cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 595 results. Next

A086971 Number of semiprime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 22 2003

Keywords

Comments

Inverse Moebius transform of A064911. - Jonathan Vos Post, Dec 08 2004

References

  • G. H. Hardy and E. M. Wright, Section 17.10 in An Introduction to the Theory of Numbers, 5th ed., Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • Haskell
    a086971 = sum . map a064911 . a027750_row
    -- Reinhard Zumkeller, Dec 14 2012
  • Maple
    a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l);
           m*(m-1)/2 +add(`if`(i[2]>1, 1, 0), i=l)
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jul 18 2013
  • Mathematica
    semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; Array[f, 105] (* Zak Seidov, Mar 31 2011 and modified by Robert G. Wilson v, Dec 08 2012 *)
    a[n_] := Count[e = FactorInteger[n][[;; , 2]], ?(# > 1 &)] + (o = Length[e])*(o - 1)/2; Array[a, 100] (* _Amiram Eldar, Jun 30 2022 *)
  • PARI
    /* The following definitions of a(n) are equivalent. */
    a(n) = sumdiv(n,d,bigomega(d)==2)
    a(n) = f=factor(n); j=matsize(f)[1]; sum(m=1,j,f[m,2]>=2) + binomial(j,2)
    a(n) = f=factor(n); j=omega(n); sum(m=1,j,f[m,2]>=2) + binomial(j,2)
    a(n) = omega(n/core(n)) + binomial(omega(n),2)
    /* Rick L. Shepherd, Mar 06 2006 */
    

Formula

a(n) = A106404(n) + A106405(n). - Reinhard Zumkeller, May 02 2005
a(n) = omega(n/core(n)) + binomial(omega(n),2) = A001221(n/A007913(n)) + binomial(A001221(n),2) = A056170(n) + A079275(n). - Rick L. Shepherd, Mar 06 2006
From Reinhard Zumkeller, Dec 14 2012: (Start)
a(n) = Sum_{k=1..A000005(n)} A064911(A027750(n,k)).
a(A220264(n)) = n and a(m) <> n for m < A220264(n); a(A008578(n)) = 0; a(A002808(n)) > 0; for n > 1: a(A102466(n)) <= 1 and a(A102467(n)) > 1; A066247(n) = A057427(a(n)). (End)
G.f.: Sum_{k = p*q, p prime, q prime} x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 25 2017

Extensions

Entry revised by N. J. A. Sloane, Mar 28 2006

A034836 Number of ways to write n as n = x*y*z with 1 <= x <= y <= z.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 9, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 9, 4, 2, 1, 10, 2, 2, 2, 6, 1, 10, 2, 4, 2, 2, 2, 12, 1, 4, 4, 8
Offset: 1

Views

Author

Keywords

Comments

Number of boxes with integer edge lengths and volume n.
Starts the same as, but is different from, A033273. First values of n such that a(n) differs from A033273(n) are 36,48,60,64,72,80,84,90,96,100. - Benoit Cloitre, Nov 25 2002
a(n) depends only on the signature of n; the sorted exponents of n. For instance, a(12) and a(18) are the same because both 12 and 18 have signature (1,2). - T. D. Noe, Nov 02 2011
Number of 3D grids of n congruent cubes, in a box, modulo rotation (cf. A007425 and A140773 for boxes instead of cubes; cf. A038548 for the 2D case). - Manfred Boergens, Apr 06 2021

Examples

			a(12) = 4 because we can write 12 = 1*1*12 = 1*2*6 = 1*3*4 = 2*2*3.
a(36) = 8 because we can write 36 = 1*1*36 = 1*2*18 = 1*3*12 = 1*4*9 = 1*6*6 = 2*2*9 = 2*3*6 = 3*3*4.
For n = p*q, p < q primes: a(n) = 2 because we can write n = 1*1*pq = 1*p*q.
For n = p^2, p prime: a(n) = 2 because we can write n = 1*1*p^2 = 1*p*p.
		

Crossrefs

See also: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (this sequence, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered)
Differs from A033273 and A226378 for the first time at n=36.

Programs

  • Maple
    f:=proc(n) local t1,i,j,k; t1:=0; for i from 1 to n do for j from i to n do for k from j to n do if i*j*k = n then t1:=t1+1; fi; od: od: od: t1; end;
    # second Maple program:
    A034836:=proc(n)
       local a,b,i;
       a:=0;
       b:=(l,x,h)->l<=x and x<=h;
       for i in select(`<=`,NumberTheory:-Divisors(n),iroot(n,3)) do
          a:=a+nops(select[2](b,i,NumberTheory:-Divisors(n/i),isqrt(n/i)))
       od;
       return a
    end proc;
    seq(A034836(n),n=1..100); # Felix Huber, Oct 02 2024
  • Mathematica
    Table[c=0; Do[If[i<=j<=k && i*j*k==n,c++],{i,t=Divisors[n]},{j,t},{k,t}]; c,{n,100}] (* Jayanta Basu, May 23 2013 *)
    (* Similar to the first Mathematica code but with fewer steps in Do[..] *)
    b=0; d=Divisors[n]; r=Length[d];
    Do[If[d[[h]] d[[i]] d[[j]]==n, b++], {h, r}, {i, h, r}, {j, i, r}]; b (* Manfred Boergens, Apr 06 2021 *)
    a[1] = 1; a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[IntegerQ[Surd[n, 3]], 1/3, 0] + (Times @@ ((e + 1)*(e + 2)/2))/6 + (Times @@ (Floor[e/2] + 1))/2]; Array[a, 100] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    A038548(n)=sumdiv(n, d, d*d<=n) /* <== rhs from A038548 (Michael Somos) */
    a(n)=sumdiv(n, d, if(d^3<=n, A038548(n/d) - sumdiv(n/d, d0, d0Rick L. Shepherd, Aug 27 2006
    
  • PARI
    a(n) = {my(e = factor(n)[,2]); (2 * ispower(n, 3) + vecprod(apply(x -> (x+1)*(x+2)/2, e)) + 3 * vecprod(apply(x -> x\2 + 1, e))) / 6;} \\ Amiram Eldar, Apr 19 2024

Formula

From Ton Biegstraaten, Jan 04 2016: (Start)
Given a number n, let s(1),...,s(m) be the signature list of n, and a(n) the resulting number in the sequence.
Then np = Product_{k=1..m} binomial(2+s(k),2) is the total number of products solely based on the combination of exponents. The multiplicity of powers is not taken into account (e.g., all combinations of 1,2,4 (6 times) but (2,2,2) only once). See next formulas to compute corrections for 3rd and 2nd powers.
Let ntp = Product_{k=1..m} (floor((s(k) - s(k) mod(3))/s(k))) if the number is a 3rd power or not resulting in 1 or 0.
Let nsq = Product_{k=1..m} (floor(s(k)/2) + 1) is the number of squares.
Conjecture: a(n) = (np + 3*(nsq - ntp) + 5*ntp)/6 = (np + 3*nsq + 2*ntp)/6.
Example: n = 1728; s = [3,6]; np = 10*28 = 280; nsq = 2*4 = 8; ntp = 1 so a(1728)=51 (as in the b-file).
(End)
a(n) >= A226378(n) for all n >= 1. - Antti Karttunen, Aug 30 2017
From Bernard Schott, Dec 12 2021: (Start)
a(n) = 1 iff n = 1 or n is prime (A008578).
a(n) = 2 iff n is semiprime (A001358) (see examples). (End)
a(n) = (2 * A010057(n) + A007425(n) + 3 * A046951(n))/6 (Andrica and Ionascu, 2013, p. 19, eq. 11). - Amiram Eldar, Apr 19 2024

Extensions

Definition simplified by Jonathan Sondow, Oct 03 2013

A046022 Primes together with 1 and 4.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Keywords

Comments

Also the numbers which are incrementally largest values of A002034. - validated by Franklin T. Adams-Watters, Jul 13 2012
Solutions to A000005(x) + A000010(x) - x - 1 = 0. - Labos Elemer, Aug 23 2001
Also numbers m such that m, phi(m) and tau(m) form an integer triangle, where phi=A000010 is the totient and tau=A000005 the number of divisors (see also A084820). - Reinhard Zumkeller, Jun 04 2003
Terms > 1 are n such that n does not divide (n-1)!. - Benoit Cloitre, Nov 12 2003
Terms > 1 are the sum of their prime factors; 4 (= 2+2) is the only such composite number. - Stuart Orford (sjorford(AT)yahoo.co.uk), Aug 04 2005
From Jonathan Vos Post, Aug 23 2010, Robert G. Wilson v, Aug 25 2010, proof by D. S. McNeil, Aug 29 2010: (Start)
Also the numbers n which divide A001414(n), or equivalently divide A075254(n). Proof:
Theorem: for a multiset of m >= 2 integers a_i, each a_i >= 2, Product_{i=1..m} a_i >= Sum_{i=1..m} a_i, with equality only at (a_1,a_2) = (2,2).
Lemma: For integers x,y >= 2, if x > 2 or y > 2, x*y > x + y. This follows from distributing (x-1)*(y-1) > 1.
[Proof of the theorem by induction on m:
first consider m=2. We have equality at (2,2) and for any product(a_i) > 4 there is some a_i > 2, so the lemma gives a_1*a_2 > a_1+a_2.
Then the induction m->m+1: Product_{i=1..m+1} a_i = a_(m+1)*Product_{i=1..m} a_i >= a_(m+1) * Sum_{i=1..m} a_i.
Since a_(m+1) >= 2 and the sum >= 4, the lemma applies, and we find a_(m+1) * Sum+{i=1..m} a_i > a_(m+1) + Sum_{i=1..m} a_i = Sum_{i=1..m+1} a_i and thus Product_{i=1..m+1} a_i > Sum_{i=1..m+1} a_i, QED.]
For composite n > 4, applying the theorem to the multiset of prime factors with multiplicity yields n > sopfr(n), so there are no composite numbers greater than 4 such that they divide sopfr(n).
(End)
Numbers k such that the k-th Fibonacci number is relatively prime to all smaller Fibonacci numbers. - Charles R Greathouse IV, Jul 13 2012
Numbers k such that (-1)^k*floor(d(k)*(-1)^k/2) = 1, where d(k) is the number of divisors of k. - Wesley Ivan Hurt, Oct 11 2013
Also, union of odd primes (A065091) and the divisors of 4. Also, union of A008578 and 4. - Omar E. Pol, Nov 04 2013
Numbers k such that sigma(k!) is divisible by sigma((k-1)!). - Altug Alkan, Jul 18 2016

Crossrefs

Programs

  • Haskell
    a046022 n = a046022_list !! (n-1)
    a046022_list = [1..4] ++ drop 2 a000040_list
    -- Reinhard Zumkeller, Apr 06 2014
    
  • Maple
    A046022:=n-> `if`((-1)^n*floor(numtheory[tau](n)*(-1)^n/2) = 1, n, NULL); seq(A046022(j), j=1..260); # Wesley Ivan Hurt, Oct 11 2013
  • Mathematica
    max = 0; a = {}; Do[m = FactorInteger[n]; w = Sum[m[[k]][[1]]*m[[k]][[2]], {k, 1, Length[m]}]; If[w > max, AppendTo[a, w]; max = w], {n, 1, 1000}]; a (* Artur Jasinski, Apr 06 2008 *)
  • PARI
    a(n)=if(n<6,n,prime(n-2)) \\ Charles R Greathouse IV, Apr 28 2015
    
  • Python
    from sympy import prime
    def A046022(n): return prime(n-2) if n>4 else n # Chai Wah Wu, Oct 17 2024

Formula

A141295(a(n)) = a(n). - Reinhard Zumkeller, Jun 23 2008
A018194(a(n)) = 1. - Reinhard Zumkeller, Mar 09 2012
A240471(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2014

Extensions

Better description from Frank Ellermann, Jun 15 2001

A095195 T(n,0) = prime(n), T(n,k) = T(n,k-1)-T(n-1,k-1), 0<=k

Original entry on oeis.org

2, 3, 1, 5, 2, 1, 7, 2, 0, -1, 11, 4, 2, 2, 3, 13, 2, -2, -4, -6, -9, 17, 4, 2, 4, 8, 14, 23, 19, 2, -2, -4, -8, -16, -30, -53, 23, 4, 2, 4, 8, 16, 32, 62, 115, 29, 6, 2, 0, -4, -12, -28, -60, -122, -237, 31, 2, -4, -6, -6, -2, 10, 38, 98, 220, 457, 37, 6, 4, 8, 14, 20, 22, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2004

Keywords

Comments

T(n,0)=A000040(n); T(n,1)=A001223(n-1) for n>1; T(n,2)=A036263(n-2) for n>2; T(n,n-1)=A007442(n) for n>1.
Row k of the array (not the triangle) is the k-th differences of the prime numbers. - Gus Wiseman, Jan 11 2025

Examples

			Triangle begins:
   2;
   3,  1;
   5,  2,  1;
   7,  2,  0, -1;
  11,  4,  2,  2,  3;
  13,  2, -2, -4, -6, -9;
Alternative: array form read by antidiagonals:
     2,   3,   5,   7,  11,  13,  17,  19,  23,  29,  31,...
     1,   2,   2,   4,   2,   4,   2,   4,   6,   2,   6,...
     1,   0,   2,  -2,   2,  -2,   2,   2,  -4,   4,  -2,...
    -1,   2,  -4,   4,  -4,   4,   0,  -6,   8,  -6,   0,...
     3,  -6,   8,  -8,   8,  -4,  -6,  14, -14,   6,   4,...
    -9,  14, -16,  16, -12,  -2,  20, -28,  20,  -2,  -8,...
    23, -30,  32, -28,  10,  22, -48,  48, -22,  -6,  10,..,
   -53,  62, -60,  38,  12, -70,  96, -70,  16,  16, -12,...
   115,-122,  98, -26, -82, 166,-166,  86,   0, -28,  28,...
  -237, 220,-124, -56, 248,-332, 252, -86, -28,  56, -98,...
   457,-344,  68, 304,-580, 584,-338,  58,  84,-154, 308,...
		

Crossrefs

Cf. A140119 (row sums).
Below, the inclusive primes (A008578) are 1 followed by A000040. See also A075526.
Rows of the array (columns of the triangle) begin: A000040, A001223, A036263.
Column n = 1 of the array is A007442, inclusive A030016.
The version for partition numbers is A175804, see A053445, A281425, A320590.
First position of 0 is A376678, inclusive A376855.
Absolute antidiagonal-sums are A376681, inclusive A376684.
The inclusive version is A376682.
For composite instead of prime we have A377033, see A377034-A377037.
For squarefree instead of prime we have A377038, nonsquarefree A377046.
Column n = 2 of the array is A379542.

Programs

  • Haskell
    a095195 n k = a095195_tabl !! (n-1) !! (k-1)
    a095195_row n = a095195_tabl !! (n-1)
    a095195_tabl = f a000040_list [] where
       f (p:ps) xs = ys : f ps ys where ys = scanl (-) p xs
    -- Reinhard Zumkeller, Oct 10 2013
  • Maple
    A095195A := proc(n,k) # array, k>=0, n>=0
        option remember;
        if n =0 then
            ithprime(k+1) ;
        else
            procname(n-1,k+1)-procname(n-1,k) ;
        end if;
    end proc:
    A095195 := proc(n,k) # triangle, 0<=k=1
            A095195A(k,n-k-1) ;
    end proc: # R. J. Mathar, Sep 19 2013
  • Mathematica
    T[n_, 0] := Prime[n]; T[n_, k_] /; 0 <= k < n := T[n, k] = T[n, k-1] - T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 01 2017 *)
    nn=6;
    t=Table[Differences[Prime[Range[nn]],k],{k,0,nn}];
    Table[t[[j,i-j+1]],{i,nn},{j,i}] (* Gus Wiseman, Jan 11 2025 *)

A015919 Positive integers k such that 2^k == 2 (mod k).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 341, 347, 349, 353, 359, 367
Offset: 1

Views

Author

Keywords

Comments

Includes 341 which is first pseudoprime to base 2 and distinguishes sequence from A008578.
First composite even term is a(14868) = 161038 = A006935(2). - Max Alekseyev, Feb 11 2015
If k is a term, then so is 2^k - 1. - Max Alekseyev, Sep 22 2016
Terms of the form 2^k - 2 correspond to k in A296104. - Max Alekseyev, Dec 04 2017
If 2^k - 1 is a term, then so is k. - Thomas Ordowski, Apr 27 2018

Crossrefs

Contains A002997 as a subsequence.
The odd terms form A176997.

Programs

  • Mathematica
    Prepend[ Select[ Range@370, PowerMod[2, #, #] == 2 &], {1, 2}] // Flatten (* Robert G. Wilson v, May 16 2018 *)
  • PARI
    is(n)=Mod(2,n)^n==2 \\ Charles R Greathouse IV, Mar 11 2014
    
  • Python
    def ok(n): return pow(2, n, n) == 2%n
    print([k for k in range(1, 400) if ok(k)]) # Michael S. Branicky, Jun 03 2022

Formula

Equals {1} U A000040 U A001567 U A006935 = A001567 U A006935 U A008578. - Ray Chandler, Dec 07 2003; corrected by Max Alekseyev, Feb 11 2015

A036234 Number of primes <= n, if 1 is counted as a prime.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20
Offset: 1

Views

Author

Keywords

Comments

This sequence is the largest nondecreasing sequence a(n) such that a(Prime(n)-1) = n. - Tanya Khovanova, Jun 20 2007
Partial sums of A080339. - Jaroslav Krizek, Mar 23 2009
Let G(n) be the graph whose vertices represent integers 1 through n, and where vertices a and b are adjacent iff gcd(a,b)>1. Then a(n) is the independence number of G(n). - Aaron Dunigan AtLee, May 23 2009
a(1)=1; a(n)= max[A061395(n), A061395(n-1)]. - Jacques ALARDET, Dec 28 2011
It appears that a(n) is the minimal index i for which binomial(k*prime(i), prime(i)) mod prime(i) = k. For example, binomial(11*prime(n), prime(n)) mod prime(n) produces the sequence 1,2,1,4,0,11,11,11,11 and a(11)=6. It also appears that binomial(k*prime(a(n)-1), prime(a(n)-1)) mod prime(a(n)-1) = 0 iff k is prime. - Gary Detlefs, Aug 05 2013
a(n) is the number of noncomposite numbers <= n. The noncomposite number are in A008578. - Omar E. Pol, Aug 31 2013
Number of distinct terms in n-th row of the triangle in A080786. - Reinhard Zumkeller, Sep 10 2013

Crossrefs

Programs

Formula

a(n) = A000720(n) + 1. - Jaroslav Krizek, Mar 23 2009

A080339 Characteristic function of {1} union {primes}: 1 if n is 1 or a prime, else 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 21 2003

Keywords

Comments

Characteristic function of noncomposite numbers (see A008578). - Omar E. Pol, Oct 07 2013

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 132.

Crossrefs

Cf. A036234 (partial sums).

Programs

  • Maple
    1,seq(`if`(isprime(i),1,0),i=2..100); # Robert Israel, Jan 11 2016
  • Mathematica
    Table[Which[n == 1, 1, PrimeQ[n], 1, True, 0], {n, 110}] (* Harvey P. Dale, Oct 03 2011 *)
    Table[Boole[PrimeOmega[n] < 2], {n, 100}] (* Alonso del Arte, Nov 19 2013 *)
  • PARI
    a(n) = (n==1) + isprime(n); \\ Michel Marcus, Jan 13 2016

Formula

a(1)=1, and a(n) = Prod_{k=1...n-1}(k/n)^2 where (a/b) is the Jacobi symbol and n>1. - Dimitri Papadopoulos, Jan 13 2016

A246867 Triangle T(n,k) in which n-th row lists in increasing order all partitions lambda of n into distinct parts encoded as Product_{i:lambda} prime(i); n>=0, 1<=k<=A000009(n).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 13, 21, 22, 30, 17, 26, 33, 35, 42, 19, 34, 39, 55, 66, 70, 23, 38, 51, 65, 77, 78, 105, 110, 29, 46, 57, 85, 91, 102, 130, 154, 165, 210, 31, 58, 69, 95, 114, 119, 143, 170, 182, 195, 231, 330, 37, 62, 87, 115, 133, 138, 187
Offset: 0

Views

Author

Alois P. Heinz, Sep 05 2014

Keywords

Comments

The concatenation of all rows (with offset 1) gives a permutation of the squarefree numbers A005117. The missing positive numbers are in A013929.

Examples

			The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} => row 5 = [11, 14, 15].
For n=0 the empty partition [] gives the empty product 1.
Triangle T(n,k) begins:
   1;
   2;
   3;
   5,  6;
   7, 10;
  11, 14, 15;
  13, 21, 22, 30;
  17, 26, 33, 35, 42;
  19, 34, 39, 55, 66,  70;
  23, 38, 51, 65, 77,  78, 105, 110;
  29, 46, 57, 85, 91, 102, 130, 154, 165, 210;
  ...
Corresponding triangle of strict integer partitions begins:
                  0
                 (1)
                 (2)
               (3) (21)
               (4) (31)
             (5) (41) (32)
          (6) (42) (51) (321)
        (7) (61) (52) (43) (421)
     (8) (71) (62) (53) (521) (431)
(9) (81) (72) (63) (54) (621) (432) (531). - _Gus Wiseman_, Feb 23 2018
		

Crossrefs

Column k=1 gives: A008578(n+1).
Last elements of rows give: A246868.
Row sums give A147655.
Row lengths are: A000009.
Cf. A005117, A118462, A215366 (the same for all partitions), A258323, A299755, A299757, A299759.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], [seq(
          map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..min(1, n/i))]))
        end:
    T:= n-> sort(b(n$2))[]:
    seq(T(n), n=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Flatten[Table[Map[ #*Prime[i]^j&, b[n-i*j, i-1]], {j, 0, Min[1, n/i]}]]]]; T[n_] := Sort[b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)

A325352 Heinz number of the differences plus one of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 6, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 9, 1, 16, 7, 17, 3, 12, 1, 19, 11, 20, 1, 15, 1, 22, 6, 23, 1, 24, 2, 10, 13, 26, 1, 12, 5, 28, 17, 29, 1, 18, 1, 31, 10, 32, 7, 21, 1, 34, 19, 15, 1, 24, 1, 37, 6, 38
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The only fixed point is 1 because otherwise the sequence decreases omega (A001222) by one.

Examples

			The partition (3,2,2,1) with Heinz number 90 has differences plus one (2,1,2) with Heinz number 18, so a(90) = 18.
		

Crossrefs

Positions of m's are A008578 (m = 1), A001248 (m = 2), A006094 (m = 3), A030078 (m = 4), A090076 (m = 5).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    db[n_]:=Times@@Prime/@(1+Differences[primeMS[n]]);
    Table[db[n],{n,100}]

A163280 Square array read by antidiagonals where column k lists the numbers j whose largest divisor <= sqrt(j) is k.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 10, 15, 20, 25, 11, 14, 18, 24, 30, 36, 13, 22, 21, 28, 35, 42, 49, 17, 26, 27, 32, 40, 48, 56, 64, 19, 34, 33, 44, 45, 54, 63, 72, 81, 23, 38, 39, 52, 50, 60, 70, 80, 90, 100, 29, 46, 51, 68, 55, 66, 77, 88, 99, 110, 121, 31, 58, 57, 76, 65, 78, 84, 96, 108, 120, 132, 144
Offset: 1

Views

Author

Omar E. Pol, Aug 07 2009

Keywords

Comments

This sequence is a permutation of the natural numbers A000027. Note that the first column is formed by 1 together with the prime numbers.
Column k contains exactly those numbers j=k*m where m is either a prime >= j or one of the numbers in row k of A163925. - Franklin T. Adams-Watters, Aug 12 2009

Examples

			Array begins:
   1,  4,  9,  16,  25,  36,  49,  64,  81, 100, 121, 144, ...
   2,  6, 12,  20,  30,  42,  56,  72,  90, 110, 132, 156, ...
   3,  8, 15,  24,  35,  48,  63,  80,  99, 120, 143, 168, ...
   5, 10, 18,  28,  40,  54,  70,  88, 108, 130, 154, 180, ...
   7, 14, 21,  32,  45,  60,  77,  96, 117, 140, 165, 192, ...
  11, 22, 27,  44,  50,  66,  84, 104, 126, 150, 176, 204, ...
  13, 26, 33,  52,  55,  78,  91, 112, 135, 160, 187, 216, ...
  17, 34, 39,  68,  65, 102,  98, 128, 153, 170, 198, 228, ...
  19, 38, 51,  76,  75, 114, 105, 136, 162, 190, 209, 264, ...
  23, 46, 57,  92,  85, 138, 119, 152, 171, 200, 220, 276, ...
  29, 58, 69, 116,  95, 174, 133, 184, 189, 230, 231, 348, ...
  31, 62, 87, 124, 115, 186, 147, 232, 207, 250, 242, 372, ...
  ...
		

Crossrefs

Programs

  • Maple
    A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: # R. J. Mathar, Aug 09 2009
  • Mathematica
    nmax = 12;
    pm = Prime[nmax];
    sDiv[n_] := Select[Divisors[n], #^2 <= n&][[-1]];
    Clear[col]; col[k_] := col[k] = Select[Range[k pm], sDiv[#] == k&];
    T[n_, k_ /; 1 <= k <= Length[col[k]]] := col[k][[n]];
    Table[T[n-k+1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 15 2019 *)

Formula

Column k lists the numbers j such that A033676(j)=k.

Extensions

Edited by R. J. Mathar, Aug 01 2010
Example edited by Jean-François Alcover, Dec 15 2019
Previous Showing 101-110 of 595 results. Next