A077412
Chebyshev U(n,x) polynomial evaluated at x=8.
Original entry on oeis.org
1, 16, 255, 4064, 64769, 1032240, 16451071, 262184896, 4178507265, 66593931344, 1061324394239, 16914596376480, 269572217629441, 4296240885694576, 68470281953483775, 1091228270370045824, 17391182043967249409
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- Tanya Khovanova, Recursive Sequences
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (16,-1).
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7), this sequence (m=8),
A049660 (m=9),
A075843 (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18),
A078987 (m=19),
A097316 (m=33).
-
m:=8;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
I:=[1, 16, 255]; [n le 3 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
-
seq( simplify(ChebyshevU(n, 8)), n=0..20); # G. C. Greubel, Dec 22 2019
-
Table[GegenbauerC[n, 1, 8], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[1/(1-16x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
LinearRecurrence[{16,-1}, {1,16}, 30] (* G. C. Greubel, Jan 18 2018 *)
ChebyshevU[Range[21] -1, 8] (* G. C. Greubel, Dec 22 2019 *)
-
vector( 21, n, polchebyshev(n-1, 2, 8) ) \\ G. C. Greubel, Jan 18 2018
-
[lucas_number1(n,16,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
-
[chebyshev_U(n,8) for n in (0..20)] # G. C. Greubel, Dec 22 2019
A061278
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) with a(1) = 1 and a(k) = 0 if k <= 0.
Original entry on oeis.org
0, 1, 5, 20, 76, 285, 1065, 3976, 14840, 55385, 206701, 771420, 2878980, 10744501, 40099025, 149651600, 558507376, 2084377905, 7779004245, 29031639076, 108347552060, 404358569165, 1509086724601, 5631988329240, 21018866592360, 78443478040201, 292755045568445
Offset: 0
a(2)=5 and T(5)=15 which is 1/3 of 45=T(9).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- Brian Lawrence and Will Sawin, The Shafarevich conjecture for hypersurfaces in abelian varieties, arXiv:2004.09046 [math.NT], 2020.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- L. A. Medina and A. Straub, On multiple and infinite log-concavity, 2013.
- S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987. - From _N. J. A. Sloane_, Dec 26 2012
- Robert Phillips, A triangular number result, 2009.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Eric Weisstein, Centered Polygonal Number.
- Index entries for linear recurrences with constant coefficients, signature (5,-5,1).
-
I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2) + 1: n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
-
f:= gfun:-rectoproc({a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3),a(1)=1,a(0)=0,a(-1)=0},a(n),remember):
map(f, [$0..50]); # Robert Israel, Jun 05 2015
-
CoefficientList[Series[x/(1 - 5*x + 5*x^2 - x^3), {x, 0, nn}], x] (* T. D. Noe, Jun 04 2012 *)
LinearRecurrence[{5,-5,1},{0,1,5},30] (* Harvey P. Dale, Dec 23 2012 *)
-
M = [1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=1, 30, print1(([1, 0, 0]*M^i)[3], ",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A029547
Expansion of g.f. 1/(1 - 34*x + x^2).
Original entry on oeis.org
1, 34, 1155, 39236, 1332869, 45278310, 1538129671, 52251130504, 1775000307465, 60297759323306, 2048348816684939, 69583562007964620, 2363792759454112141, 80299370259431848174, 2727814796061228725775, 92665403695822344828176, 3147895910861898495432209
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..651 (terms 0..200 from Vincenzo Librandi)
- Z. Cerin and G. M. Gianella, On sums of squares of Pell-Lucas numbers, INTEGERS 6 (2006) #A15.
- R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (34,-1).
A091761 is an essentially identical sequence.
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9),
A075843 (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18),
A078987 (m=19),
A097316 (m=33).
-
m:=17;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
I:=[1,34]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
with (combinat):seq(fibonacci(4*n+4,2)/12, n=0..15); # Zerinvary Lajos, Apr 21 2008
-
Table[GegenbauerC[n, 1, 17], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
LinearRecurrence[{34,-1},{1,34},20] (* Vincenzo Librandi, Nov 22 2011 *)
ChebyshevU[Range[21] -1, 17] (* G. C. Greubel, Dec 22 2019 *)
-
A029547(n, x=[0,1],A=[17,72*4;1,17]) = vector(n,i,(x*=A)[1]) \\ M. F. Hasler, May 26 2007
-
vector( 21, n, polchebyshev(n-1, 2, 17) ) \\ G. C. Greubel, Dec 22 2019
-
[lucas_number1(n,34,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
-
[chebyshev_U(n,17) for n in (0..20)] # G. C. Greubel, Dec 22 2019
A052530
a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 2.
Original entry on oeis.org
0, 2, 8, 30, 112, 418, 1560, 5822, 21728, 81090, 302632, 1129438, 4215120, 15731042, 58709048, 219105150, 817711552, 3051741058, 11389252680, 42505269662, 158631825968, 592022034210, 2209456310872, 8245803209278, 30773756526240
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Colored compositions. a(2) = 8: There are two compositions of 4 into even parts, namely 4 and 2 + 2. Using primes to indicate the coloring of parts, the 8 colored compositions are 4, 4', 4'', 4''', 2 + 2, 2 + 2', 2' + 2 and 2' + 2'. - _Peter Bala_, Sep 17 2013
- T. D. Noe, Table of n, a(n) for n = 0..200
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, 2012, Jack N. Averitt College of Graduate Studies, Georgia Southern University.
- J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer.
- F. Goebel and A. A. Jagers, On a conjecture of Tutte concerning minimal tree numbers, J. Combin. Theory Ser. B 26 (1979), no. 3, 346-348. MR0535948 (80m:05064). [From _N. J. A. Sloane_, Feb 20 2012]
- A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 460
- N. J. A. Sloane, Transforms
- G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
a052530 n = a052530_list !! n
a052530_list =
0 : 2 : zipWith (-) (map (* 4) $ tail a052530_list) a052530_list
-- Reinhard Zumkeller, Sep 29 2011
-
I:=[0,2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 25 2019
-
spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
s := sqrt(3): a := n -> ((2-s)^n-(s+2)^n)/(s*(s-2)*(s+2)):
seq(simplify(a(n)), n=0..24); # Peter Luschny, Apr 28 2020
-
p=1; c=2; a[0]=0; a[1]=c; a[n_]:=a[n]=p*c^2*a[n-1]-a[n-2]; Table[a[n], {n, 0, 20}]
NestList[2 # + Sqrt[4 + 3 #^2]&, 0, 200] (* Zak Seidov, Mar 31 2011 *)
LinearRecurrence[{4, -1}, {0, 2}, 25] (* T. D. Noe, Jan 09 2012 *)
CoefficientList[Series[2x/(1-4x+x^2),{x,0,30}],x] (* Harvey P. Dale, May 31 2023 *)
-
{ polya002(p,c,m) = local(v,w,j,a); w=0; print1(w,", "); v=c; print1(v,", "); j=1; while(j<=m,a=p*c^2*v-w; print1(a,", "); w=v; v=a; j++) };
polya002(1,2,25)
-
my(x='x+O('x^30)); concat([0], Vec(2*x/(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
-
first(n) = n = max(n, 2); my(res = vector(n)); res[1] = 0; res[2] = 2; for(i = 3, n, res[i] = 4 * res[i-1] - res[i-2]); res \\ David A. Corneth, Apr 28 2020
-
(2*x/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
a(0) changed to 0 and entry revised accordingly by
Max Alekseyev, Nov 15 2007
A004191
Expansion of 1/(1 - 12*x + x^2).
Original entry on oeis.org
1, 12, 143, 1704, 20305, 241956, 2883167, 34356048, 409389409, 4878316860, 58130412911, 692686638072, 8254109243953, 98356624289364, 1172025382228415, 13965947962451616, 166419350167190977, 1983066254043840108, 23630375698358890319, 281581442126262843720
Offset: 0
G.f. = 1 + 12*x + 143*x^2 + 1704*x^3 + 20305*x^4 + 241956*x^5 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 12.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (12,-1).
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5), this sequence (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9),
A075843 (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18),
A078987 (m=19),
A097316 (m=33).
-
m:=8;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
I:=[1, 12]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 13 2012
-
seq( simplify(ChebyshevU(n, 6)), n=0..20); # G. C. Greubel, Dec 23 2019
-
Table[GegenbauerC[n, 1, 6], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[1/(1-12*x+x^2), {x,0,30}], x] (* T. D. Noe, Aug 01 2011 *)
LinearRecurrence[{12,-1},{1,12},30] (* Harvey P. Dale, Feb 17 2016 *)
a[n_]:= ChebyshevU[n, 6]; (* Michael Somos, Jun 29 2019 *)
-
Vec(1/(1-12*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
{a(n) = polchebyshev(n, 2, 6)}; \\ Michael Somos, Jun 29 2019
-
[lucas_number1(n,12,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
-
[chebyshev_U(n, 6) for n in (0..20)] # G. C. Greubel, Dec 23 2019
A005246
a(n) = (1 + a(n-1)*a(n-2))/a(n-3), a(0) = a(1) = a(2) = 1.
Original entry on oeis.org
1, 1, 1, 2, 3, 7, 11, 26, 41, 97, 153, 362, 571, 1351, 2131, 5042, 7953, 18817, 29681, 70226, 110771, 262087, 413403, 978122, 1542841, 3650401, 5757961, 13623482, 21489003, 50843527, 80198051, 189750626, 299303201, 708158977, 1117014753
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 11*x^6 + 26*x^7 + 41*x^8 + ...
From _Richard Choulet_, Feb 24 2010: (Start)
a(4) = 4^2 - 4^0 - 3*4^1 = 3.
a(7) = 4^3 - 4*binomial(2,1) - 2*(4^2-1) = 26. (End)
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- Reid Barton, A combinatorial interpretation of the sequence 1, 1, 2, 6, 21, 77, ...
- Reid Barton, A combinatorial interpretation of the sequence 1, 1, 2, 6, 21, 77, ..., [Annotated scanned copy]
- Peter Cameron's Blog, The ADE affair, 3, Posted 23/06/2011.
- T. Crilly, Double sequences of positive integers, Math. Gaz., 69 (1985), 263-271.
- Enrica Duchi, Andrea Frosini, Renzo Pinzani and Simone Rinaldi, A Note on Rational Succession Rules, J. Integer Seqs., Vol. 6, 2003.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1986
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Valentin Ovsienko, Serge Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, arXiv:1705.01623 [math.CO], 2017. See p. 10.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
-
a005246 n = a005246_list !! n
a005246_list = 1 : 1 : 1 : map (+ 1) (zipWith div
(zipWith (*) (drop 2 a005246_list) (tail a005246_list)) a005246_list)
-- Reinhard Zumkeller, Mar 07 2012
-
A005246:=-(-1-z+2*z**2+z**3)/(1-4*z**2+z**4); # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for one of the leading 1's.
for q from 1 to 10 do :a:=1:b:=1:Q:=(a*b^2+q*b+a+q)/(a*b): for m from 0 to 15 do U(m):=sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(b-Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od: for m from 0 to 15 do V(m):=a*sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(a*b+q-a*Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od:for m from 0 to 15 do W(2*m):=U(m):od:for m from 0 to 14 do W(2*m+1):=V(m):od:seq(W(m),m=0..30):od; # Richard Choulet, Feb 24 2010
-
RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(1+a[n-1]a[n-2])/a[n-3]},a,{n,40}] (* Harvey P. Dale, May 28 2013 *)
a[n_] := Cosh[(n-1)*ArcSinh[1/Sqrt[2]]]*If[EvenQ[n], Sqrt[2/3], 1]; Table[a[n] // FunctionExpand, {n, 0, 34}] (* Jean-François Alcover, Dec 10 2014, after Peter Bala *)
a[ n_] := With[{m = If[ n < 0, 2 - n, n]}, SeriesCoefficient[ (1 + x - 3 x^2 - 2 x^3) / (1 - 4 x^2 + x^4), {x, 0, m}]]; (* Michael Somos, Feb 10 2017 *)
-
{a(n) = if( n<0, n = 2 - n); polcoeff((1 + x - 3*x^2 - 2*x^3) / (1 - 4*x^2 + x^4) + x * O(x^n), n)}; /* Michael Somos, Nov 15 2006 */
-
{a(n) = real( (2 + quadgen(12))^(n\2) * if( n%2, 1, 1 - 1 / quadgen(12)) )}; /* Michael Somos, May 24 2012 */
A077421
Chebyshev sequence U(n,11)=S(n,22) with Diophantine property.
Original entry on oeis.org
1, 22, 483, 10604, 232805, 5111106, 112211527, 2463542488, 54085723209, 1187422368110, 26069206375211, 572335117886532, 12565303387128493, 275864339398940314, 6056450163389558415, 132966039255171344816
Offset: 0
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9),
A075843 (m=10), this sequence (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18),
A078987 (m=19),
A097316 (m=33).
-
m:=11;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
I:=[1, 22]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
-
seq( simplify(ChebyshevU(n, 11)), n=0..20); # G. C. Greubel, Dec 23 2019
-
Table[GegenbauerC[n, 1, 11], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[1/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
ChebyshevU[Range[21] -1, 11] (* G. C. Greubel, Dec 23 2019 *)
-
vector( 21, n, polchebyshev(n-1, 2, 11) ) \\ G. C. Greubel, Dec 23 2019
-
[lucas_number1(n,22,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
-
[chebyshev_U(n,11) for n in (0..20)] # G. C. Greubel, Dec 23 2019
A078987
Chebyshev U(n,x) polynomial evaluated at x=19.
Original entry on oeis.org
1, 38, 1443, 54796, 2080805, 79015794, 3000519367, 113940720152, 4326746846409, 164302439443390, 6239165952002411, 236924003736648228, 8996872976040630253, 341644249085807301386, 12973484592284636822415, 492650770257730391950384, 18707755785201470257292177
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..632
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9),
A075843 (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18), this sequence (m=19),
A097316 (m=33).
-
m:=19;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
m:=19; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
-
seq( simplify(ChebyshevU(n, 19)), n=0..20); # G. C. Greubel, Dec 22 2019
-
lst={};Do[AppendTo[lst, GegenbauerC[n, 1, 19]], {n, 0, 8^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
ChebyshevU[Range[21] -1, 19] (* G. C. Greubel, Dec 22 2019 *)
-
a(n)=subst(polchebyshev(n,2),x,19) \\ Charles R Greathouse IV, Feb 10 2012
-
Vec(1/(1-38*x+x^2) + O(x^50)) \\ Colin Barker, Jun 15 2015
-
[lucas_number1(n,38,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
-
[chebyshev_U(n,19) for n in (0..20)] # G. C. Greubel, Dec 22 2019
A075843
Numbers k such that 99*k^2 + 1 is a square.
Original entry on oeis.org
0, 1, 20, 399, 7960, 158801, 3168060, 63202399, 1260879920, 25154396001, 501827040100, 10011386405999, 199725901079880, 3984506635191601, 79490406802752140, 1585823629419851199, 31636982181594271840
Offset: 0
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9), this sequence (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18),
A078987 (m=19),
A097316 (m=33).
-
m:=10;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
I:=[0,1]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
-
seq( simplify(ChebyshevU(n-1, 10)), n=0..20); # G. C. Greubel, Dec 22 2019
-
Table[GegenbauerC[n-1, 1, 10], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[x/(1-20x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
ChebyshevU[Range[22] -2, 10] (* G. C. Greubel, Dec 22 2019 *)
LinearRecurrence[{20,-1},{0,1},20] (* Harvey P. Dale, Dec 03 2023 *)
-
vector( 22, n, polchebyshev(n-2, 2, 10) ) \\ G. C. Greubel, Dec 22 2019
-
[lucas_number1(n,20,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
-
[chebyshev_U(n-1,10) for n in (0..20)] # G. C. Greubel, Dec 22 2019
Comments