cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 72 results. Next

A001090 a(n) = 8*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 63, 496, 3905, 30744, 242047, 1905632, 15003009, 118118440, 929944511, 7321437648, 57641556673, 453811015736, 3572846569215, 28128961537984, 221458845734657, 1743541804339272, 13726875588979519, 108071462907496880, 850844827670995521, 6698687158460467288
Offset: 0

Views

Author

Keywords

Comments

This sequence gives the values of y in solutions of the Diophantine equation x^2 - 15*y^2 = 1; the corresponding values of x are in A001091. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 02 2014]
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 8's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,7}. - Milan Janjic, Jan 25 2015
From Klaus Purath, Jul 25 2024: (Start)
For any three consecutive terms (x, y, z) y^2 - x*z = 1 always applies.
a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 9t(k-1) - 9t(k-2) + t(k-3) or t(k) = 8t(k-1) - t(k-2) without regard to initial values.
In particular, if the recurrence (t) of the form (9,-9,1) has the initial values t(0) = 1, t(1) = 2, t(2) = 9, a(n) = t(n) - 1 applies. (End)

Examples

			G.f. = x + 8*x^2 + 63*x^3 + 496*x^4 + 3905*x^5 + 30744*x^6 + 242047*x^7 + ...
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals one-third A136325.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), this sequence (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=4;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
    
  • Maple
    A001090:=1/(1-8*z+z**2); # Simon Plouffe in his 1992 dissertation
    seq( simplify(ChebyshevU(n-1, 4)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n-1, 1, 4], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{8,-1},{0,1},30] (* Harvey P. Dale, Aug 29 2012 *)
    a[n_]:= ChebyshevU[n-1, 4]; (* Michael Somos, May 28 2014 *)
    CoefficientList[Series[x/(1-8*x+x^2), {x,0,20}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {a(n) = subst(poltchebi(n+1) - 4 * poltchebi(n), x, 4) / 15}; /* Michael Somos, Apr 05 2008 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 4)}; /* Michael Somos, May 28 2014 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1-8*x-x^2))) \\ G. C. Greubel, Dec 20 2017
    
  • SageMath
    [lucas_number1(n,8,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    
  • SageMath
    [chebyshev_U(n-1,4) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

15*a(n)^2 - A001091(n)^2 = -1.
a(n) = sqrt((A001091(n)^2 - 1)/15).
a(n) = S(2*n-1, sqrt(10))/sqrt(10) = S(n-1, 8); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310, with S(-1, x) := 0.
From Barry E. Williams, Aug 18 2000: (Start)
a(n) = ((4+sqrt(15))^n - (4-sqrt(15))^n)/(2*sqrt(15)).
G.f.: x/(1-8*x+x^2). (End)
Limit_{n->infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 13 2002
[A070997(n-1), a(n)] = [1,6; 1,7]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(-n) = -a(n). - Michael Somos, Apr 05 2008
a(n+1) = Sum_{k=0..n} A101950(n,k)*7^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(15)).
Product_{n >= 2} (1 - 1/a(n)) = (1/8)*(3 + sqrt(15)).
(End)
a(n) = A136325(n)/3. - Greg Dresden, Sep 12 2019
E.g.f.: exp(4*x)*sinh(sqrt(15)*x)/sqrt(15). - Stefano Spezia, Dec 12 2022
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*6^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*10^k. - Peter Bala, Jul 17 2023

Extensions

More terms from Wolfdieter Lang, Aug 02 2000

A004253 a(n) = 5*a(n-1) - a(n-2), with a(1)=1, a(2)=4.

Original entry on oeis.org

1, 4, 19, 91, 436, 2089, 10009, 47956, 229771, 1100899, 5274724, 25272721, 121088881, 580171684, 2779769539, 13318676011, 63813610516, 305749376569, 1464933272329, 7018916985076, 33629651653051, 161129341280179, 772017054747844, 3698955932459041, 17722762607547361
Offset: 1

Views

Author

Keywords

Comments

Number of domino tilings in K_3 X P_2n (or in S_4 X P_2n).
Number of perfect matchings in graph C_{3} X P_{2n}.
Number of perfect matchings in S_4 X P_2n.
In general, Sum_{k=0..n} binomial(2*n-k, k)*j^(n-k) = (-1)^n * U(2*n, i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,5), where L is defined as in A108299; see also A030221 for L(n,-5). - Reinhard Zumkeller, Jun 01 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4} which do not end in 0 (e.g., at n=2, we have 02, 03, 04, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44). - Tanya Khovanova, Jan 10 2007
(sqrt(21)+5)/2 = 4.7912878... = exp(arccosh(5/2)) = 4 + 3/4 + 3/(4*19) + 3/(19*91) + 3/(91*436) + ... - Gary W. Adamson, Dec 18 2007
a(n+1) is the number of compositions of n when there are 4 types of 1 and 3 types of other natural numbers. - Milan Janjic, Aug 13 2010
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(3)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Right-shifted Binomial Transform of the left-shifted A030195. - R. J. Mathar, Oct 15 2012
Values of x (or y) in the solutions to x^2 - 5xy + y^2 + 3 = 0. - Colin Barker, Feb 04 2014
From Wolfdieter Lang, Oct 15 2020: (Start)
All positive solutions of the Diophantine equation x^2 + y^2 - 5*x*y = -3 (see the preceding comment) are given by [x(n) = S(n, 5) - S(n-1, 5), y(n) = x(n-1)], for n =-oo..+oo, with the Chebyshev S-polynomials (A049310), with S(-1, 0) = 0, and S(-|n|, x) = - S(|n|-2, x), for |n| >= 2.
This binary indefinite quadratic form has discriminant D = +21. There is only this family representing -3 properly with x and y positive, and there are no improper solutions.
See the formula for a(n) = x(n-1), for n >= 1, in terms of S-polynomials below.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
From Wolfdieter Lang, Feb 08 2021: (Start)
All proper and improper solutions of the generalized Pell equation X^2 - 21*Y^2 = +4 are given, up to a combined sign change in X and Y, in terms of x(n) = a(n+1) from the preceding comment by X(n) = x(n) + x(n-1) = S(n-1, 5) - S(n-2, 5) and Y(n) = (x(n) - x(n-1))/3 = S(n-1, 5), for all integer numbers n. For positive integers X(n) = A003501(n) and Y(n) = A004254(n). X(-n) = X(n) and Y(-n) = - Y(n), for n >= 1.
The two conjugated proper families of solutions are given by [X(3*n+1), Y(3*n+1)] and [X(3*n+2), Y(3*n+2)], and the one improper family by [X(3*n), Y(3*n)], for all integer n. This follows from the mentioned paper by Robert K. Moniot. (End)
Equivalent definition: a(n) = ceiling(a(n-1)^2 / a(n-2)), with a(1)=1, a(2)=4, a(3)=19. The problem for USA Olympiad (see Andreescu and Gelca reference) asks to prove that a(n)-1 is always a multiple of 3. - Bernard Schott, Apr 13 2022

References

  • Titu Andreescu and Rǎzvan Gelca, Putnam and Beyond, New York, Springer, 2007, problem 311, pp. 104 and 466-467 (proposed for the USA Mathematical Olympiad by G. Heuer).
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003501, A004254, A030221, A049310, A004254 (partial sums), A290902 (first differences).
Row 5 of array A094954.
Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,4];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    [ n eq 1 select 1 else n eq 2 select 4 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n], n=1..22); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    LinearRecurrence[{5, -1}, {1, 4}, 22] (* Jean-François Alcover, Sep 27 2017 *)
  • PARI
    Vec((1-x)/(1-5*x+x^2)+O(x^30)) \\ Charles R Greathouse IV, Jul 01 2013
    
  • Sage
    [lucas_number1(n,5,1)-lucas_number1(n-1,5,1) for n in range(1, 23)] # Zerinvary Lajos, Nov 10 2009
    

Formula

G.f.: x*(1 - x) / (1 - 5*x + x^2). Simon Plouffe in his 1992 dissertation.[offset 0]
For n>1, a(n) = A005386(n) + A005386(n-1). - Floor van Lamoen, Dec 13 2006
a(n) ~ (1/2 + 1/14*sqrt(21))*(1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002[offset 0]
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then q(n, 3)=a(n). - Benoit Cloitre, Nov 10 2002 [offset 0]
For n>0, a(n)*a(n+3) = 15 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*3^k. - Paul Barry, Jul 26 2004[offset 0]
a(n) = (-1)^n*U(2n, i*sqrt(3)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005[offset 0]
[a(n), A004254(n)] = the 2 X 2 matrix [1,3; 1,4]^n * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n) = ((sqrt(21)-3)*((5+sqrt(21))/2)^n + (sqrt(21)+3)*((5-sqrt(21))/2)^n)/2/sqrt(21). - Seiichi Kirikami, Sep 06 2011
a(n) = S(n-1, 5) - S(n-2, 5) = (-1)^n*S(2*n, i*sqrt(3)), n >= 1, with the Chebyshev S polynomials (A049310), and S(n-1, 5) = A004254(n), for n >= 0. See a Paul Barry formula (offset corrected). - Wolfdieter Lang, Oct 15 2020
From Peter Bala, Feb 10 2024: (Start)
a(n) = a(1-n).
a(n) = A004254(n) + A004254(1-n).
For n, j, k in Z, a(n)*a(n+j+k) - a(n+j)*a(n+k) = 3*A004254(j)*A004254(k). The case j = 1, k = 2 is given above.
a(n)^2 + a(n+1)^2 - 5*a(n)*a(n+1) = - 3.
More generally, a(n)^2 + a(n+k)^2 - (A004254(k+1) - A004254(k-1))*a(n)*a(n+k) = -3*A004254(k)^2. (End)
Sum_{n >= 2} 1/(a(n) - 1/a(n)) = 1/3 (telescoping series: for n >= 2, 3/(a(n) - 1/a(n)) = 1/A004254(n-1) - 1/A004254(n)). - Peter Bala, May 21 2025
E.g.f.: exp(5*x/2)*(7*cosh(sqrt(21)*x/2) - sqrt(21)*sinh(sqrt(21)*x/2))/7 - 1. - Stefano Spezia, Jul 02 2025

Extensions

Additional comments from James Sellers and N. J. A. Sloane, May 03 2002
More terms from Ray Chandler, Nov 17 2003

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A030221 Chebyshev even-indexed U-polynomials evaluated at sqrt(7)/2.

Original entry on oeis.org

1, 6, 29, 139, 666, 3191, 15289, 73254, 350981, 1681651, 8057274, 38604719, 184966321, 886226886, 4246168109, 20344613659, 97476900186, 467039887271, 2237722536169, 10721572793574, 51370141431701, 246129134364931, 1179275530392954, 5650248517599839
Offset: 0

Views

Author

Keywords

Comments

a(n) = L(n,-5)*(-1)^n, where L is defined as in A108299; see also A004253 for L(n,+5). - Reinhard Zumkeller, Jun 01 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4; lim_{n->oo} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives the present sequence. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 29, 139, 3191, 15289, 350981, 1681651, ... - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030240. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2n)X(2n) matrix with sqrt(7)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
The aerated sequence (b(n))n>=1 = [1, 0, 6, 0, 29, 0, 139, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -3, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - Peter Bala, Mar 22 2015
From Wolfdieter Lang, Oct 26 2020: (Start)
((-1)^n)*a(n) = X(n) = ((-1)^n)*(S(n, 5) + S(n-1, 5)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 5*X*Y = +7, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-n, x) = - S(n-2, x), for n >= 2.
This binary indefinite quadratic form of discriminant 21, representing 7, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Examples

			G.f. = 1 + 6*x + 29*x^2 + 139*x^3 + 666*x^4 + 3191*x^5 + 15289*x^6 + ...
		

Crossrefs

Cf. A004253, A004254, A100047, A054493 (partial sums), A049310, A003501 (first differences), A299109 (subsequence of primes).

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Maple
    A030221 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,6]);
        else
            5*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; l[n_, x_] := Sum[t[n, k]*x^(n-k), {k, 0, n}]; a[n_] := (-1)^n*l[n, -5]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2013, after Reinhard Zumkeller *)
    a[ n_] := ChebyshevU[2 n, Sqrt[7]/2]; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = simplify(polchebyshev(2*n, 2, quadgen(28)/2))}; /* Michael Somos, Jan 22 2017 */
  • Sage
    [(lucas_number2(n,5,1)-lucas_number2(n-1,5,1))/3 for n in range(1,22)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 5*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = U(2*n, sqrt(7)/2).
G.f.: (1+x)/(x^2-5*x+1).
a(n) = A004254(n) + A004254(n+1).
a(n) ~ (1/2 + (1/6)*sqrt(21))*((1/2)*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = (-1)^n*q(n, -7). - Benoit Cloitre, Nov 10 2002
A054493(2*n) = a(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = -7 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017
a(n) = S(n, 5) + S(n-1, 5) = S(2*n, sqrt(7)) (see above in terms of U), for n >= 0 with S(-1, 5) = 0, where the coefficients of the Chebyshev S polynomials are given in A049310. - Wolfdieter Lang, Oct 26 2020
From Peter Bala, May 16 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/7 (telescoping series: 7/(a(n) - 1/a(n)) = 1/A004254(n+1) + 1/A004254(n)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(7/3) (telescoping product: Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 7/3 * (1 - 8/A231087(n+1))). (End)

A003501 a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.

Original entry on oeis.org

2, 5, 23, 110, 527, 2525, 12098, 57965, 277727, 1330670, 6375623, 30547445, 146361602, 701260565, 3359941223, 16098445550, 77132286527, 369562987085, 1770682648898, 8483850257405, 40648568638127, 194758992933230, 933146396028023, 4470972987206885
Offset: 0

Views

Author

Keywords

Comments

Positive values of x satisfying x^2 - 21*y^2 = 4; values of y are in A004254. - Wolfdieter Lang, Nov 29 2002
Except for the first term, positive values of x (or y) satisfying x^2 - 5xy + y^2 + 21 = 0. - Colin Barker, Feb 08 2014

Examples

			G.f. = 2 + 5*x + 23*x^2 + 110*x^3 + 527*x^4 + 2525*x^5 + ... - _Michael Somos_, Oct 25 2022
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[2,5];; for n in [4..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
  • Magma
    I:=[2,5]; [n le 2 select I[n] else 5*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!((2-5*x)/(1-5*x+x^2))); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    seq( simplify(2*ChebyshevT(n, 5/2)), n=0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    a[0]=2; a[1]=5; a[n_]:= 5a[n-1] -a[n-2]; Table[a[n], {n,0,30}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{5,-1},{2,5},30] (* Harvey P. Dale, May 12 2019 *)
    2*ChebyshevT[Range[0, 30], 5/2] (* G. C. Greubel, Jan 16 2020 *)
    a[ n_] := LucasL[n, 5*I]/I^n; (* Michael Somos, Oct 25 2022 *)
  • PARI
    {a(n) = subst(poltchebi(n),x,5/2)*2};
    
  • PARI
    {a(n) = polchebyshev(n,1,5/2)*2 }; /* Michael Somos, Oct 25 2022 */
    
  • Sage
    [lucas_number2(n,5,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 5*S(n-1, 5) - 2*S(n-2, 5) = S(n, 5) - S(n-2, 5) = 2*T(n, 5/2), with S(n, x)=U(n, x/2), S(-1, x)=0, S(-2, x)=-1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 5) = A004254(n), n>=0.
G.f.: (2-5*x)/(1-5*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) ~ (1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
a(n) = ap^n + am^n, with ap=(5+sqrt(21))/2 and am=(5-sqrt(21))/2.
a(n) = sqrt(4 + 21*A004254(n)^2).
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(5 - sqrt(21)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.19827 65373 95327 17782 ... = 2 + 1/(5 + 1/(23 + 1/(110 + ...))).
Also F(-alpha) = 0.79824 49142 28050 93561 ... has the continued fraction representation 1 - 1/(5 - 1/(23 - 1/(110 - ...))) and the simple continued fraction expansion 1/(1 + 1/((5-2) + 1/(1 + 1/((23-2) + 1/(1 + 1/((110-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((5^2-4) + 1/(1 + 1/((23^2-4) + 1/(1 + 1/((110^2-4) + 1/(1 + ...))))))).
(End)
a(n) = (A217787(k+3n) + A217787(k-3n))/A217787(k) for k>=3n. - Bruno Berselli, Mar 25 2013

Extensions

Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A018913 a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 9, 80, 711, 6319, 56160, 499121, 4435929, 39424240, 350382231, 3114015839, 27675760320, 245967827041, 2186034683049, 19428344320400, 172669064200551, 1534593233484559, 13638670037160480, 121213437100959761
Offset: 0

Views

Author

Keywords

Comments

Define the sequence L(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}= 0. This is L(1,9).
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 9's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,8}. - Milan Janjic, Jan 25 2015
Not to be confused with the Pisot L(1,9) sequence, which is A001019. - R. J. Mathar, Feb 13 2016
Lim_{n->oo} a(n+1)/a(n) = (9 + sqrt(77))/2 = A092290 + 1 = 8.887482... - Wolfdieter Lang, Nov 16 2023

Examples

			G.f. = x + 9*x^2 + 80*x^3 + 711*x^4 + 6319*x^5 + 56160*x^6 + 499121*x^7 + ...
		

Crossrefs

Cf. A056918(n)=sqrt{77*(a(n))^2 +4}, that is, a(n)=sqrt((A056918(n)^2 - 4)/77).
Cf. A092290 + 1.

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
    
  • Mathematica
    CoefficientList[Series[x/(1 - 9*x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
  • PARI
    concat(0, Vec(x/(1-9*x+x^2) + O(x^30))) \\ Michel Marcus, Sep 06 2017
  • Sage
    [lucas_number1(n,9,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: x/(1-9*x+x^2).
a(n) = S(2*n-1, sqrt(11))/sqrt(11) = S(n-1, 9); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
a(n) = (((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n)/sqrt(77). - Barry E. Williams, Aug 21 2000
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*8^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = 1/7*(7 + sqrt(77)).
Product {n >= 2} (1 - 1/a(n)) = 1/18*(7 + sqrt(77)). (End)
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*7^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*11^k. - Peter Bala, Jul 17 2023
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(77)*x/2)/sqrt(77). - Stefano Spezia, Feb 23 2025
Product_{n >= 1} (a(2*n) + 1)/(a(2*n) - 1) = sqrt(11/7) [telescoping product: ((a(2*n) + 1)/(a(2*n) - 1))^2 = (11 - 4/(a(n+1) - a(n))^2)/(11 - 4/(a(n) - a(n-1))^2), leading to 11 - 7*Product_{k = 1..n} ((a(2*k) + 1)/(a(2*k) - 1))^2 = 4/A070998(n)^2]. - Peter Bala, May 18 2025

Extensions

G.f. adapted to the offset by Vincenzo Librandi, Dec 23 2012

A367208 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x - x^2.

Original entry on oeis.org

1, 1, 3, 2, 5, 8, 3, 13, 19, 21, 5, 25, 59, 65, 55, 8, 50, 137, 231, 210, 144, 13, 94, 316, 623, 834, 654, 377, 21, 175, 677, 1615, 2545, 2859, 1985, 987, 34, 319, 1411, 3859, 7285, 9691, 9451, 5911, 2584, 55, 575, 2849, 8855, 19115, 30245, 35105, 30407, 17345, 6765
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First ten rows:
   1
   1    3
   2    5     8
   3   13    19    21
   5   25    59    65     55
   8   50   137   231    210    144
  13   94   316   623    834    654    377
  21  175   677  1615   2545   2859   1985    987
  34  319  1411  3859   7285   9691   9451   5911   2584
  55  575  2849  8855  19115  30245  35105  30407  17345  6765
Row 4 represents the polynomial p(4,x) = 3 + 13*x + 19*x^2 + 21*x^3, so (T(4,k)) = (3,13,19,21), k=0..3.
		

Crossrefs

Cf. A000045 (column 1), A001906 (T(n,n-1)), A001353 (row sums, p(n,1)), A077985 (alternating row sums, p(n,-1)), A190974 (p(n,2)), A004254 (p(n,-2)), A190977 (p(n,-3)), A094440, A367209, A367210, A367211, A367297, A367298, A367299, A367300.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/D), b = (1/2)*(1 + 3*x - D), c = (1/2)*(1 + 3*x + D), where D = sqrt(5 + 2*x + 5*x^2).

A367209 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 4*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x - x^2.

Original entry on oeis.org

1, 1, 4, 2, 7, 15, 3, 18, 38, 56, 5, 35, 116, 186, 209, 8, 70, 273, 650, 859, 780, 13, 132, 629, 1777, 3366, 3821, 2911, 21, 246, 1352, 4600, 10410, 16556, 16556, 10864, 34, 449, 2820, 11024, 29770, 56874, 78504, 70356, 40545, 55, 810, 5701, 25306, 78324
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First nine rows:
   1
   1    4
   2    7    15
   3   18    38     56
   5   35   116    186    209
   8   70   273    650    859    780
  13  132   629   1777   3366   3821   2911
  21  246  1352   4600  10410  16556  16556  10864
  34  449  2820  11024  29770  56874  78504  70356  405459
Row 4 represents the polynomial p(4,x) = 3 + 18*x + 38*x^2 + 56*x^3, so (T(4,k)) = (3,18,38,56), k=0..3.
		

Crossrefs

Cf. A000045 (column 1), A001353 (T(n,n-1)), A004254 (row sums, p(n,1)), A006190 (alternating row sums, p(n,-1)), A094440, A367208, A367210, A367211, A367297, A367298, A367299, A367300.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 4 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 4*x, u = p(2,x), and v = 1 - x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/D), b = (1/2)*(1 + 4*x - D), c = (1/2)*(1 + 4*x + D), where D = sqrt(5 + 4*x + 12*x^2).

A367210 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 5x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 1 - x - x^2.

Original entry on oeis.org

1, 1, 5, 2, 9, 24, 3, 23, 63, 115, 5, 45, 191, 397, 551, 8, 90, 453, 1381, 2358, 2640, 13, 170, 1044, 3807, 9226, 13482, 12649, 21, 317, 2249, 9865, 28785, 58513, 75061, 60605, 34, 579, 4695, 23703, 82485, 202887, 357567, 409779, 290376, 55, 1045, 9501
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
 1
 1    5
 2    9    24
 3   23    63   115
 5   45   191   397    551
 8   90   453  1381   2358   2640
13  170  1044  3807   9226  13482  12649
21  317  2249  9865  28785  58513  75061  60605
Row 4 represents the polynomial p(4,x) = 3 + 23 x + 63 x^2 + 115 x^3, so  that (T(4,k)) = (3,23,63,115), k-0..3.
		

Crossrefs

Cf. A000045 (column 1), A004254 (T(n,n-1)), A001109 (row sums p(n,1)), A001076 (alternating row sums, p(n,-1)), A094440, A367208, A367209, A367211, A367297, A367298, A367299, A367300.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 5 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where p(1,x) = 1, p(2,x) = 1 + 5x, u = p(2,x), and v = 1 - x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/D), b = 1/2 (1 + 5 x - D), c = 1/2 (1 + 5 x + D), where D = sqrt(5 + 6 x + 21 x^2).

A367299 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 5*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.

Original entry on oeis.org

1, 2, 5, 5, 18, 24, 12, 62, 126, 115, 29, 192, 545, 794, 551, 70, 567, 2040, 4114, 4716, 2640, 169, 1618, 7047, 17940, 28420, 26964, 12649, 408, 4508, 23020, 70582, 140988, 185122, 150122, 60605, 985, 12336, 72222, 258492, 620379, 1027368, 1156155, 819558, 290376
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
    1
    2    5
    5   18    24
   12   62   126   115
   29  192   545   794    551
   70  567  2040  4114   4716   2640
  169 1618  7047 17940  28420  26964  12649
  408 4508 23020 70582 140988 185122 150122 60605
Row 4 represents the polynomial p(4,x) = 12 + 62*x + 126*x^2 + 115*x^3, so (T(4,k)) = (12,62,126,115), k=0..3.
		

Crossrefs

Cf. A000129 (column 1); A004254 (p(n,n-1)); A186446 (row sums, p(n,1)); A007482 (alternating row sums, p(n,-1)); A041025 (p(n,-2)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367300.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 2 + 5 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 2 + 5*x, u = p(2,x), and v = 1 - 2*x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(8 + 12*x + 21*x^2)), b = (1/2) (5*x + 2 + 1/k), c = (1/2) (5*x + 2 - 1/k).
Previous Showing 11-20 of 72 results. Next