 242, 63, 95, 404
Offset: 0

Views

Author

Antti Karttunen, Sep 13 2002

Keywords

Comments

To make this a permutation of nonnegative integers, we subtract one from each run count except for the most significant run, e.g. a(11) = 9, as 11 = 1011 and 9+1 = 10 = 5^1 * 3^(1-1) * 2^(2-1).

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a075157 0 = 0
    a075157 n = product (zipWith (^) a000040_list rs') - 1 where
       rs' = reverse $ r : map (subtract 1) rs
       (r:rs) = reverse $ map length $ group $ a030308_row n
    -- Reinhard Zumkeller, Aug 04 2014
    
  • PARI
    A005811(n) = hammingweight(bitxor(n, n>>1));  \\ This function from Gheorghe Coserea, Sep 03 2015
    A286468(n) = { my(p=((n+1)%2), i=0, m=1); while(n>0, if(((n%2)==p), m *= prime(i), p = (n%2); i = i+1); n = n\2); m };
    A075157(n) = if(!n,n,(prime(A005811(n))*A286468(n))-1);
    
  • Scheme
    (define (A075157 n) (if (zero? n) n (+ -1 (* (A000040 (A005811 n)) (fold-left (lambda (a r) (* (A003961 a) (A000079 (- r 1)))) 1 (binexp->runcount1list n))))))
    (define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
    ;; Or, using the code of A286468:
    (define (A075157 n) (if (zero? n) n (- (* (A000040 (A005811 n)) (A286468 n)) 1)))

Formula

a(n) = A075159(n+1) - 1.
a(0) = 0; for n >= 1, a(n) = (A000040(A005811(n)) * A286468(n)) - 1.
Other identities. For all n >= 1:
a(A000975(n)) = A006093(n) = A000040(n)-1.

Extensions

Entry revised, PARI-program added and the old incorrect Scheme-program replaced with a new one by Antti Karttunen, May 17 2017

A206853 a(1)=1, for n>1, a(n) is the least number > a(n-1) such that the Hamming distance D(a(n-1), a(n)) = 2.

Original entry on oeis.org

1, 2, 4, 7, 11, 13, 14, 22, 26, 28, 31, 47, 55, 59, 61, 62, 94, 110, 118, 122, 124, 127, 191, 223, 239, 247, 251, 253, 254, 382, 446, 478, 494, 502, 506, 508, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1534, 1790, 1918, 1982, 2014, 2030, 2038, 2042
Offset: 1

Views

Author

Vladimir Shevelev, Feb 13 2012

Keywords

Comments

For integers a, b, denote by a<+>b the least c>=a, such that D(a,c)=b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>2. Thus this sequence is a Hamming analog of odd numbers 1,3,5,...
A Hamming analog of nonnegative integers is A000225 and a Hamming analog of the triangular numbers is A000975.
All terms are odious (A000069).

Crossrefs

Cf. A182187 (n<+>2), A207063 (starting from 0).

Programs

  • Maple
    read("transforms");
    Hamming := proc(a,b)
            XORnos(a,b) ;
            wt(%) ;
    end proc:
    Dplus := proc(a,b)
            for c from a to 1000000 do
                    if Hamming(a,c)=b then
                            return c;
                    end if;
            end do:
            return -1 ;
    end proc:
    A206853 := proc(n)
            option remember;
            if n = 1 then
                    1;
            else
                    Dplus(procname(n-1),2) ;
            end if;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]]; t = {1}; Do[If[myHammingDistance[t[[-1]], n] == 2, AppendTo[t, n]], {n, 2, 2042}]; t (* T. D. Noe, Mar 07 2012 *)
    t={x=1}; Do[i=x+1; While[Count[IntegerDigits[BitXor[x,i],2],1]!=2,i++]; AppendTo[t,x=i],{n,53}]; t (* Jayanta Basu, May 26 2013 *)
  • PARI
    next_A206853(n)={my(b=binary(n)); until(norml2(binary(n)-b)==2, n++>=2^#b & b=concat(0,b)); n}
    print1(n=1); for(i=1,99,print1(","n=next_A206853(n)))  \\ M. F. Hasler, Apr 07 2012

A051049 Number of moves needed to solve an (n+1)-ring baguenaudier if two simultaneous moves of the two end rings are counted as one.

Original entry on oeis.org

1, 1, 4, 7, 16, 31, 64, 127, 256, 511, 1024, 2047, 4096, 8191, 16384, 32767, 65536, 131071, 262144, 524287, 1048576, 2097151, 4194304, 8388607, 16777216, 33554431, 67108864, 134217727, 268435456, 536870911, 1073741824
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Purkiss sequence", after Henry John Purkiss who in 1865 found that this is the number of moves for the accelerated Chinese Rings puzzle (baguenaudier). [Email from Andreas M. Hinz, Feb 15 2017, who also pointed out that there was an error in the definition in this entry]. - N. J. A. Sloane, Feb 18 2017
The row sums of triangle A166692. - Paul Curtz, Oct 20 2009
The inverse binomial transform equals (-1)^n*A062510(n) with an extra leading term 1. - Paul Curtz, Oct 20 2009
This is the sequence A(1,1;1,2;1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
Also, the decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by Rules 261, 269, 277, 285, 293, 301, 309, 317, 325, 333, 341, 349, 357, 365, 37, and 381, based on the 5-celled von Neumann neighborhood. - Robert Price, Jan 02 2017

Crossrefs

Row sums of A131086.
Row sums of A166692.

Programs

Formula

a(n) = (2^(n+1) - (1 + (-1)^(n+1)))/2. - Paul Barry, Apr 24 2003
a(n+2) = a(n+1) + 2*a(n) + 1, a(0)=a(1)=1. - Paul Barry, May 01 2003
From Paul Barry, Sep 19 2003: (Start)
G.f.: (1 - x + x^2)/((1 - x^2)*(1 - 2*x));
e.g.f.: exp(2*x) - sinh(x). (End)
a(n) = ((Sum_{k=0..n} 2^k) + (-1)^n)/2 = (A000225(n+1) + (-1)^n)/2. - Paul Barry, May 27 2003
(a(n+1) - a(n))/3 = A001045(n). - Paul Barry, May 27 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n+1, 2*k). - Paul Barry, May 27 2003
a(n) = (Sum_{k=0..n} binomial(n,k) + (-1)^(n-k)) - 1. - Paul Barry, Jul 21 2003
a(n) = Sum_{k=0..n} Sum_{j=0..n-k, (j-k) mod 2 = 0} binomial(n-k, j). - Paul Barry, Jan 25 2005
Row sums of triangle A135221. - Gary W. Adamson, Nov 23 2007
a(n) = A001045(n+1) + A000975(n+1) - A000079(n). - Paul Curtz, Oct 20 2009
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), a(0) = a(1) = 1, a(2) = 4. Observed by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(n) = 3*a(n-1) - 2*a(n-2) + 3*(-1)^n. - Gary Detlefs, Dec 21 2010
a(n) = 3* A000975(n-1) + 1, n > 0. - Gary Detlefs, Dec 21 2010
a(n+2) = A001969(2^n+1) + A000069(2^n); evil + odious. - Johannes W. Meijer, Jun 24 2011, Jun 26 2011
E.g.f.: exp(2x) - sinh(x) = Q(0); Q(k) = 1 - k!*x^(k+1)/((2*k + 1)!*2^k - 2*(((2*k + 1)!*2^k)^2)/((2*k + 1)!*2^(k+1) - x^k*(k + 1)!/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2011
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(k-1,i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A000975(n+1) - A001045(n). - Yuchun Ji, Jul 08 2018
a(n) = A026147(2^(n-1)) for n > 0. - Chunqing Liu, Dec 18 2022

Extensions

Edited and information added by Johannes W. Meijer, Jun 24 2011
Previous Showing 21-30 of 298 results. Next