A076765 Partial sums of Chebyshev sequence S(n,8) = U(n,4) = A001090(n+1).
1, 9, 72, 568, 4473, 35217, 277264, 2182896, 17185905, 135304345, 1065248856, 8386686504, 66028243177, 519839258913, 4092685828128, 32221647366112, 253680493100769, 1997222297440041, 15724097886419560, 123795560793916440
Offset: 0
References
- M. Margenstern and G. Skordev, Tools for devising cellular automata in the 3-dimensional hyperbolic space, I - the geometrical part, proceedings of SCI'2002, Orlando, Florida, Jul 14-18, (2002), vol. XI, 542-547 Vol. 100 (1993), pp. 1-25.
- M. Margenstern and G. Skordev, Tools for devising cellular automata in the 3-dimensional hyperbolic space, II - the numeric algorithms, proceedings of SCI'2002, Orlando, Florida, Jul 14-18, (2002), vol. XI, 548-552
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Margenstern, Number of polyhedra at distance n in {5,3,4}
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,-9,1).
Crossrefs
Programs
-
Mathematica
Join[{a=1,b=9},Table[c=8*b-a+1; a=b; b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *) LinearRecurrence[{9,-9,1},{1,9,72},30] (* Harvey P. Dale, Mar 13 2014 *) CoefficientList[Series[1/((1 - x) (1 - 8 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
Formula
a(n+3) = 9*a(n+2) - 9*a(n+1) + a(n); initial values: a(0) = 1, a(1) = 9, a(2) = 72
a(n) = Sum_{k=0..n} S(k, 8) with S(k, x) = U(k, x/2) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1 - 8*x + x^2)) = 1/(1 - 9*x + 9*x^2 - x^3).
a(n) = 8*a(n-1) - a(n-2) + 1; a(-1)=0, a(0)=1.
a(n) = (S(n+1, 8) - S(n, 8) - 1)/6, n >= 0.
Extensions
Extension and Chebyshev comments from Wolfdieter Lang, Aug 31 2004
Comments