cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000178 Superfactorials: product of first n factorials.

Original entry on oeis.org

1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000, 265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the Vandermonde determinant of the numbers 1,2,...,(n+1), i.e., the determinant of the (n+1) X (n+1) matrix A with A[i,j] = i^j, 1 <= i <= n+1, 0 <= j <= n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
a(n) = (1/n!) * D(n) where D(n) is the determinant of order n in which the (i,j)-th element is i^j. - Amarnath Murthy, Jan 02 2002
Determinant of S_n where S_n is the n X n matrix S_n(i,j) = Sum_{d|i} d^j. - Benoit Cloitre, May 19 2002
Appears to be det(M_n) where M_n is the n X n matrix with m(i,j) = J_j(i) where J_k(n) denote the Jordan function of row k, column n (cf. A059380(m)). - Benoit Cloitre, May 19 2002
a(2n+1) = 1, 12, 34560, 125411328000, ... is the Hankel transform of A000182 (tangent numbers) = 1, 2, 16, 272, 7936, ...; example: det([1, 2, 16, 272; 2, 16, 272, 7936; 16, 272, 7936, 353792; 272, 7936, 353792, 22368256]) = 125411328000. - Philippe Deléham, Mar 07 2004
Determinant of the (n+1) X (n+1) matrix whose i-th row consists of terms 1 to n+1 of the Lucas sequence U(i,Q), for any Q. When Q=0, the Vandermonde matrix is obtained. - T. D. Noe, Aug 21 2004
Determinant of the (n+1) X (n+1) matrix A whose elements are A(i,j) = B(i+j) for 0 <= i,j <= n, where B(k) is the k-th Bell number, A000110(k) [I. Mezo, JIS 14 (2011) # 11.1.1]. - T. D. Noe, Dec 04 2004
The Hankel transform of the sequence A090365 is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - Philippe Deléham, Mar 02 2005
Theorem 1.3, page 2, of Polynomial points, Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6, provides an example of an Abelian quotient group of order (n-1) superfactorial, for each positive integer n. The quotient is obtained from sequences of polynomial values. - E. F. Cornelius, Jr. (efcornelius(AT)comcast.net), Apr 09 2007
Starting with offset 1 this is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000292. seq(mul(mul(i,i=alpha..k), k=alpha..n),n=alpha..12). - Peter Luschny, Jul 14 2009
For n>0, a(n) is also the determinant of S_n where S_n is the n X n matrix, indexed from 1, S_n(i,j)=sigma_i(j), where sigma_k(n) is the generalized divisor sigma function: A000203 is sigma_1(n). - Enrique Pérez Herrero, Jun 21 2010
a(n) is the multiplicative Wiener index of the (n+1)-vertex path. Example: a(4)=288 because in the path on 5 vertices there are 3 distances equal to 2, 2 distances equal to 3, and 1 distance equal to 4 (2*2*2*3*3*4=288). See p. 115 of the Gutman et al. reference. - Emeric Deutsch, Sep 21 2011
a(n-1) = Product_{j=1..n-1} j! = V(n) = Product_{1 <= i < j <= n} (j - i) (a Vandermondian V(n), see the Ahmed Fares May 06 2001 comment above), n >= 1, is in fact the determinant of any n X n matrix M(n) with entries M(n;i,j) = p(j-1,x = i), 1 <= i, j <= n, where p(m,x), m >= 0, are monic polynomials of exact degree m with p(0,x) = 1. This is a special x[i] = i choice in a general theorem given in Vein-Dale, p. 59 (written for the transposed matrix M(n;j,x_i) = p(i-1,x_j) = P_i(x_j) in Vein-Dale, and there a_{k,k} = 1, for k=1..n). See the Aug 26 2013 comment under A049310, where p(n,x) = S(n,x) (Chebyshev S). - Wolfdieter Lang, Aug 27 2013
a(n) is the number of monotonic magmas on n elements labeled 1..n with a symmetric multiplication table. I.e., Product(i,j) >= max(i,j); Product(i,j) = Product(j,i). - Chad Brewbaker, Nov 03 2013
The product of the pairwise differences of n+1 integers is a multiple of a(n) [and this does not hold for any k > a(n)]. - Charles R Greathouse IV, Aug 15 2014
a(n) is the determinant of the (n+1) X (n+1) matrix M with M(i,j) = (n+j-1)!/(n+j-i)!, 1 <= i <= n+1, 1 <= j <= n+1. - Stoyan Apostolov, Aug 26 2014
All terms are in A064807 and all terms after a(2) are in A005101. - Ivan N. Ianakiev, Sep 02 2016
Empirical: a(n-1) is the determinant of order n in which the (i,j)-th entry is the (j-1)-th derivative of x^(x+i-1) evaluated at x=1. - John M. Campbell, Dec 13 2016
Empirical: If f(x) is a smooth, real-valued function on an open neighborhood of 0 such that f(0)=1, then a(n) is the determinant of order n+1 in which the (i,j)-th entry is the (j-1)-th derivative of f(x)/((1-x)^(i-1)) evaluated at x=0. - John M. Campbell, Dec 27 2016
Also the automorphism group order of the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Is the zigzag Hankel transform of A000182. That is, a(2*n+1) is the Hankel transform of A000182 and a(2*n+2) is the Hankel transform of A000182(n+1). - Michael Somos, Mar 11 2020
Except for n = 0, 1, superfactorial a(n) is never a square (proof in link Mabry and Cormick, FFF 4 p. 349); however, when k belongs to A349079 (see for further information), there exists m, 1 <= m <= k such that a(k) / m! is a square. - Bernard Schott, Nov 29 2021

Examples

			a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 |
a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000.
a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12!
= 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1
= 2^56 * 3^26 * 5^11 * 7^6 * 11^2.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Programs

  • Magma
    [&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
    
  • Maple
    A000178 := proc(n)
        mul(i!,i=1..n) ;
    end proc:
    seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
  • Mathematica
    a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *)
    Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *)
    FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *)
    RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
    BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
  • Maxima
    A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
    
  • PARI
    A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • PARI
    for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
    
  • Python
    A000178_list, n, m = [1], 1,1
    for i in range(1,100):
        m *= i
        n *= m
        A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
    
  • Python
    from math import prod
    def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
  • Ruby
    def mono_choices(a,b,n)
        n - [a,b].max
    end
    def comm_mono_choices(n)
        accum =1
        0.upto(n-1) do |i|
            i.upto(n-1) do |j|
                accum = accum * mono_choices(i,j,n)
            end
        end
        accum
    end
    1.upto(12) do |k|
        puts comm_mono_choices(k)
    end # Chad Brewbaker, Nov 03 2013
    

Formula

a(0) = 1, a(n) = n!*a(n-1). - Lee Hae-hwang, May 13 2003, corrected by Ilya Gutkovskiy, Jul 30 2016
a(0) = 1, a(n) = 1^n * 2^(n-1) * 3^(n-2) * ... * n = Product_{r=1..n} r^(n-r+1). - Amarnath Murthy, Dec 12 2003 [Formula corrected by Derek Orr, Jul 27 2014]
a(n) = sqrt(A055209(n)). - Philippe Deléham, Mar 07 2004
a(n) = Product_{i=1..n} Product_{j=0..i-1} (i-j). - Paul Barry, Aug 02 2008
log a(n) = 0.5*n^2*log n - 0.75*n^2 + O(n*log n). - Charles R Greathouse IV, Jan 13 2012
Asymptotic: a(n) ~ exp(zeta'(-1) - 3/4 - (3/4)*n^2 - (3/2)*n)*(2*Pi)^(1/2 + (1/2)*n)*(n+1)^((1/2)*n^2 + n + 5/12). For example, a(100) is approx. 0.270317...*10^6941. (See A213080.) - Peter Luschny, Jun 23 2012
G.f.: 1 + x/(U(0) - x) where U(k) = 1 + x*(k+1)! - x*(k+2)!/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 + 1/((k+1)!*x*G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k!*x). - Paul D. Hanna, Oct 02 2013
A203227(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 30 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = G(n+2), where G(n) is the Barnes G-function.
a(n) ~ exp(1/12 - n*(3*n+4)/4)*n^(n*(n+2)/2 + 5/12)*(2*Pi)^((n+1)/2)/A, where A is the Glaisher-Kinkelin constant (A074962).
Sum_{n>=0} (-1)^n/a(n) = A137986. (End)
0 = a(n)*a(n+2)^3 + a(n+1)^2*a(n+2)^2 - a(n+1)^3*a(n+3) for all n in Z (if a(-1)=1). - Michael Somos, Mar 11 2020
Sum_{n>=0} 1/a(n) = A287013 = 1/A137987. - Amiram Eldar, Nov 19 2020
a(n) = Wronskian(1, x, x^2, ..., x^n). - Mohammed Yaseen, Aug 01 2023
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Sum_{k=1..n} (Integral_{x=1..k+1} Psi(x) dx)).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + x*Psi(x)) dx).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + (n+1)*Psi(x) - log(Gamma(x))) dx).
Psi(x) is the digamma function. (End)

A005493 2-Bell numbers: a(n) = number of partitions of [n+1] with a distinguished block.

Original entry on oeis.org

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 0

Views

Author

Keywords

Comments

Number of Boolean sublattices of the Boolean lattice of subsets of {1..n}.
a(n) = p(n+1) where p(x) is the unique degree n polynomial such that p(k) = A000110(k+1) for k = 0, 1, ..., n. - Michael Somos, Oct 07 2003
With offset 1, number of permutations beginning with 12 and avoiding 21-3.
Rows sums of Bell's triangle (A011971). - Jorge Coveiro, Dec 26 2004
Number of blocks in all set partitions of an (n+1)-set. Example: a(2)=10 because the set partitions of {1,2,3} are 1|2|3, 1|23, 12|3, 13|2 and 123, with a total of 10 blocks. - Emeric Deutsch, Nov 13 2006
Number of partitions of n+3 with at least one singleton and with the smallest element in a singleton equal to 2. - Olivier Gérard, Oct 29 2007
See page 29, Theorem 5.6 of my paper on the arXiv: These numbers are the dimensions of the homogeneous components of the operad called ComTrip associated with commutative triplicial algebras. (Triplicial algebras are related to even trees and also to L-algebras, see A006013.) - Philippe Leroux, Nov 17 2007
Number of set partitions of (n+2) elements where two specific elements are clustered separately. Example: a(1)=3 because 1/2/3, 1/23, 13/2 are the 3 set partitions with 1, 2 clustered separately. - Andrey Goder (andy.goder(AT)gmail.com), Dec 17 2007
Equals A008277 * [1,2,3,...], i.e., the product of the Stirling number of the second kind triangle and the natural number vector. a(n+1) = row sums of triangle A137650. - Gary W. Adamson, Jan 31 2008
Prefaced with a "1" = row sums of triangle A152433. - Gary W. Adamson, Dec 04 2008
Equals row sums of triangle A159573. - Gary W. Adamson, Apr 16 2009
Number of embedded coalitions in an (n+1)-person game. - David Yeung (wkyeung(AT)hkbu.edu.hk), May 08 2008
If prefixed with 0, gives first differences of Bell numbers A000110 (cf. A106436). - N. J. A. Sloane, Aug 29 2013
Sum_{n>=0} a(n)/n! = e^(e+1) = 41.19355567... (see A235214). Contrast with e^(e-1) = Sum_{n>=0} A000110(n)/n!. - Richard R. Forberg, Jan 05 2014

Examples

			For example, a(1) counts (12), (1)-2, 1-(2) where dashes separate blocks and the distinguished block is parenthesized.
		

References

  • Olivier Gérard and Karol A. Penson, A budget of set partition statistics, in preparation. Unpublished as of 2017.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A108087.
Row sums of triangle A143494. - Wolfdieter Lang, Sep 29 2011. And also of triangle A362924. - N. J. A. Sloane, Aug 10 2023

Programs

  • Maple
    with(combinat): seq(bell(n+2)-bell(n+1),n=0..22); # Emeric Deutsch, Nov 13 2006
    seq(add(binomial(n, k)*(bell(n-k)), k=1..n), n=1..23); # Zerinvary Lajos, Dec 01 2006
    A005493  := proc(n) local a,b,i;
    a := [seq(3,i=1..n)]; b := [seq(2,i=1..n)];
    2^n*exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=1,%),66)) end:
    seq(A005493(n),n=0..22); # Peter Luschny, Mar 30 2011
    BT := proc(n,k) option remember; if n = 0 and k = 0 then 1
    elif k = n then BT(n-1,0) else BT(n,k+1)+BT(n-1,k) fi end:
    A005493 := n -> add(BT(n,k),k=0..n):
    seq(A005493(i),i=0..22); # Peter Luschny, Aug 04 2011
    # For Maple code for r-Bell numbers, etc., see A232472. - N. J. A. Sloane, Nov 27 2013
  • Mathematica
    a=Exp[x]-1; Rest[CoefficientList[Series[a Exp[a],{x,0,20}],x] * Table[n!,{n,0,20}]]
    a[ n_] := If[ n<0, 0, With[ {m = n+1}, m! SeriesCoefficient[ # Exp@# &[ Exp@x - 1], {x, 0, m}]]]; (* Michael Somos, Nov 16 2011 *)
    Differences[BellB[Range[30]]] (* Harvey P. Dale, Oct 16 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) + 2*x - 1), n))}; /* Michael Somos, Oct 09 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, n+=2; subst( polinterpolate( Vec( serlaplace( exp( exp( x + O(x^n)) - 1) - 1))), x, n))}; /* Michael Somos, Oct 07 2003 */
    
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A005493_list, blist, b = [], [1], 1
    for _ in range(1001):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A005493_list.append(blist[-2])
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n-1) = Sum_{k=1..n} k*Stirling2(n, k) for n>=1.
E.g.f.: exp(exp(x) + 2*x - 1). First differences of Bell numbers (if offset 1). - Michael Somos, Oct 09 2002
G.f.: Sum_{k>=0} (x^k/Product_{l=1..k} (1-(l+1)x)). - Ralf Stephan, Apr 18 2004
a(n) = Sum_{i=0..n} 2^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n). - Fred Lunnon, Aug 04 2007 [Written umbrally, a(n) = (B+2)^n. - N. J. A. Sloane, Feb 07 2009]
Representation as an infinite series: a(n-1) = Sum_{k>=2} (k^n*(k-1)/k!)/exp(1), n=1, 2, ... This is a Dobinski-type summation formula. - Karol A. Penson, Mar 14 2002
Row sums of A011971 (Aitken's array, also called Bell triangle). - Philippe Deléham, Nov 15 2003
a(n) = exp(-1)*Sum_{k>=0} ((k+2)^n)/k!. - Gerald McGarvey, Jun 03 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} (1+binomial(n, j))*a(j). - Jon Perry, Apr 25 2005
a(n) = A000296(n+3) - A000296(n+1). - Philippe Deléham, Jul 31 2005
a(n) = B(n+2) - B(n+1), where B(n) are Bell numbers (A000110). - Franklin T. Adams-Watters, Jul 13 2006
a(n) = A123158(n,2). - Philippe Deléham, Oct 06 2006
Binomial transform of Bell numbers 1, 2, 5, 15, 52, 203, 877, 4140, ... (see A000110).
Define f_1(x), f_2(x), ... such that f_1(x)=x*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Representation of numbers a(n), n=0,1..., as special values of hypergeometric function of type (n)F(n), in Maple notation: a(n)=exp(-1)*2^n*hypergeom([3,3...3],[2.2...2],1), n=0,1..., i.e., having n parameters all equal to 3 in the numerator, having n parameters all equal to 2 in the denominator and the value of the argument equal to 1. Examples: a(0)= 2^0*evalf(hypergeom([],[],1)/exp(1))=1 a(1)= 2^1*evalf(hypergeom([3],[2],1)/exp(1))=3 a(2)= 2^2*evalf(hypergeom([3,3],[2,2],1)/exp(1))=10 a(3)= 2^3*evalf(hypergeom([3,3,3],[2,2,2],1)/exp(1))=37 a(4)= 2^4*evalf(hypergeom([3,3,3,3],[2,2,2,2],1)/exp(1))=151 a(5)= 2^5*evalf(hypergeom([3,3,3,3,3],[2,2,2,2,2],1)/exp(1)) = 674. - Karol A. Penson, Sep 28 2007
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) = D^(n+1)(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A003128, A052852 and A009737. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Oct 11 2012 to Jan 26 2014: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(k+3) - x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)-x) where U(k) = 1 - x - x*(k+1)/(1 - x/U(k+1)).
G.f.: G(0)/(1-x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k+2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k+2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+3*x-1)/G(k+1) )).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2*x-k*x)/(1-x/(x-1/G(k+1) )).
G.f.: -G(0)/x where G(k) = 1 - 1/(1-k*x-x)/(1-x/(x-1/G(k+1) )).
G.f.: 1 - 2/x + (1/x-1)*S where S = sum(k>=0, ( 1 + (1-x)/(1-x-x*k) )*(x/(1-x))^k / prod(i=0..k-1, (1-x-x*i)/(1-x) ) ).
G.f.: (1-x)/x/(G(0)-x) - 1/x where G(k) = 1 - x*(k+1)/(1 - x/G(k+1) ).
G.f.: (1/G(0) - 1)/x^3 where G(k) = 1 - x/(x - 1/(1 + 1/(x*k-1)/G(k+1) )).
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x/(1 - x*(k+1)/Q(k+1)).
G.f.: G(0)/(1-3*x), where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1 - x*(k+3))*(1 - x*(k+4))/G(k+1) ). (End)
a(n) ~ exp(n/LambertW(n) + 3*LambertW(n)/2 - n - 1) * n^(n + 1/2) / LambertW(n)^(n+1). - Vaclav Kotesovec, Jun 09 2020
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) ~ n^2 * Bell(n) / LambertW(n)^2 * (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
a(n) = Sum_{k=0..n} 3^k*A124323(n, k). - Mélika Tebni, Jun 02 2022

Extensions

Definition revised by David Callan, Oct 11 2005

A056857 Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 75, 50, 20, 5, 1, 203, 312, 225, 100, 30, 6, 1, 877, 1421, 1092, 525, 175, 42, 7, 1, 4140, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 21147, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 115975, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of successive equalities s_i = s_{i+1} in a set partition {s_1, ..., s_n} of {1, ..., n}, where s_i is the subset containing i, s(1) = 1 and s(i) <= 1 + max of previous s(j)'s.
T(n,c) = number of set partitions of the set {1,2,...,n} in which the size of the block containing the element 1 is k+1. Example: T(4,2)=3 because we have 123|4, 124|3 and 134|2. - Emeric Deutsch, Nov 10 2006
Let P be the lower-triangular Pascal-matrix (A007318), Then this is exp(P) / exp(1). - Gottfried Helms, Mar 30 2007. [This comment was erroneously attached to A011971, but really belongs here. - N. J. A. Sloane, May 02 2015]
From David Pasino (davepasino(AT)yahoo.com), Apr 15 2009: (Start)
As an infinite lower-triangular matrix (with offset 0 rather than 1, so the entries would be B(n - c)*binomial(n, c), B() a Bell number, rather than B(n - 1 - c)*binomial(n - 1, c) as below), this array is S P S^-1 where P is the Pascal matrix A007318, S is the Stirling2 matrix A048993, and S^-1 is the Stirling1 matrix A048994.
Also, S P S^-1 = (1/e)*exp(P). (End)
Exponential Riordan array [exp(exp(x)-1), x]. Equal to A007318*A124323. - Paul Barry, Apr 23 2009
Equal to A049020*A048994 as infinite lower triangular matrices. - Philippe Deléham, Nov 19 2011
Build a superset Q[n] of set partitions of {1,2,...,n} by distinguishing "some" (possibly none or all) of the singletons. Indexed from n >= 0, 0 <= k <= n, T(n,k) is the number of elements in Q[n] that have exactly k distinguished singletons. A singleton is a subset containing one element. T(3,1) = 6 because we have {{1}'{2,3}}, {{1,2}{3}'}, {{1,3}{2}'}, {{1}'{2}{3}}, {{1}{2}'{3}}, {{1}{2}{3}'}. - Geoffrey Critzer, Nov 10 2012
Let Bell(n,x) denote the n-th Bell polynomial, the n-th row polynomial of A048993. Then this is the triangle of connection constants when expressing the basis polynomials Bell(n,x + 1) in terms of the basis polynomials Bell(n,x). For example, row 3 is (5, 6, 3, 1) and 5 + 6*Bell(1,x) + 3*Bell(2,x) + Bell(3,x) = 5 + 6*x + 3*(x + x^2) + (x + 3*x^2 + x^3) = 5 + 10*x + 6*x^2 + x^3 = (x + 1) + 3*(x + 1)^2 + (x + 1)^3 = Bell(3,x + 1). - Peter Bala, Sep 17 2013

Examples

			For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 successive equality, at i = 4.
Triangle begins:
    1;
    1,   1;
    2,   2,   1;
    5,   6,   3,   1;
   15,  20,  12,   4,   1;
   52,  75,  50,  20,   5,   1;
  203, 312, 225, 100,  30,   6,   1;
  ...
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  3,  3,  1,  1;
  1,  4,  6,  4,  1,  1;
  1,  5, 10, 10,  5,  1,  1;
  1,  6, 15, 20, 15,  6,  1,  1;
  1,  7, 21, 35, 35, 21,  7,  1,  1;
  1,  8, 28, 56, 70, 56, 28,  8,  1,  1; ... (End)
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]

Crossrefs

Cf. Bell numbers A000110 (column c=0), A052889 (c=1), A105479 (c=2), A105480 (c=3).
Cf. A056858-A056863. Essentially same as A056860, where the rows are read from right to left.
Cf. also A007318, A005493, A270953.
See A259691 for another version.
T(2n+1,n+1) gives A124102.
T(2n,n) gives A297926.

Programs

  • Maple
    with(combinat): A056857:=(n,c)->binomial(n-1,c)*bell(n-1-c): for n from 1 to 11 do seq(A056857(n,c),c=0..n-1) od; # yields sequence in triangular form; Emeric Deutsch, Nov 10 2006
    with(linalg): # Yields sequence in matrix form:
    A056857_matrix := n -> subs(exp(1)=1, exponential(exponential(
    matrix(n,n,[seq(seq(`if`(j=k+1,j,0),k=0..n-1),j=0..n-1)])))):
    A056857_matrix(8); # Peter Luschny, Apr 18 2011
  • Mathematica
    t[n_, k_] := BellB[n-1-k]*Binomial[n-1, k]; Flatten[ Table[t[n, k], {n, 1, 11}, {k, 0, n-1}]](* Jean-François Alcover, Apr 25 2012, after Emeric Deutsch *)
  • PARI
    B(n) = sum(k=0, n, stirling(n, k, 2));
    tabl(nn)={for(n=1, nn, for(k=0, n - 1, print1(B(n - 1 - k) * binomial(n - 1, k),", ");); print(););};
    tabl(12); \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import bell, binomial
    for n in range(1,12):
        print([bell(n - 1 - k) * binomial(n - 1, k) for k in range(n)]) # Indranil Ghosh, Mar 19 2017
    
  • SageMath
    def a(n): return (-1)^n / factorial(n)
    @cached_function
    def p(n, m):
        R = PolynomialRing(QQ, "x")
        if n == 0: return R(a(m))
        return R((m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1))
    for n in range(11): print(p(n, 0).list())  # Peter Luschny, Jun 18 2023

Formula

T(n,c) = B(n-1-c)*binomial(n-1, c), where T(n,c) is the number of set partitions of {1, ..., n} that have c successive equalities and B() is a Bell number.
E.g.f.: exp(exp(x)+x*y-1). - Vladeta Jovovic, Feb 13 2003
G.f.: 1/(1-xy-x-x^2/(1-xy-2x-2x^2/(1-xy-3x-3x^2/(1-xy-4x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
Considered as triangle T(n,k), 0 <= k <= n: T(n,k) = A007318(n,k)*A000110(n-k) and Sum_{k=0..n} T(n,k)*x^k = A000296(n), A000110(n), A000110(n+1), A005493(n), A005494(n), A045379(n) for x = -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Dec 13 2009
Let R(n,x) denote the n-th row polynomial of the triangle. Then A000110(n+j) = Bell(n+j,1) = Sum_{k = 1..n} R(j,k)*Stirling2(n,k) (Spivey). - Peter Bala, Sep 17 2013

Extensions

More terms from David Wasserman, Apr 22 2002

A143495 Triangle read by rows: 3-Stirling numbers of the second kind.

Original entry on oeis.org

1, 3, 1, 9, 7, 1, 27, 37, 12, 1, 81, 175, 97, 18, 1, 243, 781, 660, 205, 25, 1, 729, 3367, 4081, 1890, 380, 33, 1, 2187, 14197, 23772, 15421, 4550, 644, 42, 1, 6561, 58975, 133057, 116298, 47271, 9702, 1022, 52, 1, 19683, 242461, 724260, 830845, 447195
Offset: 3

Views

Author

Peter Bala, Aug 20 2008

Keywords

Comments

This is the case r = 3 of the r-Stirling numbers of the second kind. The 3-Stirling numbers of the second kind give the number of ways of partitioning the set {1,2,...,n} into k nonempty disjoint subsets with the restriction that the elements 1, 2 and 3 belong to distinct subsets. For remarks on the general case see A143494 (r = 2). The corresponding array of 3-Stirling numbers of the first kind is A143492. The theory of r-Stirling numbers of both kinds is developed in [Broder]. For 3-Lah numbers refer to A143498.
From Peter Bala, Sep 19 2008: (Start)
Let D be the derivative operator d/dx and E the Euler operator x*d/dx. Then x^(-3)*E^n*x^3 = Sum_{k = 0..n} T(n+3,k+3)*x^k*D^k.
The row generating polynomials R_n(x) := Sum_{k= 3..n} T(n,k)*x^k satisfy the recurrence R_(n+1)(x) = x*R_n(x) + x*d/dx(R_n(x)) with R_3(x) = x^3. It follows that the polynomials R_n(x) have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
Relation with the 3-Eulerian numbers E_3(n,j) := A144697(n,j): T(n,k) = (3!/k!)*Sum_{j = n-k..n-3} E_3(n,j)*binomial(j,n-k) for n >= k >= 3.
(End)
T(n,k) = S(n,k,3), n>=k>=3, in Mikhailov's first paper, eq.(28) or (A3). E.g.f. column k from (A20) with k->3, r->k. Therefore, with offset [0,0], this triangle is the Sheffer triangle (exp(3*x),exp(x)-1) with e.g.f. of column no. m>=0: exp(3*x)*((exp(x)-1)^m)/m!. See one of the formulas given below. For Sheffer matrices see the W. Lang link under A006232 with the S. Roman reference, also found in A132393. - Wolfdieter Lang, Sep 29 2011

Examples

			Triangle begins
  n\k|....3....4....5....6....7....8
  ==================================
  3..|....1
  4..|....3....1
  5..|....9....7....1
  6..|...27...37...12....1
  7..|...81..175...97...18....1
  8..|..243..781..660..205...25....1
  ...
T(5,4) = 7. The set {1,2,3,4,5} can be partitioned into four subsets such that 1, 2 and 3 belong to different subsets in 7 ways: {{1}{2}{3}{4,5}}, {{1}{2}{5}{3,4}}, {{1}{2}{4}{3,5}}, {{1}{3}{4}{2,5}}, {{1}{3}{5}{2,4}}, {{2}{3}{4}{1,5}} and {{2}{3}{5}{1,4}}.
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1               \       /1             \ /1             \ /1            \
| 3    1           |     | 3   1          ||0  1           ||0  1          |
| 9    7   1       |  =  | 9   4   1      ||0  3   1       ||0  0  1       | ...
|27   37  12   1   |     |27  13   5  1   ||0  9   4  1    ||0  0  3  1    |
|81  175  97  18  1|     |81  40  18  6  1||0 27  13  5  1 ||0  0  9  4  1 |
|...               |     |...             ||...            ||...           |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 3*x), x/(1 - x)). See A106516. (End)
		

Crossrefs

Cf. A005061 (column 4), A005494 (row sums), A008277, A016753 (column 5), A028025 (column 6), A049458 (matrix inverse), A106516, A143492, A143494, A143496, A143498.

Programs

  • Maple
    A143495 := (n, k) -> (1/(k-3)!)*add((-1)^(k-i-1)*binomial(k-3,i)*(i+3)^(n-3), i = 0..k-3): for n from 3 to 12 do seq(A143495(n, k), k = 3..n) end do;
  • Mathematica
    nmax = 12; t[n_, k_] := 1/(k-3)!* Sum[ (-1)^(k-j-1)*Binomial[k-3, j]*(j+3)^(n-3), {j, 0, k-3}]; Flatten[ Table[ t[n, k], {n, 3, nmax}, {k, 3, n}]] (* Jean-François Alcover, Dec 07 2011, after Maple *)
  • Sage
    @CachedFunction
    def stirling2r(n, k, r) :
        if n < r: return 0
        if n == r: return 1 if k == r else 0
        return stirling2r(n-1, k-1, r) + k*stirling2r(n-1, k, r)
    A143495 = lambda n, k: stirling2r(n, k, 3)
    for n in (3..8): [A143495(n, k) for k in (3..n)] # Peter Luschny, Nov 19 2012

Formula

T(n+3,k+3) = (1/k!)*Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+3)^n, n,k >= 0.
T(n,k) = Stirling2(n,k) - 3*Stirling2(n-1,k) + 2*Stirling2(n-2,k), n,k >= 3.
Recurrence relation: T(n,k) = T(n-1,k-1) + k*T(n-1,k) for n > 3, with boundary conditions: T(n,2) = T(2,n) = 0 for all n; T(3,3) = 1; T(3,k) = 0 for k > 3.
Special cases: T(n,3) = 3^(n-3); T(n,4) = 4^(n-3) - 3^(n-3).
E.g.f. (k+3) column (with offset 3): (1/k!)*exp(3x)*(exp(x)-1)^k.
O.g.f. k-th column: Sum_{n >= k} T(n,k)*x^n = x^k/((1-3*x)*(1-4*x)*...*(1-k*x)).
E.g.f.: exp(3*t + x*(exp(t)-1)) = Sum_{n >= 0} Sum_{k = 0..n} T(n+3,k+3)*x^k*t^n/n! = Sum_{n >= 0} B_n(3;x)*t^n/n! = 1 + (3+x)*t/1! + (9+7*x+x^2)*t^2/2! + ..., where the row polynomials, B_n(3;x) := Sum_{k = 0..n} T(n+3,k+3)*x^k, may be called the 3-Bell polynomials.
Dobinski-type identities: Row polynomial B_n(3;x) = exp(-x)*Sum_{i >= 0} (i+3)^n*x^i/i!; Sum_{k = 0..n} k!*T(n+3,k+3)*x^k = Sum_{i >= 0} (i+3)^n*x^i/(1+x)^(i+1).
The T(n,k) are the connection coefficients between the falling factorials and the shifted monomials (x+3)^(n-3). For example, 9 + 7*x + x*(x-1) = (x+3)^2 and 27 + 37*x + 12x*(x-1) + x*(x-1)*(x-2) = (x+3)^3.
This array is the matrix product P^2 * S, where P denotes Pascal's triangle, A007318 and S denotes the lower triangular array of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]). The inverse array is A049458, the signed 3-Stirling numbers of the first kind.

A045379 Expansion of e.g.f.: exp(4*z + exp(z) - 1).

Original entry on oeis.org

1, 5, 26, 141, 799, 4736, 29371, 190497, 1291020, 9131275, 67310847, 516369838, 4116416797, 34051164985, 291871399682, 2588914083065, 23733360653955, 224592570163192, 2191466128865567, 22024934452712437, 227771488390279260
Offset: 0

Views

Author

Keywords

Crossrefs

Equals the row sums of triangle A143496. - Wolfdieter Lang, Sep 29 2011

Programs

  • Magma
    A045379:= func< n | (&+[Binomial(n,j)*4^(n-j)*Bell(j): j in [0..n]]) >;
    [A045379(n): n in [0..30]]; // G. C. Greubel, Dec 01 2022
    
  • Mathematica
    a[0]= 1; a[n_]:= a[n]= 4*a[n-1] +Sum[Binomial[n-1, k]*a[k], {k,0,n-1}]; Array[a, 21, 0] (* Amiram Eldar, Jul 03 2020 *)
  • SageMath
    def A045379(n): return sum( 4^(n-j)*bell_number(j)*binomial(n,j) for j in range(n+1))
    [A045379(n) for n in range(31)] # G. C. Greubel, Dec 01 2022

Formula

a(n) = exp(-1)*Sum_{k>=0} ((k+4)^n)/k!. - Gerald McGarvey, Jun 03 2004
A recursive formula to compute some integer sequences (including A000110, A005493, A005494 and the present sequence). Define G(n, m), where n, m >= 0, as follows: G(0, m) = 1; G(n, m) = G(n-1, m) * (m+1) + G(n-1, m+1), where n > 0. Then G(n, 0) = A000110(n+1); G(n, 1) = A005493(n+1); G(n, 2) = A005494(n+1); G(n, 3) = A045379(n+1). - Alexey Andreev (ava12(AT)nm.ru), Jan 05 2006
Define f_1(x), f_2(x), ... such that f_1(x)=x^3*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)*charpoly(A,-4). - Milan Janjic, Jul 08 2010
G.f.: 1/U(0) where U(k) = 1 - x*(k+5) - x^2*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n + 4) / LambertW(n)^(n + 9/2). - Vaclav Kotesovec, Jun 10 2020
a(0) = 1; a(n) = 4 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) = Sum_{j=0..n} binomial(n, j)*4^(n-j)*A000110(j). - G. C. Greubel, Dec 01 2022

A108087 Array, read by antidiagonals, where A(n,k) = exp(-1)*Sum_{i>=0} (i+k)^n/i!.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 4, 1, 52, 52, 37, 17, 5, 1, 203, 203, 151, 77, 26, 6, 1, 877, 877, 674, 372, 141, 37, 7, 1, 4140, 4140, 3263, 1915, 799, 235, 50, 8, 1, 21147, 21147, 17007, 10481, 4736, 1540, 365, 65, 9, 1, 115975, 115975, 94828, 60814, 29371, 10427, 2727, 537, 82, 10, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

The column for k=0 is A000110 (Bell or exponential numbers). The column for k=1 is A000110 starting at offset 1. The column for k=2 is A005493 (Sum_{k=0..n} k*Stirling2(n,k).). The column for k=3 is A005494 (E.g.f.: exp(3*z+exp(z)-1).). The column for k=4 is A045379 (E.g.f.: exp(4*z+exp(z)-1).). The row for n=0 is 1's sequence, the row for n=1 is the natural numbers. The row for n=2 is A002522 (n^2 + 1.). The row for n=3 is A005491 (n^3 + 3n + 1.). The row for n=4 is A005492.
Number of ways of placing n labeled balls into n+k boxes, where k of the boxes are labeled and the rest are indistinguishable. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
The column for k = -1 (not shown) is A000296 (Number of partitions of an n-set into blocks of size >1. Also number of cyclically spaced (or feasible) partitions.). - Gerald McGarvey, Oct 08 2006
Equals antidiagonals of an array in which (n+1)-th column is the binomial transform of n-th column, with leftmost column = the Bell sequence, A000110. - Gary W. Adamson, Apr 16 2009
Number of partitions of [n+k] where at least k blocks contain their own index element. A(2,2) = 10: 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, Jan 07 2022

Examples

			Array A(n,k) begins:
   1,   1,   1,    1,    1,     1,     1,     1,     1,      1, ... A000012;
   1,   2,   3,    4,    5,     6,     7,     8,     9,     10, ... A000027;
   2,   5,  10,   17,   26,    37,    50,    65,    82,    101, ... A002522;
   5,  15,  37,   77,  141,   235,   365,   537,   757,   1031, ... A005491;
  15,  52, 151,  372,  799,  1540,  2727,  4516,  7087,  10644, ... A005492;
  52, 203, 674, 1915, 4736, 10427, 20878, 38699, 67340, 111211, ... ;
Antidiagonal triangle, T(n, k), begins as:
     1;
     1,    1;
     2,    2,    1;
     5,    5,    3,    1;
    15,   15,   10,    4,   1;
    52,   52,   37,   17,   5,   1;
   203,  203,  151,   77,  26,   6,  1;
   877,  877,  674,  372, 141,  37,  7,  1;
  4140, 4140, 3263, 1915, 799, 235, 50,  8,  1;
		

References

  • F. Ruskey, Combinatorial Generation, preprint, 2001.

Crossrefs

Main diagonal gives A134980.
Antidiagonal sums give A347420.

Programs

  • Magma
    A108087:= func< n,k | (&+[Binomial(n-k,j)*k^j*Bell(n-k-j): j in [0..n-k]]) >;
    [A108087(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 02 2022
    
  • Maple
    with(combinat):
    A:= (n, k)-> add(binomial(n, i) * k^i * bell(n-i), i=0..n):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 18 2012
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := Sum[Binomial[n, i] * k^i * BellB[n - i], {i, 0, n}]; Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • PARI
    f(n,k)=round (suminf(i=0,(i+k)^n/i!)/exp(1));
    g(n,k)=for(k=0,k,print1(f(n,k),",")) \\ prints k+1 terms of n-th row
    
  • SageMath
    def A108087(n,k): return sum( k^j*bell_number(n-k-j)*binomial(n-k,j) for j in range(n-k+1))
    flatten([[A108087(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 02 2022

Formula

For n> 1, A(n, k) = k^n + sum_{i=0..n-2} A086659(n, i)*k^i. (A086659 is set partitions of n containing k-1 blocks of length 1, with e.g.f: exp(x*y)*(exp(exp(x)-1-x)-1).)
A(n, k) = k * A(n-1, k) + A(n-1, k+1), A(0, k) = 1. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
A(n,k) = Sum_{i=0..n} C(n,i) * k^i * Bell(n-i). - Alois P. Heinz, Jul 18 2012
Sum_{k=0..n-1} A(n-k,k) = A005490(n). - Alois P. Heinz, Jan 05 2022
From G. C. Greubel, Dec 02 2022: (Start)
T(n, n) = A000012(n).
T(n, n-1) = A000027(n).
T(n, n-2) = A002522(n-1).
T(n, n-3) = A005491(n-2).
T(n, n-4) = A005492(n+1).
T(2*n, n) = A134980(n).
T(2*n, n+1) = A124824(n), n >= 1.
Sum_{k=0..n} T(n, k) = A347420(n). (End)

A232472 2-Fubini numbers.

Original entry on oeis.org

2, 10, 62, 466, 4142, 42610, 498542, 6541426, 95160302, 1520385010, 26468935022, 498766780786, 10114484622062, 219641848007410, 5085371491003502, 125055112347154546, 3255163896227709422, 89416052656071565810, 2584886208925055791982, 78447137202259689678706, 2493719594804686310662382
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Examples

			G.f.: 2*x^2 + 10*x^3 + 62*x^4 + 466*x^5 + 4142*x^6 + 42610*x^7 + 498542*x^8 + ...
		

Crossrefs

Programs

  • Magma
    r:=2; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g., A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g., A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(2);
  • Mathematica
    Rest[max=20; t=Sum[n^(n - 1) x^n / n!, {n, 1, max}]; 2 Range[0, max]!CoefficientList[Series[D[1 / (1 - y (Exp[x] - 1)), y] /.y->1, {x, 0, max}], x]] (* Vincenzo Librandi Jan 03 2016 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 2], {n, 2, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

Let A(x) be the g.f. A232472, B(x) the g.f. A000670, then A(x) = (1-x)*B(x) - 1. - Sergei N. Gladkovskii, Nov 29 2013
a(n) = Sum_{k>=2} T_k*k^(n-2)/2^k where T_k is the (k-1)-st triangular number (i.e., T_k = k*(k-1)/2). - Derek Orr, Jan 01 2016
a(n) = 2*A069321(n-1). - Vincenzo Librandi, Jan 03 2016, corrected by Vaclav Kotesovec, Jul 01 2018
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Jul 01 2018
From Peter Bala, Dec 08 2020: (Start)
a(n+2) = Sum_{k = 0..n} (k+2)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+2)^n ).
a(n+2) = Sum_{k = 0..n} 2^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+2)! ).
a(n) = 2*A069321(n-1) = A000670(n) - A000670(n-1).
a(n+1)= (1/2)*Sum_{k = 0..n} binomial(n,k)*A000670(k+1) for n >= 1.
E.g.f. with offset 0: 2*exp(2*z)/(2 - exp(z))^3 = 2 + 10*z + 62*z^2/2! + 466*z^3/3! + .... (End)

A346738 Expansion of e.g.f.: exp(exp(x) - 3*x - 1).

Original entry on oeis.org

1, -2, 5, -13, 36, -101, 293, -848, 2523, -7365, 22402, -64395, 205285, -541802, 2057617, -3403993, 28685420, 43885023, 824532745, 4878097904, 44263112047, 357891860463, 3169228222338, 28506399763969, 266822555964441, 2573194635922990, 25606751525353741
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!(Laplace( Exp(Exp(x)-3*x-1) ))) // G. C. Greubel, Jun 12 2024
    
  • Mathematica
    nmax = 26; CoefficientList[Series[Exp[Exp[x] - 3 x - 1], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k], {k, 0, n}], {n, 0, 26}]
    a[0] = 1; a[n_] := a[n] = -3 a[n - 1] + Sum[Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 26}]
  • SageMath
    [factorial(n)*( exp(exp(x)-3*x-1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024

Formula

G.f. A(x) satisfies: A(x) = (1 - x + x * A(x/(1 - x))) / ((1 - x) * (1 + 3*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * Bell(k).
a(n) = exp(-1) * Sum_{k>=0} (k - 3)^n / k!.
a(0) = 1; a(n) = -3 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k).

A033452 "STIRLING" transform of squares A000290.

Original entry on oeis.org

0, 1, 5, 22, 99, 471, 2386, 12867, 73681, 446620, 2856457, 19217243, 135610448, 1001159901, 7714225057, 61904585510, 516347066551, 4468588592739, 40058673825258, 371421499686007, 3556976106133821, 35138574378189700, 357654857584636597, 3746672593640388775
Offset: 0

Views

Author

Keywords

Comments

If an integer N is squarefree and has n+2 distinct prime factors then a(n) is the number of product signs needed to write the factorizations of N, so a(n)=A076277(N). - Floor van Lamoen, Oct 17 2002
Convolved with powers of 2 = A058681: (1, 7, 36, 171, 813, ...). Cf. triangle A180338. - Gary W. Adamson, Aug 28 2010

Examples

			G.f. = x + 5*x^2 + 22*x^3 + 99*x^4 + 471*x^5 + 2386*x^6 + 12867*x^7 + 73681*x^8 + ...
		

Crossrefs

Partial sums of A005494.
Cf. A180338.

Programs

  • Maple
    a := n -> add(Stirling2(n, j)*j^2, j=0..n): seq(a(n), n=0..20); # Zerinvary Lajos, Apr 18 2007
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, m^2, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 2 - 1/(1 - k*x)/(1 - x/(x - 1/g[k + 1])); gf = 1/x + 1/x^2 - g[0]/x^2; CoefficientList[ Series[gf, {x, 0, max}], x] (* Jean-François Alcover, Jan 24 2013, after Sergei N. Gladkovskii *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (exp(x + x * O(x^n)) - 1) * exp( exp(x + x * O(x^n)) - 1 + x), n))}; /* Michael Somos, Mar 28 2012 */

Formula

Representation as an infinite series: a(n) = (Sum_{k>=1} k^n*k*(k-2)/k!)/exp(1), n >= 1. This is a Dobinski-type summation formula. - Karol A. Penson, Mar 21 2002
a(n) = A005493(n) - A000110(n+1). - Floor van Lamoen and Christian Bower, Oct 16 2002. (n^2 has e.g.f.: e^x * (x^2+x), a(n) thus has e.g.f: e^(e^x-1) * ( (e^x-1)^2 + (e^x-1) ) which simplifies to e^(e^x-1) * (e^2x - e^x). A005493 has e.g.f.: e^(e^x+2x-1), A000110 has e.g.f.: e^(e^x-1), A000110(n+1) has as e.g.f.: derivative of A000110 which is e^(e^x+x-1).) [corrected by Georg Fischer, Jun 17 2020]
a(n) = Bell(n+2) - 2*Bell(n+1). - Vladeta Jovovic, Jul 28 2003
G.f.: sum{k>=0, k^2*x^k/prod[l=1..k, 1-lx]}. - Ralf Stephan, Apr 18 2004
E.g.f.: exp( exp(x) - 1 + x) * (exp(x) - 1). - Michael Somos, Mar 28 2012
a(n) = A123158(n,3). - Philippe Deléham, Oct 06 2006
G.f.: G(0)/x -1/x, where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (2*x+x*k-1)*(3*x+x*k-1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 25 2014

A196834 Row sums of Sheffer triangle A193685 (5-restricted Stirling2 numbers).

Original entry on oeis.org

1, 6, 37, 235, 1540, 10427, 73013, 529032, 3967195, 30785747, 247126450, 2050937445, 17585497797, 155666739742, 1421428484337, 13377704321695, 129659127547372, 1293095848212799, 13259069937250169, 139671750579429512, 1510382932875294447, 16754464511605466311
Offset: 0

Views

Author

Wolfdieter Lang, Oct 07 2011

Keywords

Examples

			a(2) = 25 + 11 + 1 = 37.
		

Crossrefs

Cf. A000110, A005493, A005494, A045379, A196835 (alternating row sums).

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, 1, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 22 2021
  • Mathematica
    nmax = 20; CoefficientList[Series[E^(E^x + 5*x - 1), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 10 2020 *)

Formula

a(n) = Sum_{m=0..n} A193685(n,m).
E.g.f.: exp(exp(x)+5*x-1).
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n + 5) / LambertW(n)^(n + 11/2). - Vaclav Kotesovec, Jun 10 2020
a(0) = 1; a(n) = 5 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 03 2020
Showing 1-10 of 22 results. Next