cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 167 results. Next

A209446 a(n) = Pell(n)*A004016(n) for n >= 1, with a(0)=1, where A004016(n) is the number of integer solutions (x,y) to x^2 + x*y + y^2 = n.

Original entry on oeis.org

1, 6, 0, 30, 72, 0, 0, 2028, 0, 5910, 0, 0, 83160, 401532, 0, 0, 2824992, 0, 0, 79501308, 0, 463367580, 0, 0, 0, 7870428726, 0, 45872220270, 221490672624, 0, 0, 3116610274188, 0, 0, 0, 0, 127800022137480, 617073093431772, 0, 3596565555708780, 0, 0, 0, 122177355889216668
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A004016: 1 + 6*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - x^n).

Examples

			G.f.: A(x) = 1 + 6*x + 30*x^3 + 72*x^4 + 2028*x^7 + 5910*x^9 + 83160*x^12 + ...
where A(x) = 1 + 1*6*x + 5*6*x^3 + 12*6*x^4 + 169*12*x^7 + 985*6*x^9 + 13860*6*x^12 + ... + Pell(n)*A004016(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 6*( 1*x/(1-2*x-x^2) - 2*x^2/(1-6*x^2+x^4) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1-82*x^5-x^10) + 169*x^7/(1-478*x^7-x^14) + ...).
The values of the symbol Kronecker(n,3) repeat [1, -1, 0, ...].
		

Crossrefs

Programs

  • Mathematica
    A004016[n_]:= If[n < 1, Boole[n == 0], 6 DivisorSum[n, KroneckerSymbol[#, 3] &]]; Join[{1}, Table[Fibonacci[n, 2]*A004016[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 6*sum(m=1,n,kronecker(m,3)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 + 6*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A033539 a(0)=1, a(1)=1, a(2)=1, a(n) = 2*a(n-1) + a(n-2) + 1.

Original entry on oeis.org

1, 1, 1, 4, 10, 25, 61, 148, 358, 865, 2089, 5044, 12178, 29401, 70981, 171364, 413710, 998785, 2411281, 5821348, 14053978, 33929305, 81912589, 197754484, 477421558, 1152597601, 2782616761, 6717831124, 16218279010, 39154389145
Offset: 0

Views

Author

Keywords

Comments

a(n) or a(n+1) gives the number of times certain simple recursive procedures are called to effect a reversal of a sequence of n elements (including both the top-level call and any subsequent recursive calls). See example and program lines.

Examples

			See the Python, Erlang (myrev), PARI (rev) and Forth definitions (REV3) given at Program section.
PARI, Python and Erlang functions are called a(n+1) times for the list of length n, while Forth word REV3 is called a(n) times if there are n elements in the parameter stack.
		

Crossrefs

Programs

  • Erlang
    # definition, demonstrating the reversal of the lists:
    myrev([]) -> [];
    myrev([A]) -> [A];
    myrev([X|Y]) ->
       [A|B] = myrev(Y),
       [A|myrev([X|myrev(B)])].
    
  • Forth
    # definition, demonstrating how to turn a parameter stack upside down:
    : REV3 DEPTH 0= IF ELSE DEPTH 1 = IF ELSE DEPTH 2 = IF SWAP ELSE >R RECURSE R> SWAP >R >R RECURSE R> RECURSE R> THEN THEN THEN ;
    -- Antti Karttunen, Mar 04 2013
    
  • GAP
    Concatenation([1], List([1..30], n-> (3*Lucas(2,-1,n-1)[2] -2)/4 )); # G. C. Greubel, Oct 13 2019
    
  • Haskell
    a033539 n = a033539_list !! n
    a033539_list =
       1 : 1 : 1 : (map (+ 1) $ zipWith (+) (tail a033539_list)
                                            (map (2 *) $ drop 2 a033539_list))
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    I:=[1,1,4]; [1] cat [n le 3 select I[n] else 3*Self(n-1) - Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Oct 13 2019
    
  • Maple
    seq(coeff(series((1 -2*x -x^2 +3*x^3)/((1-x)*(1-2*x-x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 13 2019
  • Mathematica
    Join[{1},RecurrenceTable[{a[0]==a[1]==1,a[n]==2a[n-1]+a[n-2]+1},a,{n,30}]] (* or *) LinearRecurrence[{3,-1,-1},{1,1,1,4},30] (* Harvey P. Dale, Nov 20 2011 *)
    Table[If[n==0, 1, (3*LucasL[n-1, 2] -2)/4], {n, 0, 30}] (* G. C. Greubel, Oct 13 2019 *)
  • PARI
    /* needs version >= 2.5 */
    /* function demonstrating the reversal of the lists and counting the function calls: */
    rev( L )={ cnt++; if( #L>1, my(x,y); x=L[#L]; listpop(L); L=rev(L); y=L[#L]; listpop(L); L=rev(L); listput(L,x); L=rev(L); listput(L,y)); L }
    for(n=0,50,cnt=0;print(n": rev(",L=List(vector(n,i,i)),")=",rev(L),",  cnt="cnt)) \\ Antti Karttunen, Mar 05 2013, partially based on previous PARI code from Michael Somos, 1999. Edited by M. F. Hasler, Mar 05 2013
    
  • PARI
    concat([1], vector(30, n, (3*sum(k=0,(n-1)\2, binomial(n-1,2*k) * 2^k) - 1)/2 )) \\ G. C. Greubel, Oct 13 2019
    
  • Prolog
    rev([],[]).
       rev([A],[A]).
       rev([A|XB],[B|YA]) :-
    rev(XB,[B|Y]), rev(Y,X), rev([A|X],YA). % Lewis Baxter, Jan 04 2021
  • Python
    # function, demonstrating the reversal of the lists:
    def myrev(lista):
      '''Reverses a list, in cumbersome way.'''
      if(len(lista) < 2): return(lista)
      else:
        tr = myrev(lista[1:])
        return([tr[0]]+myrev([lista[0]]+myrev(tr[1:])))
    
  • Sage
    [1]+[(3*lucas_number2(n-1,2,-1) -2)/4 for n in (1..30)] # G. C. Greubel, Oct 13 2019
    

Formula

a(n) = (3/4)*(1+sqrt(2))^(n-1) + 3/4*(1-sqrt(2))^(n-1) - 1/2 + 3*0^n, with n >= 0. - Jaume Oliver Lafont, Sep 10 2009
G.f.: (1 - 2*x - x^2 + 3*x^3)/((1-x)*(1-2*x-x^2)). - Jaume Oliver Lafont, Sep 09 2009
a(n) = 3*a(n-1) - a(n-2) - a(n-3), a(0)=1, a(1)=1, a(2)=1, a(3)=4. - Harvey P. Dale, Nov 20 2011
a(n) = (3*A001333(n-1) - 1)/2. - R. J. Mathar, Mar 04 2013
a(n) = -1/2 - (3/4)*(1+sqrt(2))^n - (3/4)*sqrt(2)*(1-sqrt(2))^n - (3/4)*(1-sqrt(2))^n + (3/4)*(1+sqrt(2))^n*sqrt(2) for n >= 1. - Alexander R. Povolotsky, Mar 05 2013
E.g.f.: 3 + (1/2)*exp(x)*(-1 - 3*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Oct 13 2019

A100227 Main diagonal of triangle A100226.

Original entry on oeis.org

1, 1, 5, 13, 33, 81, 197, 477, 1153, 2785, 6725, 16237, 39201, 94641, 228485, 551613, 1331713, 3215041, 7761797, 18738637, 45239073, 109216785, 263672645, 636562077, 1536796801, 3710155681, 8957108165, 21624372013, 52205852193, 126036076401, 304278004997
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

Specify that a triangle has T(n,0) = T(n,n) = (n+1)*(n+2)/2. The interior terms T(r,c) = T(r-1,c) + T(r-1,c-1) + T(r-2,c-1). The difference between the sum of the terms in row(n+1) and those in row(n) is a(n+2). - J. M. Bergot, Mar 15 2013
Starting with offset 1 the sequence is A001333: (1, 3, 7, 17, 41, ...), convolved with (1, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Aug 10 2016
Number of ways to tile a bracelet of length n with single-color squares, and two colors of k-ominoes for k > 1. Compare to A001333 as mentioned in the previous comment: A001333 can be thought of as the number of ways to tile a strip of length n with single-color squares and two-color k-ominoes for k > 1. - Greg Dresden, Feb 26 2020

Crossrefs

Programs

  • Mathematica
    LucasL[Range[0,35], 2] - 1 (* G. C. Greubel, Feb 26 2020 *)
  • Maxima
    a(n):=if n=0 then 1 else n*sum(sum(binomial(k, i)*binomial(n-i-1, k-1),i,0,n-k)/k,k,1,n); /* Vladimir Kruchinin, May 13 2011 */
  • PARI
    a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-2*x-x^2)+x*O(x^n)),n))
    
  • PARI
    a(n)=polcoeff((1-2*x+3*x^2)/(1-3*x+x^2+x^3)+x*O(x^n),n)
    

Formula

a(n) = A002203(n) - 1.
a(n) = 2*a(n-1) + a(n-2) + 2 for n > 1, with a(0)=1, a(1)=1.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-2*x-x^2)).
G.f.: (1-2*x+3*x^2)/((1-x)*(1-2*x-x^2)). - Paul D. Hanna, Feb 22 2005
a(n) = n*Sum_{k=1..n} (1/k)*Sum_{i=0..n-k} binomial(k, i)*binomial(n-i-1, k-1), n > 0, a(0)=1. - Vladimir Kruchinin, May 13 2011
a(n) = -1 + (1-sqrt(2))^n + (1+sqrt(2))^n. - Colin Barker, Mar 16 2016
E.g.f.: (2*cosh(sqrt(2)*x) - 1)*exp(x). - Ilya Gutkovskiy, Aug 22 2016
a(n) = A000129(n+1) + A000129(n-1)-1 for n > 0. - Rigoberto Florez, Jul 12 2020
a(n) = 3*a(n-1) - a(n-2) - a(n-3). - Wesley Ivan Hurt, Jul 13 2020

A114697 Expansion of (1+x+x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 3, 9, 22, 55, 133, 323, 780, 1885, 4551, 10989, 26530, 64051, 154633, 373319, 901272, 2175865, 5253003, 12681873, 30616750, 73915375, 178447501, 430810379, 1040068260, 2510946901, 6061962063, 14634871029, 35331704122, 85298279275, 205928262673
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Generating floretion: (- .5'j + .5'k - .5j' + .5k' + 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki')*('i + 'j + i').

Crossrefs

Programs

  • Mathematica
    Table[(3*LucasL[n, 2] +10*Fibonacci[n, 2] -3 +(-1)^n)/4, {n,0,30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((1+x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 24 2015
    
  • Sage
    [(4*lucas_number1(n+2,2,-1) -2*lucas_number1(n+1,2,-1) -3 +(-1)^n)/4 for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

a(n+2) - 2*a(n+1) + a(n) = A111955(n+2).
G.f.: (1+x+x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Raphie Frank, Oct 01 2012: (Start)
a(2*n) = A216134(2*n+1).
a(2*n+1) = A006452(2*n+3)-1.
Lim_{n->infinity} a(n+1)/a(n) = A014176. (End)
a(n) = (2*A078343(n+2) - A010694(n))/4. - R. J. Mathar, Oct 02 2012
From Colin Barker, May 26 2016: (Start)
a(n) = ( 2*(-3 +(-1)^n) + (6-5*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(6+5*sqrt(2)) )/8.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3. (End)
a(n) = (3*A002203(n) + 10*A000129(n) - 3 + (-1)^n)/4. - G. C. Greubel, May 24 2021

A129744 a(n) = -(u^n-1)*(v^n-1) with u = 1+sqrt(2), v = 1-sqrt(2).

Original entry on oeis.org

2, 4, 14, 32, 82, 196, 478, 1152, 2786, 6724, 16238, 39200, 94642, 228484, 551614, 1331712, 3215042, 7761796, 18738638, 45239072, 109216786, 263672644, 636562078, 1536796800, 3710155682, 8957108164, 21624372014, 52205852192
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2007

Keywords

Crossrefs

Programs

  • Maple
    u:=1+sqrt(2): v:=1-sqrt(2): a:=n->expand(-(u^n-1)*(v^n-1)): seq(a(n),n=1..33); # Emeric Deutsch, May 13 2007
  • Mathematica
    Table[Simplify[ -((1 + Sqrt[2])^n - 1)*((1 - Sqrt[2])^n - 1)], {n, 1, 30}] (* Stefan Steinerberger, May 15 2007 *)
  • PARI
    w = quadgen(8); vector(30, n, -((1+w)^n-1)*((1-w)^n-1)) \\ Michel Marcus, Mar 21 2015
    
  • PARI
    Vec(2*x*(1+x^2)/((x^2+2*x-1)*(-1+x)*(1+x))+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2015

Formula

a(2n) = A002203(2n)-2. a(2n+1) = A002203(2n+1). - R. J. Mathar, corrected Dec 05 2007.
G.f.: 2*x*(1+x^2)/((x^2+2*x-1)*(-1+x)*(1+x)).
From Peter Bala, Mar 19 2015: (Start)
a(n) = -det(I - M^n) where I is the 2X2 identity matrix and M = [2, 1; 1, 0]. Cf. A001350.
a(n) = 2*A113224(n-1).
This is divisibility sequence, that is, if n | m then a(n) | a(m).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n > 4. - Seiichi Manyama, Jun 07 2018

Extensions

More terms from Emeric Deutsch and Stefan Steinerberger, May 13 2007

A155464 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 0, a(1) = 51, a(2) = 340.

Original entry on oeis.org

0, 51, 340, 2023, 11832, 69003, 402220, 2344351, 13663920, 79639203, 464171332, 2705388823, 15768161640, 91903581051, 535653324700, 3122016367183, 18196444878432, 106056652903443, 618143472542260, 3602804182350151
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

First trisection of A118120. Equals 17*A001652.
Cf. A155465, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[0,51,340]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    LinearRecurrence[{7,-7,1},{0,51,340},30] (* Harvey P. Dale, Jun 10 2013 *)
    Table[17*(LucasL[2*n+1,2] - 2)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=20; v=concat([0, 51, 340], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 0, a(1) = 51.
a(n) = ((1+sqrt(2))*(3+2*sqrt(2))^n + (1-sqrt(2))*(3-2*sqrt(2))^n -2)*(17/4).
G.f.: 17*x*(3-x)/((1-x)*(1-6*x+x^2)).
a(n) = 17*(A002203(2*n+1) - 2)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A155465 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 7, a(1) = 88, a(2) = 555.

Original entry on oeis.org

7, 88, 555, 3276, 19135, 111568, 650307, 3790308, 22091575, 128759176, 750463515, 4374021948, 25493668207, 148587987328, 866034255795, 5047617547476, 29419671029095, 171470408627128, 999402780733707, 5824946275775148
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

Second trisection of A118120. Cf. A001652.
Cf. A155464, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[7,88,555]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    LinearRecurrence[{7,-7,1},{7,88,555},30] (* Harvey P. Dale, Apr 29 2012 *)
    Table[(3*LucasL[2*n+3,2] + 10*LucasL[2*n+1,2] - 34)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=20; v=concat([7, 88, 555], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 7, a(1) = 88.
a(n) = ((31+25*sqrt(2))*(3+2*sqrt(2))^n + (31-25*sqrt(2))*(3-2*sqrt(2))^n - 34)/4.
G.f.: (7+39*x-12*x^2)/((1-x)*(1-6*x+x^2)).
a(n) = (3*A002203(2*n+3) + 10*A002203(2*n+1) - 34)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A155466 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 28, a(1) = 207, a(2) = 1248.

Original entry on oeis.org

28, 207, 1248, 7315, 42676, 248775, 1450008, 8451307, 49257868, 287095935, 1673317776, 9752810755, 56843546788, 331308470007, 1931007273288, 11254735169755, 65597403745276, 382329687301935, 2228380720066368
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

Third trisection of A118120. Cf. A001652.
Cf. A155464, A155465, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[28, 207, 1248]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    Table[(10*LucasL[2*n+3,2] + 3*LucasL[2*n+1, 2] -34)/4, {n, 0, 50}] (* or *) LinearRecurrence[{7,-7,1}, {28, 207, 1248}, 50] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=19; v=concat([28, 207, 1248], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 28, a(1) = 207.
a(n) = ((73+53*sqrt(2))*(3+2*sqrt(2))^n + (73-53*sqrt(2))*(3-2*sqrt(2))^n - 34)/4.
G.f.: (28+11*x-5*x^2)/((1-x)*(1-6*x+x^2)).
a(n) = (10*A002203(2*n+3) + 3*A002203(2*n+1) - 34)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A204271 a(n) = sigma(n)*Pell(n), where sigma(n) = A000203(n), the sum of divisors of n.

Original entry on oeis.org

1, 6, 20, 84, 174, 840, 1352, 6120, 12805, 42804, 68892, 388080, 468454, 1938768, 4680600, 14595792, 20460402, 107024190, 132502180, 671765976, 1235646880, 3356004888, 5401408344, 32600383200, 40663881751, 133006270404, 305814801800
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n*x^n/(1-x^n) = Sum_{n>=1} sigma(n)*x^n.

Examples

			G.f.: A(x) = x + 6*x^2 + 20*x^3 + 84*x^4 + 174*x^5 + 840*x^6 + 1352*x^7 +...
where A(x) = x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 3*5*x^3/(1-14*x^3-x^6) + 4*12*x^4/(1-34*x^4+x^8) + 5*29*x^5/(1-82*x^5-x^10) + 6*70*x^6/(1-198*x^6+x^12) +...+ n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A204272 a(n) = sigma_2(n)*Pell(n), where sigma_2(n) = A001157(n), the sum of squares of divisors of n.

Original entry on oeis.org

1, 10, 50, 252, 754, 3500, 8450, 34680, 89635, 309140, 700402, 2910600, 5688370, 20195500, 50706500, 160553712, 329639810, 1248615550, 2398289458, 8732957688, 19306982500, 56865638380, 119281100930, 461838762000, 853941516771
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n^2*x^n/(1-x^n) = Sum_{n>=1} sigma_2(n)*x^n.

Examples

			G.f.: A(x) = x + 10*x^2 + 50*x^3 + 252*x^4 + 754*x^5 + 3500*x^6 +...
where A(x) = x/(1-2*x-x^2) + 2^2*2*x^2/(1-6*x^2+x^4) + 3^2*5*x^3/(1-14*x^3-x^6) + 4^2*12*x^4/(1-34*x^4+x^8) + 5^2*29*x^5/(1-82*x^5-x^10) + 6^2*70*x^6/(1-198*x^6+x^12) +...+ n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Times@@@Thread[{Rest[LinearRecurrence[{2,1},{0,1},nn+1]], DivisorSigma[ 2,Range[nn]]}]] (* Harvey P. Dale, Oct 21 2015 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n,2)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^2*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_2(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.
Previous Showing 81-90 of 167 results. Next