cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 76 results. Next

A001883 Number of permutations s of {1,2,...,n} such that |s(i)-i|>1 for each i=1,2,...,n.

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 29, 206, 1708, 15702, 159737, 1780696, 21599745, 283294740, 3995630216, 60312696452, 970234088153, 16571597074140, 299518677455165, 5711583170669554, 114601867572247060, 2413623459384988298, 53238503492701261201, 1227382998752177970288, 29520591675204638641249
Offset: 0

Views

Author

Keywords

Comments

Permanent of the (0,1)-matrix having (i,j)-th entry equal to 0 iff this is on the first lower-diagonal, diagonal or the first upper-diagonal. - Simone Severini, Oct 14 2004

References

  • J. Riordan, "The enumeration of permutations with three-ply staircase restrictions," unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also a diagonal of A080018.
Column k=0 of A323671.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1, add(
          `if`(abs(n-i)<=1, 0, b(n-1, s minus {i})), i=s))
        end:
    a:= n-> b(n, {$1..n}):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jul 04 2015
  • Mathematica
    b[n_, s_List] := b[n, s] = If[n == 0, 1, Sum[If[Abs[n-i] <= 1, 0, b[n-1, s ~Complement~ {i}]], {i, s}]]; a[n_] := b[n, Range[n]]; Table[Print[a[n]]; a[n], {n, 4, 24}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
  • PARI
    permRWNb(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; in=vectorv(n); x=in; x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1; z=1-2*in[j]; in[j]+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p)
    for(n=1,23,a=matrix(n,n,i,j,abs(i-j)>1);print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 16 2007

Formula

a(n) = (n+1)*a(n-1) - (n-3)*a(n-2) - (n-4)*a(n-3) + (n-4)*a(n-4) + a(n-5) + (-1)^n * Lucas(n-3), n > 4. [Riordan] (Note: There is a slight mistake in Riordan's paper. On p. 3 it should say that a_5 = 3.) - Eric M. Schmidt, Oct 09 2017
From Vaclav Kotesovec, Oct 10 2017: (Start)
a(n) = n*a(n-1) + 4*a(n-2) - 3*(n-3)*a(n-3) + (n-4)*a(n-4) + 2*(n-5)*a(n-5) - (n-7)*a(n-6) - a(n-7).
a(n) ~ exp(-3) * n!.
(End)

Extensions

More terms and better description from Reiner Martin, Oct 14 2002
More terms from Vladimir Baltic, Vladeta Jovovic, Jan 04 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 16 2007
a(22)-a(24) from Alois P. Heinz, Jul 04 2015
a(0)-a(3) from Eric M. Schmidt, Oct 09 2017

A005494 3-Bell numbers: E.g.f.: exp(3*z + exp(z) - 1).

Original entry on oeis.org

1, 4, 17, 77, 372, 1915, 10481, 60814, 372939, 2409837, 16360786, 116393205, 865549453, 6713065156, 54190360453, 454442481041, 3952241526188, 35590085232519, 331362825860749, 3185554606447814, 31581598272055879, 322516283206446897, 3389017736055752178
Offset: 0

Views

Author

Keywords

Comments

For further information, references, programs, etc. for r-Bell numbers see A005493. - N. J. A. Sloane, Nov 27 2013
From expansion of falling factorials (binomial transform of A005493).
Row sums of Sheffer triangle (exp(3*x), exp(x)-1). - Wolfdieter Lang, Sep 29 2011

Examples

			G.f. = 1 + 4*x + 17*x^2 + 77*x^3 + 372*x^4 + 1915*x^5 + 10481*x^6 + 60814*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A108087.

Programs

  • Magma
    A005494:= func< n | (&+[Binomial(n,j)*3^(n-j)*Bell(j): j in [0..n]]) >;
    [A005494(n): n in [0..30]]; // G. C. Greubel, Dec 01 2022
    
  • Maple
    seq(add(3^(n-i)*combinat:-bell(i)*binomial(n,i),i=0..n), n=0..50); # Robert Israel, Dec 16 2014
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0,
          m^2, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n+1, 0)-b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2025
  • Mathematica
    Range[0, 40]! CoefficientList[Series[Exp[3 x + Exp[x] - 1], {x, 0, 40}], x] (* Vincenzo Librandi, Mar 04 2014 *)
  • SageMath
    def A005494(n): return sum( 3^(n-j)*bell_number(j)*binomial(n,j) for j in range(n+1))
    [A005494(n) for n in range(31)] # G. C. Greubel, Dec 01 2022

Formula

a(n) = Sum_{i=0..n} 3^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n). - Fred Lunnon, Aug 04 2007
a(n) = exp(-1)*Sum_{k>=0} ((k+3)^n)/k!. - Gerald McGarvey, Jun 03 2004. May be rewritten as a(n) = Sum_{k>=3} (k^n*(k-1)*(k-2)/k!)/exp(1), which is a Dobinski-type relation for this sequence. - Karol A. Penson, Aug 18 2006
Define f_1(x), f_2(x), ... such that f_1(x) = x^2*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)charpoly(A,-3). - Milan Janjic, Jul 08 2010
a(n) = Sum_{k=3..n+3} A143495(n+3,k), n >= 0. - Wolfdieter Lang, Sep 29 2011
G.f.: 1/U(0) where U(k)= 1 - x*(k+4) - x^2*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012
G.f.: Sum_{k>0} x^(k-1) / ((1 - 3*x) * (1 - 4*x) * ... * (1 - (k+2)*x)). - Michael Somos, Feb 26 2014
G.f.: Sum_{k>0} k * x^(k-1) / ((1 - 2*x) * (1 - 3*x) * ... * (1 - (k+1)*x)). - Michael Somos, Feb 26 2014
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n + 3) / LambertW(n)^(n + 7/2). - Vaclav Kotesovec, Jun 10 2020
a(0) = 1; a(n) = 3 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) = Sum_{k=0..n} 4^k*A124323(n, k). - Mélika Tebni, Jun 10 2022

A109128 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 for 0

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 11, 7, 1, 1, 9, 19, 19, 9, 1, 1, 11, 29, 39, 29, 11, 1, 1, 13, 41, 69, 69, 41, 13, 1, 1, 15, 55, 111, 139, 111, 55, 15, 1, 1, 17, 71, 167, 251, 251, 167, 71, 17, 1, 1, 19, 89, 239, 419, 503, 419, 239, 89, 19, 1, 1, 21, 109, 329, 659, 923, 923, 659, 329, 109, 21, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 20 2005

Keywords

Comments

Eigensequence of the triangle = A001861. - Gary W. Adamson, Apr 17 2009

Examples

			Triangle begins as:
  1;
  1   1;
  1   3   1;
  1   5   5   1;
  1   7  11   7   1;
  1   9  19  19   9   1;
  1  11  29  39  29  11   1;
  1  13  41  69  69  41  13   1;
  1  15  55 111 139 111  55  15   1;
  1  17  71 167 251 251 167  71  17   1;
  1  19  89 239 419 503 419 239  89  19   1;
		

Crossrefs

Cf. A000325 (row sums).
Sequence m*binomial(n,k) - (m-1): A007318 (m=1), this sequence (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), A168625 (m=8).

Programs

  • Haskell
    a109128 n k = a109128_tabl !! n !! k
    a109128_row n = a109128_tabl !! n
    a109128_tabl = iterate (\row -> zipWith (+)
       ([0] ++ row) (1 : (map (+ 1) $ tail row) ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Magma
    [2*Binomial(n,k) -1: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A109128 := proc(n,k)
        2*binomial(n,k)-1 ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[2*Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[2*binomial(n,k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 with T(n,0) = T(n,n) = 1.
Sum_{k=0..n} T(n, k) = A000325(n+1) (row sums).
T(n, k) = 2*binomial(n,k) - 1. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Sep 30 2007
T(n, 1) = 2*n - 1 = A005408(n+1) for n>0.
T(n, 2) = n^2 + n - 1 = A028387(n-2) for n>1.
T(n, k) = Sum_{j=0..n-k} C(n-k,j)*C(k,j)*(2 - 0^j) for k <= n. - Paul Barry, Apr 27 2006
T(n,k) = A014473(n,k) + A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 10 2012
From G. C. Greubel, Apr 06 2024: (Start)
T(n, n-k) = T(n, k).
T(2*n, n) = A134760(n).
T(2*n-1, n) = A030662(n), for n >= 1.
Sum_{k=0..n-1} T(n, k) = A000295(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = 2*[n=0] - A000035(n+1).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A327767(n), for n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A281362(n).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A281362(n-1) - (1+(-1)^n)/2 for n >= 1.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) is the repeating pattern {1,1,0,-2,-3,-1,2,2,-1,-3,-2,0} with b(n) = b(n-12). (End)

Extensions

Offset corrected by Reinhard Zumkeller, Apr 10 2012

A035009 STIRLING transform of [1,1,2,4,8,16,32,...].

Original entry on oeis.org

1, 1, 3, 11, 47, 227, 1215, 7107, 44959, 305091, 2206399, 16913987, 136823263, 1163490499, 10366252031, 96491364675, 935976996127, 9440144423875, 98800604237119, 1071092025420867, 12008090971866207, 139014305916844739, 1659578039401022079, 20405708646650507075
Offset: 0

Views

Author

Keywords

Comments

Numerators of sequence that shifts left one place under 1/2 order binomial transform. (Denominators are 2^(n-1) for n > 0.) - Franklin T. Adams-Watters, Jul 31 2005
Row sums of triangle A137597 starting (1, 3, 11, 47, 227, ...). - Gary W. Adamson, Jan 29 2008
From Gary W. Adamson, Jul 22 2011: (Start)
a(n)/2^(n-1) = upper left term in M^n, M = an infinite square production matrix in which a column of (1/2, 1/2, 1/2, ...) is appended to the right of Pascal's triangle, as follows:
1, 1/2, 0, 0, 0, 0, ...
1, 1, 1/2, 0, 0, 0, ...
1, 2, 1, 1/2, 0, 0, ...
1, 3, 3, 1, 1/2, 0, ...
1, 4, 6, 4, 1, 1/2, ..., etc.
(End)
From Bruno Berselli, Mar 20 2013: (Start)
Note that, for t=A222391:
a(1)*t = Sum_{n >= 1} 1 /(Gamma(n/2)*Gamma((n+1)/2)),
a(2)*t = Sum_{n >= 1} n /(Gamma(n/2)*Gamma((n+1)/2)),
a(3)*t = Sum_{n >= 1} n^2/(Gamma(n/2)*Gamma((n+1)/2)),
a(4)*t = Sum_{n >= 1} n^3/(Gamma(n/2)*Gamma((n+1)/2)),
a(5)*t = Sum_{n >= 1} n^4/(Gamma(n/2)*Gamma((n+1)/2)),
a(6)*t = Sum_{n >= 1} n^5/(Gamma(n/2)*Gamma((n+1)/2)), etc.
(End)
Except for the initial term, the main diagonal of A129340. - Peter Bala, Apr 14 2017

Examples

			Given the production matrix M, upper left term of M^5 = a(5)/2^4 = 227/16.
		

Crossrefs

Programs

  • Maple
    A035009 := proc(n) local a,b,i;
    a := [seq(2,i=1..n-1)]; b := [seq(1,i=1..n-1)];
    exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=2,%), 10+2*n)) end:
    seq(A035009(n),n=0..19);  # Peter Luschny, Mar 30 2011
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, ceil(2^(m-1)), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    1/(2*E^2)*Sum[(i + j)^n/(i!*j!), {i, 0, Infinity}, {j, 0, Infinity}] (* Starting from the 2nd term *) (* Vladimir Reshetnikov, Dec 31 2008 *)
    Join[{1}, Table[BellB[n, 2]/2, {n, 1, 25}]] (* Vaclav Kotesovec, Jun 26 2022 *)
  • PARI
    x='x+O('x^99); Vec(serlaplace((1 + exp(2*exp(x)-2))/2)) \\ Joerg Arndt, Apr 01 2011

Formula

a(n) = (1/2)*A001861(n), n > 0.
E.g.f.: (1 + exp(2*exp(x)-2))/2. - Emeric Deutsch, Feb 09 2002
a(n+1) = 1 + 2*Sum_{j=1..n} binomial(n, j)*a(j). - Jon Perry, Apr 25 2005
Define f_1(x), f_2(x), ... such that f_1(x)=e^x and for n=2,3,... f_{n+1}(x) = (d/dx)(x*f_n(x)). Then a(n) = e^(-2)*f_n(2). - Milan Janjic, May 30 2008
G.f.: 1 + x/(Q(0) - 2*x) where Q(k) = 1 - x*(k+1)/( 1 - 2*x/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 22 2013
G.f.: 1/Q(0), where Q(k)= 1 - x - 2*x/(1 - x*(2*k+1)/(1 - x - 2*x/(1 - x*(2*k+2)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f.: 1 + Sum_{k>=1} 2^(k-1)*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018

A049020 Triangle of numbers a(n,k), 0 <= k <= n: number of set partitions of {1,2,...,n} in which exactly k of the blocks have been distinguished.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 15, 37, 31, 10, 1, 52, 151, 160, 75, 15, 1, 203, 674, 856, 520, 155, 21, 1, 877, 3263, 4802, 3556, 1400, 287, 28, 1, 4140, 17007, 28337, 24626, 11991, 3290, 490, 36, 1, 21147, 94828, 175896, 174805, 101031, 34671, 6972, 786, 45, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle a(n,k) read by rows; given by [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Exponential Riordan array [exp(exp(x)-1), exp(x)-1]. - Paul Barry, Jan 12 2009
Equal to A048993*A007318. - Philippe Deléham, Oct 31 2011
This lower unitriangular array is the L factor in the LU decomposition of the Hankel matrix (Bell(i+j-2))A000110(n).%20The%20U%20factor%20is%20A059098%20(see%20Chamberland,%20p.%201672).%20-%20_Peter%20Bala">i,j >= 1, where Bell(n) = A000110(n). The U factor is A059098 (see Chamberland, p. 1672). - _Peter Bala, Oct 15 2023

Examples

			Triangle begins:
   1;
   1,  1;
   2,  3,  1;
   5, 10,  6,  1;
  15, 37, 31, 10,  1;
  ...
From _Paul Barry_, Jan 12 2009: (Start)
Production array begins
  1, 1;
  1, 2, 1;
  0, 2, 3, 1;
  0, 0, 3, 4, 1;
  0, 0, 0, 4, 5, 1;
  ... (End)
		

Crossrefs

First column gives A000110, second column = A005493.
Third column = A003128, row sums = A001861, A059340.
See A244489 for another version of this triangle.

Programs

  • Maple
    a:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, a(n-1, k-1) +(k+1)*(a(n-1, k) +a(n-1, k+1))))
        end:
    seq(seq(a(n, k), k=0..n), n=0..15);  # Alois P. Heinz, Nov 30 2012
  • Mathematica
    a[n_, k_] = Sum[StirlingS2[n, i]*Binomial[i, k], {i, 0, n}]; Flatten[Table[a[n, k], {n, 0, 9}, {k, 0, n}]]
    (* Jean-François Alcover, Aug 29 2011, after Vladeta Jovovic *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,n!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n),k))
    
  • Sage
    def A049020_triangle(dim):
        M = matrix(ZZ, dim, dim)
        for n in (0..dim-1): M[n, n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n, k] = M[n-1, k-1]+(k+1)*M[n-1, k]+(k+1)*M[n-1, k+1]
        return M
    A049020_triangle(9) # Peter Luschny, Sep 19 2012

Formula

a(n,k) = a(n-1, k-1) + (k+1)*a(n-1, k) + (k+1)*a(n-1, k+1), n >= 1.
a(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(i,k). - Vladeta Jovovic, Jan 27 2001
E.g.f. for the k-th column is (1/k!)*(exp(x)-1)^k*exp(exp(x)-1). - Vladeta Jovovic, Jan 27 2001
G.f.: 1/(1-x-xy-x^2(1+y)/(1-2x-xy-2x^2(1+y)/(1-3x-xy-3x^2(1+y)/(1-4x-xy-4x^2(1+y)/(1-... (continued fraction). - Paul Barry, Apr 29 2009
E.g.f.: exp((y+1)*(exp(x)-1)). - Geoffrey Critzer, Nov 30 2012
Note that A244489 (which is essentially the same triangle) has the formula T(n,k) = Sum_{j=k..n} binomial(n,j)*Stirling_2(j,k)*Bell(n-j), where Bell(n) = A000110(n), for n >= 1, 0 <= k <= n-1. - N. J. A. Sloane, May 17 2016
a(2n,n) = A245109(n). - Alois P. Heinz, Aug 23 2017
Empirical: a(n,k) = p(1^n)[st(1^k)] (see A002872 for notation). - Andrey Zabolotskiy, Oct 17 2017
a(n,k) = Sum_{j=0..k} (-1)^(k-j)*A046716(k, k-j)*Bell(n + j)/k!. - Peter Luschny, Dec 06 2023

Extensions

More terms from James Sellers.
Better definition from Geoffrey Critzer, Nov 30 2012.

A078937 Square of lower triangular matrix of A056857 (successive equalities in set partitions of n).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 22, 18, 6, 1, 94, 88, 36, 8, 1, 454, 470, 220, 60, 10, 1, 2430, 2724, 1410, 440, 90, 12, 1, 14214, 17010, 9534, 3290, 770, 126, 14, 1, 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1, 610182, 809262, 511704, 204120, 57204, 11844, 1848, 216, 18, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 18 2002

Keywords

Comments

First column gives A001861 (values of Bell polynomials); row sums gives A035009 (STIRLING transform of powers of 2);
Square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Apr 08 2007. Base matrix in A011971 and in A056857, second power in this entry, third power in A078938, fourth power in A078939
Riordan array [exp(2*exp(x)-2),x], whose production matrix has e.g.f. exp(x*t)(t+2*exp(x)). [Paul Barry, Nov 26 2008]

Examples

			[0] 1;
[1] 2, 1;
[2] 6, 4, 1;
[3] 22, 18, 6, 1;
[4] 94, 88, 36, 8, 1;
[5] 454, 470, 220, 60, 10, 1;
[6] 2430, 2724, 1410, 440, 90, 12, 1;
[7] 14214, 17010, 9534, 3290, 770, 126, 14, 1;
[8] 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1;
		

Crossrefs

Programs

  • Maple
    # Computes triangle as a matrix M(dim, p).
    # A023531 (p=0), A056857 (p=1), this sequence (p=2), A078938 (p=3), ...
    with(LinearAlgebra): M := (n, p) -> local j,k; MatrixPower(subs(exp(1) = 1,
    MatrixExponential(MatrixExponential(Matrix(n, n, [seq(seq(`if`(j = k + 1, j, 0),
    k = 0..n-1), j = 0..n-1)])))), p): M(8, 2);  # Peter Luschny, Mar 28 2024
  • PARI
    k=9; m=matpascal(k)-matid(k+1); pe=matid(k+1)+sum(j=1,k,m^j/j!); A=pe^2; A /* Gottfried Helms, Apr 08 2007; amended by Georg Fischer Mar 28 2024 */

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,column] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1] - Gottfried Helms, Apr 08 2007
Exponential function of 2*Pascal's triangle (taken as a lower triangular matrix) divided by e^2: [A078937] = (1/e^2)*exp(2*[A007318]) = [A056857]^2.

Extensions

Entry revised by N. J. A. Sloane, Apr 25 2007
a(38) corrected by Georg Fischer, Mar 28 2024

A144180 Number of ways of placing n labeled balls into n unlabeled (but 5-colored) boxes.

Original entry on oeis.org

1, 5, 30, 205, 1555, 12880, 115155, 1101705, 11202680, 120415755, 1362057155, 16151603830, 200144023805, 2584429030505, 34691478901030, 483040313859705, 6963313750468055, 103747357497925880, 1595132080103893655
Offset: 0

Views

Author

Philippe Deléham, Sep 12 2008

Keywords

Comments

a(n) is also the exp transform of A010716. - Alois P. Heinz, Oct 09 2008
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 5 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*5)
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
  • Mathematica
    Table[BellB[n,5],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
  • Sage
    expnums(19, 5) # Zerinvary Lajos, May 15 2009

Formula

a(n) = Sum_{k=0..n} 5^k * A048993(n,k); A048993: Stirling2 numbers.
G.f.: A(x) satisfies 5*(x/(1-x))*A(x/(1-x)) = A(x)-1; five times the binomial transform equals this sequence shifted one place left.
E.g.f.: exp(5*(exp(x)-1)).
G.f.: (G(0) - 1)/(x-1)/5 where G(k) = 1 - 5/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) ~ n^n * exp(n/LambertW(n/5)-5-n) / (sqrt(1+LambertW(n/5)) * LambertW(n/5)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 5^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019

Extensions

More terms from Alois P. Heinz, Oct 09 2008

A189233 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals upwards, where the e.g.f. of column k is exp(k*(e^x-1)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 22, 12, 4, 1, 0, 52, 94, 57, 20, 5, 1, 0, 203, 454, 309, 116, 30, 6, 1, 0, 877, 2430, 1866, 756, 205, 42, 7, 1, 0, 4140, 14214, 12351, 5428, 1555, 330, 56, 8, 1, 0, 21147, 89918, 88563, 42356, 12880, 2850, 497, 72, 9, 1
Offset: 0

Views

Author

Peter Luschny, Apr 18 2011

Keywords

Comments

A(n,k) is the n-th moment of a Poisson distribution with mean = k. - Geoffrey Critzer, Dec 23 2018

Examples

			Square array begins:
       A000007 A000110 A001861 A027710 A078944 A144180 A144223 A144263
A000012   1,    1,    1,    1,    1,     1,     1,     1, ...
A001477   0,    1,    2,    3,    4,     5,     6,     7, ...
A002378   0,    2,    6,   12,   20,    30,    42,    56, ...
A033445   0,    5,   22,   57,  116,   205,   330,   497, ...
          0,   15,   94,  309,  756,  1555,  2850,  4809, ...
          0,   52,  454, 1866, 5428, 12880, 26682, 50134, ...
		

Crossrefs

Programs

  • Maple
    # Cf. also the Maple prog. of Alois P. Heinz in A144223 and A144180.
    expnums := proc(k,n) option remember; local j;
    `if`(n = 0, 1, (1+add(binomial(n-1,j-1)*expnums(k,n-j), j = 1..n-1))*k) end:
    A189233_array := (k, n) -> expnums(k,n):
    seq(print(seq(A189233_array(k,n), k = 0..7)), n = 0..5);
    A189233_egf := k -> exp(k*(exp(x)-1));
    T := (n,k) -> n!*coeff(series(A189233_egf(k), x, n+1), x, n):
    seq(lprint(seq(T(n,k), k = 0..7)), n = 0..5):
    # alternative Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Sep 25 2017
  • Mathematica
    max = 9; Clear[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[k*(Exp[x]-1)], {x, 0, max}], x]*Range[0, max]!; a[0, ] = 1; a[n?Positive, 0] = 0; a[n_, k_] := col[k][[n+1]]; Table[ a[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
    Table[Table[BellB[n, k], {k, 0, 5}], {n, 0, 5}] // Grid  (* Geoffrey Critzer, Dec 23 2018 *)
  • Maxima
    A(n,k):=if k=0 and n=0 then 1 else if k=0 then 0 else  sum(stirling2(n,i)*k^i,i,0,n); /* Vladimir Kruchinin, Apr 12 2019 */

Formula

E.g.f. of column k: exp(k*(e^x-1)).
A(n,1) = A000110(n), A(n, -1) = A000587(n).
A(n,k) = BellPolynomial(n, k). - Geoffrey Critzer, Dec 23 2018
A(n,k) = Sum_{i=0..n} Stirling2(n,i)*k^i. - Vladimir Kruchinin, Apr 12 2019

A144223 Number of ways of placing n labeled balls into n unlabeled (but 6-colored) boxes.

Original entry on oeis.org

1, 6, 42, 330, 2850, 26682, 268098, 2869242, 32510850, 388109562, 4861622850, 63682081530, 869725707522, 12352785293562, 182049635623362, 2778394592545530, 43833623157604482, 713738052924821754
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2008

Keywords

Comments

a(n) is also the exp transform of A010722. - Alois P. Heinz, Oct 09 2008
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 6 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*6)
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
  • Mathematica
    Table[BellB[n,6],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
  • Sage
    expnums(18, 6) # Zerinvary Lajos, May 15 2009

Formula

a(n) = Sum_{k=0..n} 6^k*A048993(n,k); A048993: Stirling2 numbers.
G.f.: 6*(x/(1-x))*A(x/(1-x)) = A(x)-1; six times the binomial transform equals this sequence shifted one place left.
E.g.f.: exp(6(e^x-1)).
G.f.: T(0)/(1-6*x), where T(k) = 1 - 6*x^2*(k+1)/(6*x^2*(k+1) - (1-6*x-x*k)*(1-7*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 04 2013
a(n) ~ n^n * exp(n/LambertW(n/6)-6-n) / (sqrt(1+LambertW(n/6)) * LambertW(n/6)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 6^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019

Extensions

More terms from Alois P. Heinz, Oct 09 2008

A144263 Number of ways of placing n labeled balls into n unlabeled (but7-colored) boxes.

Original entry on oeis.org

1, 7, 56, 497, 4809, 50134, 558215, 6593839, 82187658, 1076193867, 14749823893, 210926792244, 3138696242941, 48485723853763, 775929767223352, 12840232627455485, 219355194338036309, 3862794707291567670
Offset: 0

Views

Author

Philippe Deléham, Sep 16 2008

Keywords

Comments

a(n) is also the exp transform of A010727. - Alois P. Heinz, Oct 09 2008
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 7 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*7)
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
  • Mathematica
    Table[BellB[n,7],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
  • Sage
    expnums(18, 7) # Zerinvary Lajos, May 15 2009

Formula

a(n) = Sum_{k=0..n} 7^k*A048993(n,k); A048993: Stirling2 numbers.
E.g.f.: exp(7*(exp(x)-1)).
G.f.: 7*(x/(1-x))*A(x/(1-x))= A(x)-1; seven times the binomial transform equals this sequence shifted one place left.
a(n) ~ n^n * exp(n/LambertW(n/7)-7-n) / (sqrt(1+LambertW(n/7)) * LambertW(n/7)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 7^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 11 2019

Extensions

More terms from Alois P. Heinz, Oct 09 2008
Previous Showing 11-20 of 76 results. Next