cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 134 results. Next

A049029 Triangle read by rows, the Bell transform of the quartic factorial numbers A007696(n+1) without column 0.

Original entry on oeis.org

1, 5, 1, 45, 15, 1, 585, 255, 30, 1, 9945, 5175, 825, 50, 1, 208845, 123795, 24150, 2025, 75, 1, 5221125, 3427515, 775845, 80850, 4200, 105, 1, 151412625, 108046575, 27478710, 3363045, 219450, 7770, 140, 1, 4996616625, 3824996175, 1069801425
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A048882; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quintic (5-ary) trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007
Also the Bell transform of A007696(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle starts:
{1};
{5,1};
{45,15,1};
{585,255,30,1};
{9945,5175,825,50,1};
...
		

Crossrefs

a(n, m) := S2(5, n, m) is the fifth triangle of numbers in the sequence S2(1, n, m) := A008277(n, m) (Stirling 2nd kind), S2(2, n, m) := A008297(n, m) (Lah), S2(3, n, m) := A035342(n, m), S2(4, n, m) := A035469(n, m). a(n, 1)= A007696(n). A007559(n).
Cf. A048882, A007696. Row sums: A049120(n), n >= 1.

Programs

Formula

a(n, m) = n!*A048882(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n
a(n, m) = sum(|A051142(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to W. Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1+t*x+(5*t+t^2)*x^2/2!+(45*t+15*t^2+t^3)*x^3/3!+..., where A(x) = -1+(1-4*x)^(-1/4) satisfies the autonomous differential equation A'(x) = (1+A(x))^5.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-4*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^5*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A035469 (D = (1+x)^4*d/dx).
(End)

Extensions

New name from Peter Luschny, Jan 30 2016

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A045755 8-fold factorials: a(n) = Product_{k=0..n-1} (8*k+1).

Original entry on oeis.org

1, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625, 68586144251625, 5555477684381625, 494437513909964625, 47960438849266568625, 5035846079172989705625, 569050606946547836735625, 68855123440532288245010625, 8882310923828665183606370625
Offset: 0

Keywords

Crossrefs

Cf. k-fold factorials : A000142, A001147, A007559, A007696, A008548, A008542, A045754.

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 8*j+1) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [1] cat [(&*[8*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    a := n->product(8*k+1), k=0..(n-1));
  • Mathematica
    Table[8^n*Pochhammer[1/8, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    a(n)=prod(k=0, n, 8*k+1);
    
  • Sage
    [product( (8*j+1) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n+1) = (8*n+1)(!^8).
a(n) = Sum_{k=0..n} (-8)^(n-k)*A048994(n, k); A048994 = Stirling-1 numbers.
E.g.f.: (1-8*x)^(-1/8).
G.f.: 1+x/(1-9x/(1-8x/(1-17x/(1-16x/(1-25x/(1-24x/(1-33x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-7)^n*Sum_{k=0..n} (8/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. [Mircea Merca, May 03 2012]
G.f.: 1/Q(0) where Q(k) = 1 - x*(8*k+1)/(1 - x*(8*k+8)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+1)/(2*x*(8*k+1) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(8*k+1)/(x*(8*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 8^n * Gamma(n + 1/8) / Gamma(1/8). - Artur Jasinski,Aug 23 2016
a(n) ~ sqrt(2*Pi) * 8^n * n^(n - 3/8)/(Gamma(1/8)*exp(n)). - Ilya Gutkovskiy, Sep 10 2016
D-finite with recurrence: a(n) +(-8*n+7)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/8^7)^(1/8)*(Gamma(1/8) - Gamma(1/8, 1/8)). - Amiram Eldar, Dec 20 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 14 2008 at the suggestion of Artur Jasinski.

A034000 One half of triple factorial numbers.

Original entry on oeis.org

1, 5, 40, 440, 6160, 104720, 2094400, 48171200, 1252451200, 36321084800, 1162274713600, 40679614976000, 1545825369088000, 63378840132608000, 2788668965834752000, 131067441394233344000, 6553372069711667200000, 347328719694718361600000, 19450408302904228249600000
Offset: 1

Keywords

Comments

Preface the series with a 1, then the next term = (1, 4, 7, 10, ...) dot (1, 1, 5, 40, ...). E.g., a(5) = 6160 = (1, 4, 7, 10, 13) dot (1, 1, 5, 40, 440) = (1 + 4 + 35 + 400 + 5720). - Gary W. Adamson, May 17 2010
In other words, a(n) = Sum_{i=0..n-1} b(i)*A016777(i) where b(0)=1 and b(n)=a(n). - Michel Marcus, Dec 18 2022

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=(3*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 1 select 1 else (3*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    A034000:=n->`if`(n=1, 1, (3*n-1)*A034000(n-1)); seq(A034000(n), n=1..20); # G. C. Greubel, Aug 15 2019
  • Mathematica
    nxt[{n_,a_}]:={n+1,(3(n+1)-1)*a}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Aug 22 2015 *)
    Table[3^(n-1)*Pochhammer[5/3, n-1], {n,20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(3*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    def a(n):
        if n==1: return 1
        else: return (3*n-1)*a(n-1)
    [a(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

a(n) = A007661(3n-1)/2 = A008544(n)/2.
2*a(n+1) = (3*n+2)!!! = Product_{j=0..n} (3*j+2), n >= 0.
E.g.f.: (-1 + (1-3*x)^(-2/3))/2.
a(n) = (3*n-1)!/(2*3^(n-1)*(n-1)!*A007559(n)).
a(n) ~ 3/2*2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(7/6)*3^n*e^-n*n^n*{1 + 23/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = 3^n*(n+2/3)!/(2/3)!, with offset 0. - Paul Barry, Sep 04 2005
D-finite with recurrence a(n) + (1-3*n)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
Sum_{n>=1} 1/a(n) = 2*(e/3)^(1/3)*(Gamma(2/3) - Gamma(2/3, 1/3)). - Amiram Eldar, Dec 18 2022

A045756 Expansion of e.g.f. (1-9*x)^(-1/9), 9-factorial numbers.

Original entry on oeis.org

1, 1, 10, 190, 5320, 196840, 9054640, 498005200, 31872332800, 2326680294400, 190787784140800, 17361688356812800, 1736168835681280000, 189242403089259520000, 22330603564532623360000, 2835986652695643166720000, 385694184766607470673920000, 55925656791158083247718400000
Offset: 0

Keywords

Comments

Nine-fold factorials of numbers 9k+1, k = 0, 1, 2, ... - M. F. Hasler, Feb 14 2020

Crossrefs

Cf. A008542, A048994, A114806 (9-fold factorials), A132393.
Cf. k-fold factorials : A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A144773 (10), A256268 (combined table).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 9*j+1) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [1] cat [(&*[9*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(9*j+1, j=0..n-1), n=0..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[9^n*Pochhammer[1/9, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(21, n, prod(j=0,n-2, 9*j+1) ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (9*j+1) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n+1) = (9*n+1)(!^9) = Product_{k=0..n-1} (9*k+1), n >= 0.
E.g.f. (1-9*x)^(-1/9).
D-finite with recurrence: a(n) +(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
a(n) = A114806(9n-8). - M. F. Hasler, Feb 14 2020
a(n) = Sum_{k = 0..n} (-9)^(n - k) * A048994(n, k) = Sum_{k = 0..n} 9^(n - k) * A132393(n, k). Philippe Deléham, Sep 20 2008
a(n) = (-8)^n * sum_{k = 0..n} (9/8)^k * s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 9^n * Gamma(n + 1/9) / Gamma(1/9). - Artur Jasinski Aug 23 2016
a(n) ~ sqrt(2 * Pi) * 9^n * n^(n - 7/18)/(Gamma(1/9) * exp(n)). - Ilya Gutkovskiy, Sep 10 2016
Sum_{n>=0} 1/a(n) = 1 + (e/9^8)^(1/9)*(Gamma(1/9) - Gamma(1/9, 1/9)). - Amiram Eldar, Dec 21 2022

Extensions

a(0)=1 inserted; merged with A144772; formulas and programs changed accordingly by Georg Fischer, Feb 15 2020

A047657 Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+2).

Original entry on oeis.org

1, 2, 16, 224, 4480, 116480, 3727360, 141639680, 6232145920, 311607296000, 17450008576000, 1081900531712000, 73569236156416000, 5444123475574784000, 435529878045982720000, 37455569511954513920000, 3445912395099815280640000, 337699414719781897502720000
Offset: 0

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 6*k+2) ); # G. C. Greubel, Aug 18 2019
  • Magma
    [1] cat [(&*[6*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    a:= n->product(6*j+2, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 18 2019
  • Mathematica
    b[1]=2; b[n_]:= b[n] = b[n-1] +6; a[0]=1; a[1]=2; a[n_]:= a[n] = a[n-1]*b[n]; Table[a[n], {n,0,20}] (* Roger L. Bagula, Sep 17 2008 *)
    FoldList[Times,1,6*Range[0,20]+2] (* Harvey P. Dale, Aug 06 2013 *)
    Table[6^n*Pochhammer[1/3, n], {n,0,20}] (* G. C. Greubel, Aug 18 2019 *)
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 6*k+2)) \\ G. C. Greubel, Aug 18 2019
    
  • Sage
    [product(6*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

E.g.f.: (1-6*x)^(-1/3).
a(n) = 2^n*A007559(n).
a(n) = A084941(n)/A000142(n)*A000079(n) = 6^n*Pochhammer(1/3, n) = 1/2*6^n*Gamma(n+1/3)*sqrt(3)*Gamma(2/3)/Pi. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
Let b(n) = b(n-1) + 6; then a(n) = b(n)*a(n-1). - Roger L. Bagula, Sep 17 2008
G.f.: 1/(1-2*x/(1-6*x/(1-8*x/(1-12*x/(1-14*x/(1-18*x/(1-20*x/(1-24*x/(1-26*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-4)^n*Sum_{k=0..n} (3/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0) where G(k) = 1 - x*(6*k+2)/( 1 - 6*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
D-finite with recurrence: a(n) +2*(-3*n+2)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + exp(1/6)*(Gamma(1/3) - Gamma(1/3, 1/6))/6^(2/3). - Amiram Eldar, Dec 18 2022
a(n) ~ sqrt(Pi) * 2^(n+1/2) * (3/e)^n * n^(n-1/6) / Gamma(1/3). - Amiram Eldar, Sep 01 2025

A004747 Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.

Original entry on oeis.org

1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A048966; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n,m) = S2p(-2; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n, m) (Stirling 2nd kind). T(n,1)= A008544(n-1).
T(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m plane (aka ordered) increasing (rooted) trees where vertices of out-degree r>=0 come in r+1 different types (like an (r+1)-ary vertex). Proof from the e.g.f. of the first column Y(z) = 1 - (1-3*x)^(1/3) and the F. Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0) = 0, with out-degree o.g.f. phi(w)=1/(1-w)^2. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of the triple factorial numbers A008544 which adds a first column (1,0,0 ...) on the left side of the triangle. For the definition of the Bell transform see A264428. See A051141 for the triple factorial numbers A032031 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle begins:
       1;
       2,      1;
      10,      6,     1;
      80,     52,    12,    1;
     880,    600,   160,   20,   1;
   12320,   8680,  2520,  380,  30,  1;
  209440, 151200, 46480, 7840, 770, 42, 1;
Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
		

Crossrefs

Cf. A015735 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), this sequence (m=3), A000369 (m=4), A011801 (m=5), A013988 (m=6).

Programs

  • Magma
    function T(n,k) // T = A004747
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Maple
    T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)):
    for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od;
    # Karol A. Penson, Feb 06 2004
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    (* First program *)
    T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1];
    Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *)
    (* Second program *)
    f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *)
    (* Third program *)
    rows = 12;
    T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]];
    Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses [bell_transform from A264428]
    triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1))
    def A004747_row(n):
        trifact = [triplefactorial(k) for k in (0..n)]
        return bell_transform(n, trifact)
    [A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
    

Formula

T(n, m) = n!*A048966(n, m)/(m!*3^(n-m));
T(n+1, m) = (3*n-m)*T(n, m)+ T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n
E.g.f. of m-th column: ( 1 - (1-3*x)^(1/3) )^m/m!.
Sum_{k=1..n} T(n, k) = A015735(n).
For a formula expressed as special values of hypergeometric functions 3F2 see the Maple program below. - Karol A. Penson, Feb 06 2004
T(n,1) = A008544(n-1). - Peter Luschny, Dec 23 2015

Extensions

New name from Peter Luschny, Dec 21 2015

A034001 One third of triple factorial numbers.

Original entry on oeis.org

1, 6, 54, 648, 9720, 174960, 3674160, 88179840, 2380855680, 71425670400, 2357047123200, 84853696435200, 3309294160972800, 138990354760857600, 6254565964238592000, 300219166283452416000, 15311177480456073216000
Offset: 1

Keywords

Crossrefs

Programs

  • GAP
    List([1..20],n->3^(n-1)*Factorial(n)); # Muniru A Asiru, Jul 28 2018
    
  • Magma
    [3^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    G(x):=(1-3*x)^(n-3): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..16); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    terms = 17;
    CoefficientList[1/(1-3x)^2 + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jul 28 2018 *)
    Table[3^(n-1)*n!, {n,20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    vector(20, n, 3^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [3^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019

Formula

3*a(n) = (3*n)!!! = Product_{j=1..n} 3*j = 3^n*n!.
E.g.f.: (-1 + 1/(1-3*x))/3.
E.g.f.: 1/(1-3*x)^2. - Paul Barry, Sep 14 2004. For offset 0. - Wolfdieter Lang, Apr 06 2017
D-finite with recurrence a(n) - 3*n*a(n-1) = 0. - R. J. Mathar, Dec 02 2012
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(exp(1/3)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(1-exp(-1/3)). (End)

A144828 Partial products of successive terms of A017113; a(0)=1.

Original entry on oeis.org

1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0

Author

Philippe Deléham, Sep 21 2008

Keywords

Comments

a(n) is the number of signed permutations of length 4n that are equal to their reverse-inverses. Note that the reverse-inverse of a permutation is equivalent to a 90-degree rotation of the permutation's diagram (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011
Define the bar operation as an operation on signed permutation that flips the sign of each entry. Then a(n) is the number of signed permutations of length 2n that are equal to the bar of their inverses and equal to their reverse-complements (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011

Examples

			a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses.  These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
		

Crossrefs

Essentially the same as A052714. - N. J. A. Sloane, Feb 03 2013
Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or this sequence) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).

Programs

  • Magma
    [2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
    Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
  • PARI
    a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
    
  • Sage
    [2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*4^k*8^(n-k).
a(n) = A052714(n+1). - R. J. Mathar, Oct 01 2008
a(n) = 2^n *(2*n)! / n!. - Justin M. Troyka, Aug 11 2011
G.f.: 1/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-4)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: 1/sqrt(1-8*x). - Philippe Deléham, May 14 2015
a(n) = 4^n * A001147(n). - Philippe Deléham, May 14 2015
a(n) = 8^n * Gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(8*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
a(n) = 2^n * (n+1)! * Catalan(n). - G. C. Greubel, Apr 02 2021
Sum_{n>=0} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function. - Amiram Eldar, Dec 20 2022
Previous Showing 21-30 of 134 results. Next