cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 163 results. Next

A053495 Triangle formed by coefficients of numerator polynomials defined by iterating f(u,v) = 1/u - x*v applied to a list of elements {1,2,3,4,...}.

Original entry on oeis.org

1, 1, -1, -1, 2, -2, 1, -4, 6, -6, -1, 6, -18, 24, -24, 1, -9, 36, -96, 120, -120, -1, 12, -72, 240, -600, 720, -720, 1, -16, 120, -600, 1800, -4320, 5040, -5040, -1, 20, -200, 1200, -5400, 15120, -35280, 40320, -40320, 1, -25, 300, -2400, 12600
Offset: 0

Views

Author

Wouter Meeussen, Jan 27 2001

Keywords

Examples

			1, 1 - x, -1 + 2*x - 2*x^2, 1 - 4*x + 6*x^2 - 6*x^3, ...
		

Crossrefs

Diagonals give A000142, A001563, A001286, A001809, A001754, A001810, A001755, A001811, A001777. Except for first term, row sums give negative of A058307.
Row sums of positive entries give A001053, those of negative entries give -1*A001040.

Programs

  • Mathematica
    CoefficientList[ #, x ]&/@Numerator[ FoldList[ (1/#1-x#2)&, 1, Range[ 12 ] ]//Together ]
    FoldList[(1/#1-x#2)&, 1, Range[4] ]//Together (a simpler version, which shows the rational functions)

Formula

Table[ (-1)^(r+c+1) binomial[Floor[(r+c)/2], Floor[(r-c)/2]] Floor[(r+c+1)/2]! / Floor[(r-c+1)/2]!, {r, 0, 7}, {c, 0, r}]
a[0] := -1; a[1] := 1-x; a[n_] := a[n]= n x a[n-1] + a[n-2] (matches sequence except for a[0]).

A062119 a(n) = n! * (n-1).

Original entry on oeis.org

0, 2, 12, 72, 480, 3600, 30240, 282240, 2903040, 32659200, 399168000, 5269017600, 74724249600, 1133317785600, 18307441152000, 313841848320000, 5690998849536000, 108840352997376000, 2189611807358976000, 46225138155356160000, 1021818843434188800000
Offset: 1

Views

Author

Olivier Gérard, Jun 13 2001

Keywords

Comments

For n > 0, a(n) = number of permutations of length n+1 that have 2 predetermined elements nonadjacent; e.g., for n=2, the permutations with, say, 1 and 2 nonadjacent are 132 and 231, therefore a(2)=2. - Jon Perry, Jun 08 2003
Number of multiplications performed when computing the determinant of an n X n matrix by definition. - Mats Granvik, Sep 12 2008
Sum of the length of all cycles (excluding fixed points) in all permutations of [n]. - Olivier Gérard, Oct 23 2012
Number of permutations of n distinct objects (ABC...) 1 (one) times >>("-", A, AB, ABC, ABCD, ABCDE, ..., ABCDEFGHIJK, infinity) and one after the other to resemble motif: A (1) AB (1-1), AAB (2-1), AAAB (3-1), AAAAB (4-1), AAAAAB (5-1), AAAAAAB (6-1), AAAAAAAB (7-1), AAAAAAAAB (8-1) etc.,>> "1(one) fixed point". Example:motif: AAAB (or BBBA) 12 * one (1) fixed point etc. Let: AAAB ................ 'A'BCD 1. 'A'BDC 2. 'A'CBD 3. ACDB 'A'DBC 4. 'A'DCB B'A'CD 5. B'A'DC 6. BCAD 7. BCDA BD'A'C 8. BDCA C'A'BD 9. C'A'DB CB'A'D 10. CBDA CDAB CDBA D'A'BC 11. DACB DB'A'C 12. DBCA DCAB DCBA. - Zerinvary Lajos, Nov 27 2009 (does anybody understand what this is supposed to say? - Joerg Arndt, Jan 10 2015)
a(n) is the number of ways to arrange n books on two bookshelves so that each shelf receives at least one book. - Geoffrey Critzer, Feb 21 2010
a(n) = number whose factorial base representation (A007623) begins with digit {n-1} and is followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 10, 200, 3000, 40000, 500000, 6000000, 70000000, 800000000, 9000000000, A0000000000, B00000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015

Crossrefs

Column 2 of A257503 (apart from initial zero. Equally, row 2 of A257505).
Cf. A001286 (same sequence divided by 2).
Cf. A001563. - Zerinvary Lajos, Aug 27 2008
Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

Formula

a(n) = n! * (n-1).
E.g.f.: x^2/(1-x)^2. - Geoffrey Critzer, Feb 21 2010
a(n) = 2 * A001286(n).
a(n) = A001563(n) - A000142(n). - Antti Karttunen, May 07 2015, hinted by crossref left by Lajos.
From Amiram Eldar, Jul 11 2020: (Start)
Sum_{n>=2} 1/a(n) = Ei(1) + 2 - e - gamma = A091725 + 2 - A001113 - A001620.
Sum_{n>=2} (-1)^n/a(n) = gamma - Ei(-1) - 1/e = A001620 + A099285 - A068985. (End)

Extensions

Last term a(19) corrected by Harry J. Smith, Aug 02 2009

A051683 Triangle read by rows: T(n,k) = n!*k.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 24, 48, 72, 96, 120, 240, 360, 480, 600, 720, 1440, 2160, 2880, 3600, 4320, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880, 725760, 1088640, 1451520, 1814400, 2177280, 2540160, 2903040, 3265920
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

Numbers with only one nonzero digit when written in factorial base. - Franklin T. Adams-Watters, Nov 28 2011
In other words, numbers m such that A034968(m) = A099563(m). - Antti Karttunen, Jul 02 2013
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right within an interval. The subsequence A001563 denotes the circular shifts that start with the first element. Compare A211370 for circular shifts to the left. - Tilman Piesk, Apr 29 2017

Examples

			Table begins
   1;
   2,  4;
   6, 12, 18;
  24, 48, 72, 96; ...
		

Crossrefs

Programs

  • Haskell
    a051683 n k = a051683_tabl !! (n-1) !! (k-1)
    a051683_row n = a051683_tabl !! (n-1)
    a051683_tabl = map fst $ iterate f ([1], 2) where
       f (row, n) = (row' ++ [head row' + last row'], n + 1) where
         row' = map (* n) row
    -- Reinhard Zumkeller, Mar 09 2012
    
  • Magma
    [[Factorial(n)*k: k in [1..n]]: n in [1..15]]; // Vincenzo Librandi, Jun 15 2015
    
  • Mathematica
    T[n_, k_] := n!*k; Flatten[Table[T[n, k], {n, 9}, {k, n}]] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(n!*k, ", "))) \\ G. C. Greubel, Mar 27 2018
    
  • Python
    from math import isqrt, factorial, comb
    def A051683(n): return factorial(a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(n-comb(a,2)) # Chai Wah Wu, Jun 25 2025
  • Scheme
    (define (A051683 n) (* (A000142 (A002024 n)) (A002260 n))) ;; Antti Karttunen, Jul 02 2013
    

Formula

T(n,k) = A000142(A002024(n)) * A002260(n,k) = A002024(n)! * A002260(n,k) - Antti Karttunen, Jul 02 2013
Sum_{n>=1} 1/a(n) = e * (gamma - Ei(-1)) = A347952. - Amiram Eldar, Oct 13 2024

A055897 a(n) = n*(n-1)^(n-1).

Original entry on oeis.org

1, 2, 12, 108, 1280, 18750, 326592, 6588344, 150994944, 3874204890, 110000000000, 3423740047332, 115909305827328, 4240251492291542, 166680102383370240, 7006302246093750000, 313594649253062377472, 14890324713954061755186, 747581753430634213933056
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2000

Keywords

Comments

Total number of leaves in all labeled rooted trees with n nodes.
Number of endofunctions of [n] such that no element of [n-1] is fixed. E.g., a(3)=12: 123 -> 331, 332, 333, 311, 312, 313, 231, 232, 233, 211, 212, 213.
Number of functions f: {1, 2, ..., n} --> {1, 2, ..., n} such that f(1) != f(2), f(2) != f(3), ..., f(n-1) != f(n). - Warut Roonguthai, May 06 2006
Determinant of the n X n matrix ((2n, n^2, 0, ..., 0), (1, 2n, n^2, 0, ..., 0), (0, 1, 2n, n^2, 0, ..., 0), ..., (0, ..., 0, 1, 2n)). - Michel Lagneau, May 04 2010
For n > 1: a(n) = A240993(n-1) / A240993(n-2). - Reinhard Zumkeller, Aug 31 2014
Total number of points m such that f^(-1)(m) = {m}, (i.e., the preimage of m is the singleton set {m}) summed over all functions f:[n]->[n]. - Geoffrey Critzer, Jan 20 2022

Crossrefs

Programs

Formula

E.g.f.: x/(1-T), where T=T(x) is Euler's tree function (see A000169).
a(n) = Sum_{k=1..n} A055302(n, k)*k.
a(n) = the n-th term of the (n-1)-th binomial transform of {1, 1, 4, 18, 96, ..., (n-1)*(n-1)!, ...} (cf. A001563). - Paul D. Hanna, Nov 17 2003
a(n) = (n-1)^(n-1) + Sum_{i=2..n} (n-1)^(n-i)*binomial(n-1, i-1)*(i-1) *(i-1)!. - Paul D. Hanna, Nov 17 2003
a(n) = [x^(n-1)] 1/(1 - (n-1)*x)^2. - Paul D. Hanna, Dec 27 2012
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Nov 14 2014

Extensions

Additional comments from Vladeta Jovovic, Mar 31 2001 and Len Smiley, Dec 11 2001

A185105 Number T(n,k) of entries in the k-th cycles of all permutations of {1,2,..,n}; each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.

Original entry on oeis.org

1, 3, 1, 12, 5, 1, 60, 27, 8, 1, 360, 168, 59, 12, 1, 2520, 1200, 463, 119, 17, 1, 20160, 9720, 3978, 1177, 221, 23, 1, 181440, 88200, 37566, 12217, 2724, 382, 30, 1, 1814400, 887040, 388728, 135302, 34009, 5780, 622, 38, 1, 19958400, 9797760, 4385592, 1606446, 441383, 86029, 11378, 964, 47, 1
Offset: 1

Views

Author

Wouter Meeussen, Dec 26 2012

Keywords

Comments

Row sums are n!*n = A001563(n) (see example).
For fixed k>=1, A185105(n,k) ~ n!*n/2^k. - Vaclav Kotesovec, Apr 25 2017

Examples

			The six permutations of n=3 in ordered cycle form are:
{ {1}, {2}, {3}    }
{ {1}, {2, 3}, {}  }
{ {1, 2}, {3}, {}  }
{ {1, 2, 3}, {}, {}}
{ {1, 3, 2}, {}, {}}
{ {1, 3}, {2}, {}  }
.
The lengths of the cycles in position k=1 sum to 12, those of the cycles in position k=2 sum to 5 and those of the cycles in position k=3 sum to 1.
Triangle begins:
       1;
       3,     1;
      12,     5,     1;
      60,    27,     8,     1;
     360,   168,    59,    12,    1;
    2520,  1200,   463,   119,   17,   1;
   20160,  9720,  3978,  1177,  221,  23,  1;
  181440, 88200, 37566, 12217, 2724, 382, 30, 1;
  ...
		

Crossrefs

Columns k=1-10 give: A001710(n+1), A138772, A159324(n-1)/2 or A285231, A285232, A285233, A285234, A285235, A285236, A285237, A285238.
T(2n,n) gives A285239.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add((p-> p+coeff(p, x, 0)*j*x^i)(b(n-j, i+1))*
           binomial(n-1, j-1)*(j-1)!, j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    Table[it = Join[RotateRight /@ ToCycles[#], Table[{}, {k}]] & /@ Permutations[Range[n]]; Tr[Length[Part[#, k]]& /@ it], {n, 7}, {k, n}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]];
    Array[T, 12] // Flatten (* Jean-François Alcover, May 30 2018, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Apr 15 2017

A132159 Lower triangular matrix T(n,j) for double application of an iterated mixed order Laguerre transform inverse to A132014. Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-2-n,x).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 24, 18, 6, 1, 120, 96, 36, 8, 1, 720, 600, 240, 60, 10, 1, 5040, 4320, 1800, 480, 90, 12, 1, 40320, 35280, 15120, 4200, 840, 126, 14, 1, 362880, 322560, 141120, 40320, 8400, 1344, 168, 16, 1, 3628800, 3265920, 1451520, 423360, 90720, 15120
Offset: 0

Views

Author

Tom Copeland, Nov 01 2007

Keywords

Comments

The matrix operation b = T*a can be characterized several ways in terms of the coefficients a(n) and b(n), their o.g.f.'s A(x) and B(x), or their e.g.f.'s EA(x) and EB(x).
1) b(n) = n! Lag[n,(.)!*Lag[.,a1(.),-1],0], umbrally,
where a1(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0]
2) b(n) = (-1)^n * n! * Lag(n,a(.),-2-n)
3) b(n) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(-2,j) * j! * a(n-j)
4) b(n) = Sum_{j=0..n} binomial(n,j) * (j+1)! * a(n-j)
5) B(x) = (1-xDx))^(-2) A(x), formally
6) B(x) = Sum_{j>=0} (-1)^j * binomial(-2,j) * (xDx)^j A(x)
= Sum_{j>=0} (j+1) * (xDx)^j A(x)
7) B(x) = Sum_{j>=0} (j+1) * x^j * D^j * x^j A(x)
8) B(x) = Sum_{j>=0} (j+1)! * x^j * Lag(j,-:xD:,0) A(x)
9) EB(x) = Sum_{j>=0} x^j * Lag[j,(.)! * Lag[.,a1(.),-1],0]
10) EB(x) = Sum_{j>=0} Lag[j,a1(.),-1] * (-x)^j / (1-x)^(j+1)
11) EB(x) = Sum_{j>=0} x^n * Sum_{j=0..n} (j+1)!/j! * a(n-j) / (n-j)!
12) EB(x) = Sum_{j>=0} (-x)^j * Lag[j,a(.),-2-j]
13) EB(x) = exp(a(.)*x) / (1-x)^2 = (1-x)^(-2) * EA(x)
14) T = A094587^2 = A132013^(-2) = A132014^(-1)
where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the D operator series at the j = n term gives an o.g.f. for b(0) through b(n).
c = (1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and associated operations described in A133314. Thus T(n,k) = binomial(n,k)*c(n-k) . c are also the coefficients in formulas 4 and 8.
The reciprocal sequence to c is d = (1,-2,2,0,0,0,...), so the inverse of T is TI(n,k) = binomial(n,k)*d(n-k) = A132014. (A121757 is the reverse of T.)
These formulas are easily generalized for m applications of the basic operator n! Lag[n,(.)!*Lag[.,a(.),-1],0] by replacing 2 by m in formulas 2, 3, 5, 6, 12, 13 and 14, or (j+1)! by (m-1+j)!/(m-1)! in 4, 8 and 11. For further discussion of repeated applications of T, see A132014.
The row sums of T = [formula 4 with a(n) all 1] = [binomial transform of c] = [coefficients of B(x) with A(x) = 1/(1-x)] = A001339. Therefore the e.g.f. of A001339 = [formula 13 with a(n) all 1] = exp(x)*(1-x)^(-2) = exp(x)*exp[c(.)*x)] = exp[(1+c(.))*x].
Note the reciprocal is 1/{exp[(1+c(.))*x]} = exp(-x)*(1-x)^2 = e.g.f. of signed A002061 with leading 1 removed], which makes A001339 and the signed, shifted A002061 reciprocal arrays under the list partition transform of A133314.
The e.g.f. for the row polynomials (see A132382) implies they form an Appell sequence (see Wikipedia). - Tom Copeland, Dec 03 2013
As noted in item 12 above and reiterated in the Bala formula below, the e.g.f. is e^(x*t)/(1-x)^2, and the Poisson-Charlier polynomials P_n(t,y) have the e.g.f. (1+x)^y e^(-xt) (Feinsilver, p. 5), so the row polynomials R_n(t) of this entry are (-1)^n P_n(t,-2). The associated Appell sequence IR_n(t) that is the umbral compositional inverse of this entry's polynomials has the e.g.f. (1-x)^2 e^(xt), i.e., the e.g.f. of A132014 (noted above), and, therefore, the row polynomials (-1)^n PC(t,2). As umbral compositional inverses, R_n(IR.(t)) = t^n = IR_n(R.(t)), where, by definition, P.(t)^n = P_n(t), is the umbral evaluation. - Tom Copeland, Jan 15 2016
T(n,k) is the number of ways to place (n-k) rooks in a 2 x (n-1) Ferrers board (or diagram) under the Goldman-Haglund i-row creation rook mode for i=2. Triangular recurrence relation is given by T(n,k) = T(n-1,k-1) + (n+1-k)*T(n-1,k). - Ken Joffaniel M. Gonzales, Jan 21 2016

Examples

			First few rows of the triangle are
    1;
    2,  1;
    6,  4,  1;
   24, 18,  6, 1;
  120, 96, 36, 8, 1;
		

Crossrefs

Columns: A000142 (k=0), A001563 (k=1), A001286 (k=2), A005990 (k=3), A061206 (k=4), A062199 (k=5), A062148 (k=6).

Programs

  • Haskell
    a132159 n k = a132159_tabl !! n !! k
    a132159_row n = a132159_tabl !! n
    a132159_tabl = map reverse a121757_tabl
    -- Reinhard Zumkeller, Mar 06 2014
    
  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(n-k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 10 2016
    
  • Maple
    T := proc(n,k) return binomial(n,k)*factorial(n-k+1): end: seq(seq(T(n,k),k=0..n),n=0..10); # Nathaniel Johnston, Sep 28 2011
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x]/(1-x)^2,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Feb 15 2013 *)
  • Sage
    flatten([[binomial(n,k)*factorial(n-k+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, May 19 2021

Formula

T(n,k) = binomial(n,k)*c(n-k).
From Peter Bala, Jul 10 2008: (Start)
T(n,k) = binomial(n,k)*(n-k+1)!.
T(n,k) = (n-k+1)*T(n-1,k) + T(n-1,k-1).
E.g.f.: exp(x*y)/(1-y)^2 = 1 + (2+x)*y + (6+4*x+x^2)*y^2/2! + ... .
This array is the particular case P(2,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
n\k|0....................1...............2.........3.....4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
See A094587 for some general properties of these arrays.
Other cases recorded in the database include: P(1,0) = Pascal's triangle A007318, P(1,1) = A094587, P(2,0) = A038207, P(3,0) = A027465, P(1,3) = A136215 and P(2,3) = A136216. (End)
Let f(x) = (1/x^2)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+2)*R(n,x)-x*R'(n,x). Cf. A094587. - Peter Bala, Oct 28 2011
Exponential Riordan array [1/(1 - y)^2, y]. The row polynomials R(n,x) thus form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x). Define a polynomial sequence P(n,x) of binomial type by setting P(n,x) = Product_{k = 0..n-1} (2*x + k) with the convention that P(0,x) = 1. Then the present triangle is the triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (24, 18, 6, 1) so P(3,x + 1) = (2*x + 2)*(2*x + 3)*(2*x + 4) = 24 + 18*(2*x) + 6*(2*x)*(2*x + 1) + (2*x)*(2*x + 1)*(2*x + 2). Matrix square of triangle A094587. - Peter Bala, Aug 29 2013
From Tom Copeland, Apr 21 2014: (Start)
T = (I-A132440)^(-2) = {2*I - exp[(A238385-I)]}^(-2) = unsigned exp[2*(I-A238385)] = exp[A005649(.)*(A238385-I)], umbrally, where I = identity matrix.
The e.g.f. is exp(x*y)*(1-y)^(-2), so the row polynomials form an Appell sequence with lowering operator D=d/dx and raising operator x+2/(1-D).
With L(n,m,x) = Laguerre polynomials of order m, the row polynomials are (-1)^n * n! * L(n,-2-n,x) = (-1)^n*(-2!/(-2-n)!)*K(-n,-2-n+1,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
Operationally, (-1)^n*n!*L(n,-2-n,-:xD:) = (-1)^n*x^(n+2)*:Dx:^n*x^(-2-n) = (-1)^n*x^2*:xD:^n*x^(-2) = (-1)^n*n!*binomial(xD-2,n) = (-1)^n*n!*binomial(-2,n)*K(-n,-2-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706.
The generalized Pascal triangle Bala mentions is a special case of the fundamental generalized factorial matrices in A133314. (End)
From Peter Bala, Jul 26 2021: (Start)
O.g.f: 1/y * Sum_{k >= 0} k!*( y/(1 - x*y) )^k = 1 + (2 + x)*y + (6 + 4*x + x^2)*y^2 + ....
First-order recurrence for the row polynomials: (n - x)*R(n,x) = n*(n - x + 1)*R(n-1,x) - x^(n+1) with R(0,x) = 1.
R(n,x) = (x + n + 1)*R(n-1,x) - (n - 1)*x*R(n-2,x) with R(0,x) = 1 and R(1,x) = 2 + x.
R(n,x) = A087981 (x = -2), A000255 (x = -1), A000142 (x = 0), A001339 (x = 1), A081923 (x = 2) and A081924 (x = 3). (End)

Extensions

Formula 3) in comments corrected by Tom Copeland, Apr 20 2014
Title modified by Tom Copeland, Apr 23 2014

A257503 Square array A(row,col) read by antidiagonals: A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)); Dispersion of factorial base shift A255411 (array transposed).

Original entry on oeis.org

1, 2, 4, 3, 12, 18, 5, 16, 72, 96, 6, 22, 90, 480, 600, 7, 48, 114, 576, 3600, 4320, 8, 52, 360, 696, 4200, 30240, 35280, 9, 60, 378, 2880, 4920, 34560, 282240, 322560, 10, 64, 432, 2976, 25200, 39600, 317520, 2903040, 3265920, 11, 66, 450, 3360, 25800, 241920, 357840, 3225600, 32659200, 36288000, 13, 70, 456, 3456, 28800, 246240, 2540160, 3588480, 35925120, 399168000, 439084800
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The first row (A256450) contains all the numbers which have at least one 1-digit in their factorial base representation (see A007623), after which the successive rows are obtained from the terms on the row immediately above by shifting their factorial representation one left and then incrementing the nonzero digits in that representation with a factorial base shift-operation A255411.

Examples

			The top left corner of the array:
     1,     2,     3,     5,      6,      7,      8,      9,     10,     11,     13
     4,    12,    16,    22,     48,     52,     60,     64,     66,     70,     76
    18,    72,    90,   114,    360,    378,    432,    450,    456,    474,    498
    96,   480,   576,   696,   2880,   2976,   3360,   3456,   3480,   3576,   3696
   600,  3600,  4200,  4920,  25200,  25800,  28800,  29400,  29520,  30120,  30840
  4320, 30240, 34560, 39600, 241920, 246240, 272160, 276480, 277200, 281520, 286560
  ...
		

Crossrefs

Transpose: A257505.
Inverse permutation: A257504.
Row index: A257679, Column index: A257681.
Row 1: A256450, Row 2: A257692, Row 3: A257693.
Columns 1-3: A001563, A062119, A130744 (without their initial zero-terms).
Column 4: A213167 (without the initial one).
Column 5: A052571 (without initial zeros).
Cf. also permutations A255565 and A255566.
Thematically similar arrays: A083412, A135764, A246278.

Programs

Formula

A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016

A257679 The smallest nonzero digit present in the factorial base representation (A007623) of n, 0 if no nonzero digits present.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

a(0) = 0 by convention, because "0" has no nonzero digits present.
a(n) gives the row index of n in array A257503 (equally, the column index for array A257505).

Examples

			Factorial base representation (A007623) of 4 is "20", the smallest digit which is not zero is "2", thus a(4) = 2.
		

Crossrefs

Positions of records: A001563.
Cf. A256450, A257692, A257693 (positions of 1's, 2's and 3's in this sequence).
Cf. also A257079, A246359 and arrays A257503, A257505.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, rmin = n, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[0 < r < rmin, rmin = r]; m++]; rmin]; Array[a, 100, 0] (* Amiram Eldar, Jan 23 2024 *)
  • Python
    def A(n, p=2):
        return n if n
  • Scheme
    (define (A257679 n) (let loop ((n n) (i 2) (mind 0)) (if (zero? n) mind (let ((d (modulo n i))) (loop (/ (- n d) i) (+ 1 i) (cond ((zero? mind) d) ((zero? d) mind) (else (min d mind))))))))
    ;; Alternative implementations based on given recurrences, using memoizing definec-macro:
    (definec (A257679 n) (if (zero? (A257687 n)) (A099563 n) (min (A099563 n) (A257679 (A257687 n)))))
    (definec (A257679 n) (cond ((zero? n) n) ((= 1 (A257680 n)) 1) (else (+ 1 (A257679 (A257684 n))))))
    

Formula

If A257687(n) = 0, then a(n) = A099563(n), otherwise a(n) = min(A099563(n), a(A257687(n))).
In other words, if n is either zero or one of the terms of A051683, then a(n) = A099563(n) [the most significant digit of its f.b.r.], otherwise take the minimum of the most significant digit and a(A257687(n)) [value computed by recursing with a smaller value obtained by discarding that most significant digit].
a(0) = 0, and for n >= 1: if A257680(n) = 1, then a(n) = 1, otherwise 1 + a(A257684(n)).
Other identities:
For all n >= 0, a(A001563(n)) = n. [n * n! gives the first position where n appears. Note also that the "digits" (placeholders) in factorial base representation may get arbitrarily large values.]
For all n >= 0, a(2n+1) = 1 [because all odd numbers end with digit 1 in factorial base].

A002775 a(n) = n^2 * n!.

Original entry on oeis.org

0, 1, 8, 54, 384, 3000, 25920, 246960, 2580480, 29393280, 362880000, 4829932800, 68976230400, 1052366515200, 17086945075200, 294226732800000, 5356234211328000, 102793666719744000, 2074369080655872000, 43913881247588352000, 973160803270656000000, 22531105497723863040000
Offset: 0

Views

Author

Keywords

Comments

Denominators in power series expansion of the higher order exponential integral E(x,m=2,n=1) - (gamma^2/2 + Pi^2/12 + gamma*log(x) + log(x)^2/2), n>0, see A163931. - Johannes W. Meijer, Oct 16 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A163931 (E(x,m,n)), A001563 (n*n!), A091363 (n^3*n!), A091364 (n^4*n!). - Johannes W. Meijer, Oct 16 2009

Programs

  • Maple
    with(combinat):for n from 0 to 15 do printf(`%d, `,n!/2*sum(2*n, k=1..n)) od: # Zerinvary Lajos, Mar 13 2007
    seq(sum(sum(mul(k, k=1..n),l=1..n),m=1..n), n=0..21); # Zerinvary Lajos, Jan 26 2008
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(1):seq(count(ZLL, size=n)*n^2, n=0..21); # Zerinvary Lajos, Jun 11 2008
    a:=n->add(0+add(n!, j=1..n),j=1..n):seq(a(n), n=0..21); # Zerinvary Lajos, Aug 27 2008
  • Mathematica
    nn=20;a=1/(1-x); Range[0,nn]! CoefficientList[Series[x D[x D[a,x], x], {x,0,nn}], x] (* Geoffrey Critzer, Jan 17 2012 *)
    Table[n^2 n!,{n,0,40}] (* Harvey P. Dale, Aug 01 2021 *)

Formula

E.g.f.: x*(1+x)/(1-x)^3. - Vladeta Jovovic, Dec 01 2002
E.g.f.: x*A'(x) where A(x) is the e.g.f. for A001563. - Geoffrey Critzer, Jan 17 2012
From Alexander Adamchuk, Oct 24 2004: (Start)
Sum of all matrix elements M(i, j) = i/(i+j) multiplied by 2*n!.
a(n) = 2 * n! * Sum_{j=1..n} Sum_{i=1..n} i/(i+j).
Example: a(2) = 2*2! * (1/(1+1) + 1/(1+2) + 2/(2+1) + 2/(2+2)) = 8. (End)
From Amiram Eldar, Dec 24 2023: (Start)
Sum_{n>=1} 1/a(n) = A367731.
Sum_{n>=1} (-1)^(n+1)/a(n) = A367732. (End)

A074143 a(1) = 1; a(n) = n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 2, 9, 48, 300, 2160, 17640, 161280, 1632960, 18144000, 219542400, 2874009600, 40475635200, 610248038400, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 24329020081766400000, 536454892802949120000
Offset: 1

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

a(n) is also the number of elements of the alternating semigroup (A^c_n) for F(n, p) if p = n - 1 (cf. A001710). - Bakare Gatta Naimat, Jan 15 2016

Crossrefs

Programs

Formula

a(n) = n^2 * a(n-1)/(n-1) for n > 2.
a(n) = n*ceiling(n!/2) = n*A001710(n) = ceiling(A001563(n)/2). - Henry Bottomley, Nov 27 2002
a(n) = ((n+1)!-n!)/2 for n > 1. - Vladimir Joseph Stephan Orlovsky, Apr 03 2011
G.f.: (U(0) + x)/(2*x) where U(k) = 1 - 1/(k+1 - x*(k+1)^2*(k+2)/(x*(k+1)*(k+2) - 1/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 27 2012
G.f.: 1/2 + Q(0), where Q(k)= 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*binomial(n, j)*(j)^(n+1) / (n+1), n > 1, a(1) = 1. - Vladimir Kruchinin, Jun 01 2013
a(n) = numerator(n!/2*n). - Vincenzo Librandi, Apr 15 2014
a(n) is F(n;p) = n^2(n-1)!/2 if p = n-1 in A^c_n. For instance for n=4 and p=n-1: F(4; 4-1)= 4^2(4-1)!/2 = 16*6/2 = 48. - Bakare Gatta Naimat, Nov 18 2015
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: x/2 * (1 + 1/(1-x)^2).
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)
From Amiram Eldar, May 04 2025: (Start)
Sum_{n>=1} 1/a(n) = 2*ExpIntegralEi(1) - 2*gamma - 1 = 2*A091725 - 2*A001620 - 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*gamma - 1 - 2*ExpIntegralEi(-1) = 2*A001620 - 1 + 2*A099285. (End)

Extensions

More terms from Henry Bottomley, Nov 27 2002
Previous Showing 41-50 of 163 results. Next