cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 424 results. Next

A156616 G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n.

Original entry on oeis.org

1, 2, 6, 16, 38, 88, 196, 420, 878, 1794, 3584, 7032, 13572, 25792, 48352, 89512, 163774, 296444, 531234, 943072, 1659560, 2896376, 5015700, 8622108, 14718652, 24960138, 42062200, 70458160, 117349856, 194381704, 320295312, 525123604
Offset: 0

Views

Author

R. J. Mathar, Feb 11 2009

Keywords

Comments

Generating function for a sum over strict plane partitions weighted with 2 powered to their number of connected components.
The inverse Euler transform is apparently 2, 3, 6, 6, 10, 9, 14, 12, 18, 15, 22, 18, 26, 21, ..., A016825 interlaced with A008585. - R. J. Mathar, Apr 23 2009
In general, for m >= 1, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(m*k), then a(n) ~ exp(m/12 + 3/2 * (7*m*Zeta(3)/2)^(1/3) * n^(2/3)) * m^(1/6 + m/36) * (7*Zeta(3))^(1/6 + m/36) / (A^m * 2^(2/3 + m/9) * sqrt(3*Pi) * n^(2/3 + m/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 17 2015
In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m,2)-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, May 01 2010

Formula

Convolve A000219 with A026007.
O.g.f.: exp( Sum_{n>=1} (sigma_2(2n) - sigma_2(n))/2 *x^n/n ), where sigma_2(n) is the sum of squares of divisors of n (A001157). - Paul D. Hanna, May 01 2010
a(n) ~ exp(1/12 + 3 * 2^(-4/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 17 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A076577(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017
G.f.: A(x) = exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^2) ). Cf. A000122 and A302237. - Peter Bala, Dec 23 2021

A053866 Parity of A000203(n), the sum of the divisors of n; a(n) = 1 when n is a square or twice a square, 0 otherwise.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Mar 29 2000

Keywords

Comments

Also parity of A001227, the number of odd divisors of n. - Omar E. Pol, Apr 04 2016
Also parity of A000593, the sum of odd divisors of n. - Omar E. Pol, Apr 05 2016
Characteristic function of A028982. - Antti Karttunen, Sep 25 2017
It appears that this is also the parity of A067742, the number of middle divisors of n. - Omar E. Pol, Mar 18 2018
Also parity of the deficiency of n (A033879) and of the abundance of n (A033880). - Omar E. Pol, Nov 02 2024

Crossrefs

Essentially same as A093709.

Programs

  • Maple
    A053866:= (n -> numtheory[sigma](n) mod 2):
    seq (A053866(n), n=0..104); # Jani Melik, Jan 28 2011
  • Mathematica
    Mod[DivisorSigma[1,Range[110]],2] (* Harvey P. Dale, Sep 04 2017 *)
  • PARI
    {a(n) = if( n<1, 0, issquare(n) || issquare(2*n))} /* Michael Somos, Apr 12 2004 */
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A053866(n): return int(is_square(n) or is_square(n<<1)) # Chai Wah Wu, Jan 09 2023

Formula

a(n) = A000203(n) mod 2. a(n)=1 iff n>0 is a square or twice a square.
Multiplicative with a(2^e)=1, a(p^e)=1 if e even, 0 otherwise.
a(n) = A093709(n) if n>0.
Dirichlet g.f.: zeta(2s)(1+2^-s). - Michael Somos, Apr 12 2004
a(n) = A001157(n) mod 2. - R. J. Mathar, Apr 02 2011
a(n) = floor(sqrt(n)) + floor(sqrt(n/2)) - floor(sqrt(n-1))-floor(sqrt((n-1)/2)). - Enrique Pérez Herrero, Oct 15 2013
a(n) = A000035(A000203(n)). - Omar E. Pol, Oct 26 2013
a(n) = A063524(A286357(n)) = A063524(A292583(n)). - Antti Karttunen, Sep 25 2017
a(n) = A295896(A156552(n)). - Antti Karttunen, Dec 02 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2). - Andrey Zabolotskiy, May 07 2018
G.f.: (theta_3(x) + theta_3(x^2))/2 - 1. - Ilya Gutkovskiy, May 23 2019
Sum_{k=1..n} a(k) ~ (1 + 1/sqrt(2)) * sqrt(n). - Vaclav Kotesovec, Oct 16 2020

Extensions

More terms from James Sellers, Apr 08 2000
Alternative description added to the name by Antti Karttunen, Sep 25 2017

A140480 RMS numbers: numbers n such that root mean square of divisors of n is an integer.

Original entry on oeis.org

1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 29 2008, Jul 11 2008

Keywords

Comments

For any numbers, A and B, both appearing in the sequence, if gcd(A,B)=1, then A*B is also in the sequence. - Andrew Weimholt, Jul 01 2008
The primes in this sequence are the NSW primes (A088165). For the terms less than 2^31, the only powers greater than 1 appearing in the prime factorization of numbers are 3^3 and 13^2. It appears that all terms are +-1 (mod 8). See A224988 for even numbers. - T. D. Noe, Jul 06 2008, Apr 25 2013
A basis for this sequence is given by A002315. This can be considered as the convergents of quasiregular continued fractions or a special 6-ary numeration system (see A. S. Fraenkel) which gives the characterization of positions of some heap or Wythoff game. What is the Sprague-Grundy function of this game?
Sequence generalized: sigma_r-numbers are numbers n for which sigma_r(n)/sigma_0(n) = c^r. Sigma_r(n) denotes sum of r-th powers of divisors of n; c,r positive integers. This sequence are sigma_2-numbers, A003601 are sigma_1-numbers. In a weaker form we have sigma_r(n)/sigma_0(n) = c^t; t is an integer from <1,r>. - Ctibor O. Zizka, Jul 14 2008
The primes in this sequence are prime numerators with an odd index in A001333. The RMS values (A141812) of prime RMS numbers (this sequence) are prime Pell numbers (A000129) with an odd index. - Ctibor O. Zizka, Aug 13 2008
From Ctibor O. Zizka, Aug 30 2008: (Start)
The set of RMS numbers n could be split into subsets according to the number and form of divisors of n. By definition, RMS(n) = sqrt(sigma_2(n) / sigma_0(n)) should be an integer. Now consider some examples. For n prime number, n has 2 divisors [1,n] and we have to solve Pell's equation n^2 = 2*C^2 - 1; C positive integer. The solution is a prime n of the form u(i) = 6*u(i-1) - u(i-2), i >= 2, u(0)=1, u(1)=7, known as an NSW prime (A088165). For n = p_1*p_2, p_1 and p_2 primes, n has 4 divisors {1; p_1; p_2; p_1*p_2}. There are 2 possible cases. Firstly p^2 = (2*C)^2 - 1 which does not hold for any prime p; secondly p_1^2 = 2*C_1^2 - 1 and p_2^2 = 2*C_2^2 - 1; C_1 and C_2 positive integers.
The solution is that p_1 and p_2 are different NSW primes. If n = p^3, divisors of n are {1; p; p^2; p^3} and we have to solve the Diophantine equation (p^8 - 1)/(p - 1) = (2*C)^2. This equation has no solution for any prime p. RMS numbers n with 4 divisors are only of the form n = p_1*p_2, with p_1 and p_2 NSW primes. The general case is n = p_1*...*p_t, n has 2^t divisors, and for t >= 3, NSW primes are not the only solution. If some of the prime divisors are equals p_i = p_j = ... = p_k, the general case n = p_1*...*p_t is "degenerate" because of the multiplicity of prime factors and therefore n has fewer than 2^t divisors. (End)
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1) - 3, x = (1 + sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878, whose prime terms give A121534. a(1)=5 gives A001834, whose prime terms give A086386. a(1)=6 gives A030221, whose prime terms {29, 139, 3191, ...} are not a sequence on the OEIS. a(1)=7 gives A002315, whose prime terms give A088165. a(1)=8 gives A033890; the OEIS does not have its prime terms as a sequence (do there exist any prime terms?). a(1)=9 gives A057080, whose prime terms {71, 34649, 16908641, ...} are not a sequence in the OEIS. a(1)=10 gives A057081, whose prime terms {389806471, 192097408520951, ...} are not a sequence in the OEIS. - Ctibor O. Zizka, Sep 02 2008
16 of the first 1660 terms are even (the smallest is 2217231104). The first 16 even terms are all divisible by 30976. - Donovan Johnson, Apr 16 2013
All the 83 even terms up to 10^13 (see A224988) are divisible by 30976. - Giovanni Resta, Oct 29 2019

Crossrefs

Programs

  • Haskell
    a140480 n = a140480_list !! (n-1)
    a140480_list = filter
        ((== 1) . a010052 . (\x -> a001157 x `div` a000005 x)) a020486_list
    -- Reinhard Zumkeller, Jan 15 2013
  • Mathematica
    rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; m = 160000; sel1 = Select[8*Range[0, m]+1, rmsQ]; sel7 = Select[8*Range[m]-1, rmsQ]; Union[sel1, sel7] (* Jean-François Alcover, Aug 31 2011, after T. D. Noe's comment *)
    Select[Range[1300000],IntegerQ[RootMeanSquare[Divisors[#]]]&] (* Harvey P. Dale, Mar 24 2016 *)

Extensions

More terms from T. D. Noe and Andrew Weimholt, Jul 01 2008

A035187 Sum over divisors d of n of Kronecker symbol (5|d).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Let tau be the golden ratio (1+sqrt(5))/2; let zetaQ(tau)(s)=sum(1/(Z(tau):a)^s) the Dedekind zeta function where a runs through the nonzero ideals of Z(tau) and where (Z(tau):a) is the norm of a; then zetaQ(tau)(s)=sum(n>=1,a(n)/n^s). - Benoit Cloitre, Dec 29 2002
First occurrence of k beginning at zero, or 0 if not yet known: 2, 1, 11, 121, 209, 14641, 2299, 1771561, 6061, 43681, 278179, 0, 66671, 0, 33659659, 5285401, 187891, 0, 1266749, 0, 8067191, 639533521, 0, 0, 2066801, 0, 0, 36735721, 976130111, 0, 153276629, 0, 7703531, 0, 0, 0, 39269219, 0, 0, 0, 250082921, 0, 0, 0, 0, 0, 0, 0, 84738841, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 454508329, ..., .
If k is prime, the 0 above can be replaced by the smallest p^(k-1) with p a prime == {1,4} (mod 5), which is p=11. This follows from the multiplicative formula. - R. J. Mathar, Apr 02 2011
The terms often equal A001157(n) mod 5; the exceptions are at n = 2299, 3509, 3751, 3971, 4961, 6061, 6479, ... - R. J. Mathar, Apr 02 2011
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 5. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Examples

			G.f. = x + x^4 + x^5 + x^9 + 2*x^11 + x^16 + 2*x^19 + x^20 + x^25 + 2*x^29 + ...
		

Crossrefs

Cf. A031363 (for indices of nonzero terms), A078428.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Maple
    A035187 := proc(n) local f,p; f := ifactors(n)[2] ; if nops(f) = 1 then p := op(1,f) ; if op(1,p) = 5 then 1; elif op(1,p) mod 5 in {1,4} then op(2,p)+1 ; else (1+(-1)^op(2,p))/2 ; end if; else mul(procname(op(1,p)^op(2,p) ),p=f) ; end if;
    end proc: # R. J. Mathar, Apr 02 2011
  • Mathematica
    f[n_] := Plus @@ (KroneckerSymbol[5, #] & /@ Divisors@ n); Array[f, 105] (* Robert G. Wilson v *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ 5, #] &]]; (* Michael Somos, Jun 12 2014 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 5, p) * X))[n])}; \\ Michael Somos, Jun 06 2005
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k,1], e = A[k,2]; if( p==5, 1, if((p%5==1) || (p%5==4), e+1, !(e%2))))))}; \\ Michael Somos, Jun 06 2005
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( 5, d) ) )}; \\ Michael Somos, Oct 29 2005

Formula

Dirichlet g.f.: Product_p ( (1 - p^(-s)) (1 - Kronecker( 5, p)*p^(-s)) )^(-1).
Sum_{k=1..n} a(k) is asymptotic to c*n where c=2*log(tau)/sqrt(5) (A086466).
Multiplicative with a(5^e) = 1, a(p^e) = e+1 if p == 1, 4 (mod 5), a(p^e) = (1+(-1)^e)/2 if p == 2, 3 (mod 5). - Michael Somos, Jun 06 2005
Moebius transform is period 5 sequence A080891. - Michael Somos, Oct 29 2005
q-series for a(n): Sum_{n >= 1} -(-1)^nq^(n(n+1)/2)(1-q)(1-q^2)...(1-q^(n-1))/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n))). - Jeremy Lovejoy, Jun 12 2009

A073592 Euler transform of negative integers.

Original entry on oeis.org

1, -1, -2, -1, 0, 4, 4, 7, 3, -2, -9, -17, -25, -24, -13, -1, 32, 61, 97, 111, 112, 74, 8, -108, -243, -392, -512, -569, -542, -358, -33, 473, 1078, 1788, 2395, 2865, 2955, 2569, 1496, -245, -2751, -5783, -9121, -12299, -14739, -15806, -14719, -10930, -3813, 6593, 20284, 36139, 53081, 68620, 80539
Offset: 0

Views

Author

Vladeta Jovovic, Aug 28 2002

Keywords

Comments

1/A(x) is g.f. for A000219.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(
          numtheory[sigma][2](j)*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 12 2015
  • Mathematica
    nmax=50; CoefficientList[Series[Exp[Sum[-x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 02 2015 *)
    a[n_]:= a[n] = -1/n*Sum[DivisorSigma[2,k]*a[n-k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,100}] (* Vaclav Kotesovec, Mar 02 2015 *)
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: -n)
    print([b(n) for n in range(55)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>0} (1-x^k)^k.
a(n) = -1/n*Sum_{k=1..n} sigma[2](k)*a(n-k).
G.f.: exp( Sum_{n>=1} -sigma_2(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017

A013955 a(n) = sigma_7(n), the sum of the 7th powers of the divisors of n.

Original entry on oeis.org

1, 129, 2188, 16513, 78126, 282252, 823544, 2113665, 4785157, 10078254, 19487172, 36130444, 62748518, 106237176, 170939688, 270549121, 410338674, 617285253, 893871740, 1290094638, 1801914272, 2513845188, 3404825448, 4624699020, 6103593751, 8094558822, 10465138360
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

References

  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 51.
  • Jean-Pierre Serre, A Course in Arithmetic, Springer-Verlag, 1973, Chap. VII, Section 4., p. 93.

Crossrefs

Programs

Formula

Let sigma(p,n) be the sum of the p-th powers of the divisors of n. Then sigma(7,n) = sigma(3,n) + 120 sum(sigma(3,k) sigma(3,n-k),k=1..n-1) (Cf. A087115). - Eugene Salamin, Apr 29 2006 [Hurwitz Identity, Math. Werke I, 1-66, p. 50, last line. See, e.g., the Koecher-Krieg reference, p. 51, rewritten. - Wolfdieter Lang, Jan 20 2016]
G.f.: Sum_{k>=1} k^7*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^6)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s)*zeta(s-7).
Sum_{k=1..n} a(k) = zeta(8) * n^8 / 8 + O(n^9). (End)

A050999 Sum of squares of odd divisors of n.

Original entry on oeis.org

1, 1, 10, 1, 26, 10, 50, 1, 91, 26, 122, 10, 170, 50, 260, 1, 290, 91, 362, 26, 500, 122, 530, 10, 651, 170, 820, 50, 842, 260, 962, 1, 1220, 290, 1300, 91, 1370, 362, 1700, 26, 1682, 500, 1850, 122, 2366, 530, 2210, 10, 2451, 651, 2900, 170, 2810, 820, 3172, 50, 3620, 842, 3482
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta_2(n) in Glaisher 1907. - Michael Somos, May 17 2013
The sum of squares of even divisors of 2*k = 4*A001157(k), and the sum of squares of even divisors of 2*k-1 vanishes, for k >= 1. - Wolfdieter Lang, Jan 07 2017

Examples

			x + x^2 + 10*x^3 + x^4 + 26*x^5 + 10*x^6 + 50*x^7 + x^8 + 91*x^9 + 26*x^10 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).

Crossrefs

Programs

  • Haskell
    a050999 = sum . map (^ 2) . a182469_row
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    a[n_] := 1/2*Sum[(1 - (-1)^d)*d^2, {d, Divisors[n]}]; Table[a[n], {n, 1, 59}] (* Jean-François Alcover, Oct 23 2012, from 2nd formula *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d^2, {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
    f[p_, e_] := If[p == 2, 1, (p^(2*e + 2) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 22 2020 *)
    Table[Total[Select[Divisors[n],OddQ]^2],{n,80}] (* Harvey P. Dale, Jul 19 2024 *)
  • PARI
    a(n)=sumdiv(n,d, if(d%2==1, d^2, 0 ) );  /* Joerg Arndt, Oct 07 2012 */
    
  • Python
    from sympy import divisor_sigma
    def A050999(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),2)) # Chai Wah Wu, Jul 16 2022

Formula

From Vladeta Jovovic, Sep 10 2001: (Start)
Multiplicative with a(p^e) = 1 if p = 2, (p^(2e+2)-1)/(p^2-1) if p > 2.
a(n) = (1/2)*Sum_{d|n} (1-(-1)^d)*d^2.
a(2n) = sigma_2(2n) - 4*sigma_2(n), a(2n+1) = sigma_2(2n+1), where sigma_2(n) is sum of squares of divisors of n (A001157).
More generally, if b(n, k) is the sum of k-th powers of odd divisors of n then b(2n, k) = sigma_k(2n)-2^k*sigma_k(n), b(2n+1, k) = sigma_k(2n+1). b(n, k) is multiplicative with a(p^e) = 1 if p = 2, (p^(k*e+k)-1)/(p^k-1) if p > 2. (End)
G.f. for b(n, k): Sum_{m>0} m^k*x^m*(1-(2^k-1)*x^m)/(1-x^(2*m)). - Vladeta Jovovic, Oct 19 2002
Dirichlet g.f. (1-2^(2-s))*zeta(s)*zeta(s-2). - R. J. Mathar, Apr 06 2011
Dirichlet convolution of A001157 with [1,-4,0,0,0,0...]. Dirichlet convolution of [1,-3,1,-3,1,-3,..] with A000290. Dirichlet convolution of [1,0,9,0,25,0,49,0,81,...] with A000012 (or A057427). - R. J. Mathar, Jun 28 2011
a(n) = sum(A182469(n,k)^2: k=1..A001227(n)). [Reinhard Zumkeller, May 01 2012]
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / 6. - Vaclav Kotesovec, Nov 09 2018
G.f.: Sum_{n >= 1} x^n*(1 + 6*x^(2*n) + x^(4*n))/(1 - x^(2*n))^3. - Peter Bala, Dec 19 2021
Sum_{k=1..n} (-1)^(k+1) * a(k) ~ zeta(3) * n^3 / 8. - Vaclav Kotesovec, Aug 07 2022

A007437 Inverse Moebius transform of triangular numbers.

Original entry on oeis.org

1, 4, 7, 14, 16, 31, 29, 50, 52, 74, 67, 119, 92, 137, 142, 186, 154, 247, 191, 294, 266, 323, 277, 455, 341, 446, 430, 553, 436, 686, 497, 714, 634, 752, 674, 1001, 704, 935, 878, 1150, 862, 1298, 947, 1323, 1222, 1361, 1129, 1767, 1254, 1674, 1486, 1834
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          add(d*(d+1)/2, d=divisors(n))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 09 2011
  • Mathematica
    a[n_] := (DivisorSigma[1, n] + DivisorSigma[2, n])/2; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 10 2014, after Benoit Cloitre *)
  • PARI
    a(n)=if(n<1,1,sumdiv(n,d,(d^2+d))/2); /* Joerg Arndt, Aug 14 2012 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021

Formula

Coefficients in expansion of Sum_{n >= 1} x^n/(1-x^n)^3.
G.f.: Sum_{n>=1} (n*(n+1)/2) * x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
a(n) = Sum_{d|n} d*(d+1)/2 = (1/2)*(sigma(n) + sigma_2(n)) = (1/2)*(A000203(n) + A001157(n)). - Benoit Cloitre, Apr 08 2002
Row sums of triangles A134544 and A134545. - Gary W. Adamson, Oct 31 2007
Row sums of triangle A134839 - Gary W. Adamson, Nov 12 2007
Dirichlet g.f. zeta(s)*(zeta(s-1) + zeta(s-2))/2. - Franklin T. Adams-Watters, Nov 05 2009
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k+1)/2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 12 2018
Sum_{k=1..n} a(k) ~ Zeta(3) * n^3 / 6. - Vaclav Kotesovec, Nov 06 2018
a(n) = Sum_{i=1..n} i*A135539(n,i). - Ridouane Oudra, Jul 22 2022

Extensions

More terms from Christian G. Bower.

A020487 Antiharmonic numbers: numbers k such that sigma_1(k) divides sigma_2(k).

Original entry on oeis.org

1, 4, 9, 16, 20, 25, 36, 49, 50, 64, 81, 100, 117, 121, 144, 169, 180, 196, 200, 225, 242, 256, 289, 324, 325, 361, 400, 441, 450, 468, 484, 500, 529, 576, 578, 605, 625, 650, 676, 729, 784, 800, 841, 900, 961, 968, 980, 1024, 1025, 1058, 1089, 1156, 1225, 1280, 1296
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that antiharmonic mean of divisors of k is an integer. Antiharmonic mean of divisors of number m = Product (p_i^e_i) is A001157(m)/A000203(m) = Product ((p_i^(e_i+1)+1)/(p_i+1)). So a(n) = k, for some n, if A001157(k)/A000203(k) is an integer. - Jaroslav Krizek, Mar 09 2009
Squares are antiharmonic, since (p^(2*e+1)+1)/(p+1) = p^(2*e) - p^(2*e-1) + p^(2*e-2) - ... + 1 is an integer. The nonsquare antiharmonic numbers are A227771. They include the primitive antiharmonic numbers A228023, except for its first term. - Jonathan Sondow, Aug 02 2013
Sequence is infinite, see A227771. - Charles R Greathouse IV, Sep 02 2013
The term "antiharmonic" is also known as "contraharmonic". - Pahikkala Jussi, Dec 11 2013

Examples

			a(3) = 9 = 3^2; antiharmonic mean of divisors of 9 is (3^(2+1) + 1)/(3 + 1) = 7; 7 is an integer. - _Jaroslav Krizek_, Mar 09 2009
		

Crossrefs

Programs

  • Haskell
    a020487 n = a020487_list !! (n-1)
    a020487_list = filter (\x -> a001157 x `mod` a000203 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [n: n in [1..1300] | IsZero(DivisorSigma(2,n) mod DivisorSigma(1,n))]; // Bruno Berselli, Apr 10 2013
    
  • Mathematica
    Select[Range[2000], Divisible[DivisorSigma[2, #], DivisorSigma[1, #]]&] (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    is(n)=sigma(n,2)%sigma(n)==0 \\ Charles R Greathouse IV, Jul 02 2013
    
  • Python
    from sympy import divisor_sigma
    def ok(n): return divisor_sigma(n, 2)%divisor_sigma(n, 1) == 0
    print([k for k in range(1, 1300) if ok(k)]) # Michael S. Branicky, Feb 25 2024
    
  • Python
    # faster for producing initial segment of sequence
    from math import prod
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        sigma1 = prod((p**(  e+1)-1)//(p-1)    for p, e in f.items())
        sigma2 = prod((p**(2*e+2)-1)//(p**2-1) for p, e in f.items())
        return sigma2%sigma1 ==  0
    print([k for k in range(1, 1300) if ok(k)]) # Michael S. Branicky, Feb 25 2024

A052847 G.f.: 1 / Product_{k>=1} (1-x^k)^(k-1).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 12, 18, 33, 52, 88, 138, 229, 354, 568, 880, 1378, 2110, 3260, 4942, 7527, 11320, 17031, 25394, 37842, 55956, 82630, 121300, 177677, 258980, 376626, 545352, 787784, 1133764, 1627657, 2329020, 3324559, 4731396, 6717774, 9512060
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler transform of sequence [0,1,2,3,...]. - Michael Somos, Jul 02 2004
Number of partitions of n objects of 2 colors, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Jan 23 2006
Number of partitions of n without 1s, one kind of 2s, two kinds of 3s, etc. - Joerg Arndt, Jul 31 2011
From Vaclav Kotesovec, Oct 17 2015: (Start)
In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.
(End)

Examples

			1 + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 12*x^6 + 18*x^7 + 33*x^8 + 52*x^9 + ...
From _Gus Wiseman_, Jan 22 2019: (Start)
The partitions described in Franklin T. Adams-Watters's comment are (n = 2 through 6):
  {{12}}  {{112}}  {{1112}}    {{11112}}    {{111112}}
          {{122}}  {{1122}}    {{11122}}    {{111122}}
                   {{1222}}    {{11222}}    {{111222}}
                   {{12}{12}}  {{12222}}    {{112222}}
                               {{12}{112}}  {{122222}}
                               {{12}{122}}  {{112}{112}}
                                            {{112}{122}}
                                            {{12}{1112}}
                                            {{12}{1122}}
                                            {{12}{1222}}
                                            {{122}{122}}
                                            {{12}{12}{12}}
(End)
		

Crossrefs

Cf. A000219 (v=0), A052847 (v=1), A263358 (v=2), A263359 (v=3), A263360 (v=4), A263361 (v=5), A263362 (v=6), A263363 (v=7), A263364 (v=8).

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= Set(C)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> n-1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 04 2015 after Alois P. Heinz
  • Mathematica
    Clear[a]; a[n_]:= a[n] = 1/n*Sum[(DivisorSigma[2,k]-DivisorSigma[1,k])*a[n-k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,100}] (* Vaclav Kotesovec, Mar 04 2015 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^(k+1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x*O(x^n))^(k-1)), n))}

Formula

a(n) = 1/n*Sum_{k=1..n} (sigma[2](k)-sigma[1](k))*a(n-k).
G.f.: exp( Sum_{k>0} ( x^k / (1 - x^k) )^2 / k ).
G.f.: exp( sum(n>=0, (sigma[2](n)-sigma[1](n)) *x^n/n ) ). - Joerg Arndt, Jul 31 2011
a(n) ~ 2^(1/36) * Zeta(3)^(1/36) * exp(1/12 - Pi^4/(432*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 3^(1/2) * n^(19/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 07 2015

Extensions

Edited by Vladeta Jovovic, Sep 10 2002
Previous Showing 61-70 of 424 results. Next