cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 117 results. Next

A085966 Decimal expansion of the prime zeta function at 6.

Original entry on oeis.org

0, 1, 7, 0, 7, 0, 0, 8, 6, 8, 5, 0, 6, 3, 6, 5, 1, 2, 9, 5, 4, 1, 3, 3, 6, 7, 3, 2, 6, 6, 0, 5, 9, 3, 9, 9, 2, 0, 9, 5, 8, 5, 9, 4, 1, 8, 7, 4, 5, 4, 4, 2, 4, 4, 7, 3, 3, 1, 6, 3, 3, 6, 8, 8, 3, 6, 9, 6, 9, 7, 3, 6, 7, 4, 7, 1, 7, 2, 4, 3, 6, 6, 7, 1, 8, 6, 0, 3, 5, 0, 0, 7, 8, 1, 8, 0, 6, 2, 3, 0, 2, 8, 8, 2, 3
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 07 2017

Examples

			0.0170700868506365129541...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4), A085965 (at 5), this sequence (at 6), A085967 (at 7) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    [0]cat Reverse(IntegerToSequence(Floor(PrimeZeta(6,57)*10^105)));
    // Jason Kimberley, Dec 30 2016
    
  • Mathematica
    s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[6*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n = 200]; While[s[n] != s[n - 100], n = n + 100]; s[n] (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[ PrimeZetaP[ 6], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
  • PARI
    sumeulerrat(1/p,6) \\ Hugo Pfoertner, Feb 03 2020

Formula

P(6) = Sum_{p prime} 1/p^6 = Sum_{n>=1} mobius(n)*log(zeta(6*n))/n
Equals 1/2^6 + A085995 + A086036. - R. J. Mathar, Jul 14 2012
Equals Sum_{k>=1} 1/A030516(k). - Amiram Eldar, Jul 27 2020

A103345 Numerator of Sum_{k=1..n} 1/k^6 = Zeta(6,n).

Original entry on oeis.org

1, 65, 47449, 3037465, 47463376609, 47464376609, 5584183099672241, 357389058474664049, 260537105518334091721, 52107472322919827957, 92311616995117182948130877, 92311647383100199924330877, 445570781131605573859221176881493, 445570839299219762020391212081493
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

For the rationals Zeta(k,n) for k = 1..10 and n = 1..20, see the W. Lang link.
a(n) gives the partial sum, Zeta(6,n), of Euler's (later Riemann's) Zeta(6). Zeta(k,n), k >= 2, is sometimes also called H(k,n) because for k = 1 these would be the harmonic numbers A001008/A002805. However, H(1,n) does not give partial sums of a convergent series.

Examples

			The first few fractions are 1, 65/64, 47449/46656, 3037465/2985984, 47463376609/46656000000, ... = A103345/A103346. - _Petros Hadjicostas_, May 10 2020
		

Crossrefs

Cf. A013664, A291456. For the denominators, see A103346.

Programs

Formula

a(n) = numerator(Sum_{k=1..n} 1/k^6) = numerator(A291456(n)/(n!)^6).
G.f. for rationals Zeta(6, n): polylogarithm(6, x)/(1-x).
Zeta(6, n) = (1/945)*Pi^6 - psi(5, n+1)/5!, see eq. 6.4.3 with m = 5, p. 260, of the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 03 2013

A059378 Jordan function J_5(n).

Original entry on oeis.org

1, 31, 242, 992, 3124, 7502, 16806, 31744, 58806, 96844, 161050, 240064, 371292, 520986, 756008, 1015808, 1419856, 1822986, 2476098, 3099008, 4067052, 4992550, 6436342, 7682048, 9762500, 11510052, 14289858, 16671552, 20511148, 23436248, 28629150, 32505856
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A069091 - A069095 (J_6 through J_10).
Cf. A013664.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 5)
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 5]; Array[f, 30]
    f[p_, e_] := p^(5*e) - p^(5*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^5*moebius(n/d)),","))
    
  • PARI
    { for (n = 1, 1000, write("b059378.txt", n, " ", sumdiv(n, d, d^5*moebius(n/d))); ) } \\ Harry J. Smith, Jun 26 2009
    
  • Python
    from sympy import divisors, mobius
    def a(n):
        return sum(d**5 * mobius(n // d) for d in divisors(n))
    # Indranil Ghosh, Apr 26 2017

Formula

a(n) = Sum_{d|n} d^5*mu(n/d). - Benoit Cloitre, Apr 05 2002
Multiplicative with a(p^e) = p^(5e)-p^(5(e-1)).
Dirichlet generating function: zeta(s-5)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = n^5*Product_{distinct primes p dividing n} (1-1/p^5). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1 - x)^6. - Ilya Gutkovskiy, Apr 25 2017
Sum_{k=1..n} a(k) ~ 315*n^6 / (2*Pi^6). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^5 = 1/zeta(6).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^5/(p^5-1)^2) = 1.0379908060... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 26*x^n + 66*x^(2*n) + 26*x^(3*n) + x^(4*n))/(1 - x^n)^6 = x + 31*x^2 + 242*x^3 + 992*x^4 + 3124*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_4(d) * J_1(n/d) = Sum_{d divides n} d^2 * J_3(d) * J_2(n/d) = Sum_{d divides n} d^3 * J_2(d) * J_3(n/d) = Sum_{d divides n} d^4 * J_1(d) * J_4(n/d), where J_1(n) = phi(n) = A000010(n), J_2(n) = A007434(n), J(3,n) = A059376(n) and J_4(n) = A059377(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_4(gcd(k, n)).
a(n) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_3(gcd(j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} J_2(i) * J_3(j) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i) * J_4(j) (apply Lehmer, Theorem 1). - Peter Bala, Jan 30 2024

A266553 Decimal expansion of the generalized Glaisher-Kinkelin constant A(6).

Original entry on oeis.org

1, 0, 0, 5, 9, 1, 7, 1, 9, 6, 9, 9, 8, 6, 7, 3, 4, 6, 8, 4, 4, 4, 0, 1, 3, 9, 8, 3, 5, 5, 4, 2, 5, 5, 6, 5, 6, 3, 9, 0, 6, 1, 5, 6, 5, 5, 0, 0, 6, 9, 3, 2, 1, 1, 4, 0, 0, 9, 8, 0, 5, 1, 5, 7, 4, 0, 8, 1, 4, 6, 8, 7, 0, 3, 4, 2, 9, 9, 4, 6, 3, 2, 7, 7, 1, 9, 6, 7, 0, 8, 1, 7, 0, 8, 8, 4, 1, 4, 6, 8, 7, 3, 5, 4, 1, 1, 1, 0, 0, 2, 2, 4, 0, 3
Offset: 1

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 6th Bendersky constant.

Examples

			1.00591719699867346844401398355425565639061565500693211400980...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[6]/4)*(Zeta[7]/Zeta[6]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(6) = exp(- zeta'(-6)) = exp((B(6)/4)*(zeta(7)/zeta(6))).
A(6) = exp(6! * Zeta(7) / (2^7 * Pi^6)). - Vaclav Kotesovec, Jan 01 2016

A384053 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a cube.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 8, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 16, 24, 12, 27, 18, 28, 8, 30, 31, 20, 16, 24, 24, 36, 18, 24, 32, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 27, 40, 48, 36, 28, 58, 24, 60, 30, 48, 64, 48, 20, 66, 48, 44
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A078429.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), this sequence (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[Divisible[e, 3], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2]%3, 1, 0));}

Formula

Multiplicative with a(p^e) = p^e if e is a multiple of 3, and p^e-1 otherwise.
Dirichlet g.f.: zeta(s-1) * zeta(3*s) * Product_{p prime} (1 - 1/p^s - 1/p^(2*s) + 1/p^(2*s-1) - 1/p^(3*s) + 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(6) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.71190515701599590826... .

A002760 Squares and cubes.

Original entry on oeis.org

0, 1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1

Views

Author

Keywords

Comments

Catalan's Conjecture states that 8 and 9 are the only pair of consecutive numbers in this sequence. The conjecture was established in 2003 by Mihilescu.
Subsequence of A022549. - Reinhard Zumkeller, Jul 17 2010

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 236.

Crossrefs

Cf. A131799; union of A000290 and A000578.
First differences in A075052. [From Zak Seidov, May 10 2010]

Programs

  • Magma
    [n: n in [0..1600] | IsIntegral(n^(1/3)) or IsIntegral(n^(1/2))]; // Bruno Berselli, Feb 09 2016
    
  • Mathematica
    nMax=2000;Union[Range[0,nMax^(1/2)]^2,Range[0,nMax^(1/3)]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
    nxt[n_] := Min[ Floor[1 + Sqrt[n]]^2, Floor[1 + n^(1/3)]^3]; NestList[ nxt, 0, 55] (* Robert G. Wilson v, Aug 16 2014 *)
  • PARI
    isok(n) = issquare(n) || ispower(n, 3); \\ Michel Marcus, Mar 29 2016
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot
    def A002760(n):
        def f(x): return n-1+x+integer_nthroot(x,6)[0]-integer_nthroot(x,3)[0]-isqrt(x)
        m, k = n-1, f(n-1)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 09 2024

Formula

Sum_{n>=2} 1/a(n) = zeta(2) + zeta(3) - zeta(6). - Amiram Eldar, Dec 19 2020

A157289 Decimal expansion of Zeta(3)/Zeta(6).

Original entry on oeis.org

1, 1, 8, 1, 5, 6, 4, 9, 4, 9, 0, 1, 0, 2, 5, 6, 9, 1, 2, 5, 6, 9, 3, 9, 9, 7, 3, 4, 1, 6, 0, 4, 5, 4, 2, 6, 0, 5, 4, 7, 0, 2, 3, 2, 6, 0, 7, 6, 8, 6, 8, 2, 6, 1, 0, 2, 8, 3, 0, 4, 3, 1, 4, 8, 8, 7, 7, 2, 0, 5, 4, 2, 1, 1, 1, 0, 3, 1, 8, 8, 3, 9, 9, 0, 0, 2, 9, 9, 4, 8, 7, 1, 1, 8, 4, 4, 4, 9, 2, 7, 0, 1, 1, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The Product_{p = primes = A000040} (1+1/p^3), the cubic analog to A082020.

Examples

			1.181564949010256912569399734... = (1+1/2^3)*(1+1/3^3)*(1+1/5^3)*(1+1/7^3)*...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(3)/Zeta(6)) ;
  • Mathematica
    RealDigits[Zeta[3]/Zeta[6],10,120][[1]] (* Harvey P. Dale, Jul 23 2016 *)

Formula

Equals A002117/A013664 = Product_{i} (1+1/A030078(i)).
Equals Sum_{k>=1} 1/A062838(k) = Sum_{k>=1} 1/A005117(k)^3. - Amiram Eldar, May 22 2020

A008881 a(n) = Product_{j=0..5} floor((n+j)/6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 972, 1296, 1728, 2304, 3072, 4096, 5120, 6400, 8000, 10000, 12500, 15625, 18750, 22500, 27000, 32400, 38880, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 134456, 153664, 175616, 200704
Offset: 0

Views

Author

Keywords

Comments

For n >= 6, a(n) is the maximal product of 6 positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022
The maximal product of k positive variables when their sum is equal to s is obtained when each term = s/k; hence, a(6m) = m^6 (A001014). - Bernard Schott, Jul 28 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), this sequence (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
Cf. A001014 (6th power), A008588 (multiples of 6), A013664.

Programs

  • GAP
    List([0..50], n-> Product([0..5], j-> Int((n+j)/6))); # G. C. Greubel, Sep 13 2019
  • Magma
    [(&*[Floor((n+j)/6): j in [0..5]]): n in [0..50]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq( mul( floor((n+i)/6), i=0..5 ), n=0..80);
  • Mathematica
    Product[Floor[(Range[51]+j-2)/6], {j,6}] (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    vector(50, n, prod(j=0,5, (n+j)\6) ) \\ G. C. Greubel, Sep 13 2019
    
  • Sage
    [product(floor((n+j)/6) for j in (0..5)) for n in (0..50)] # G. C. Greubel, Sep 13 2019
    

Formula

Sum_{n>=6} 1/a(n) = 1 + zeta(6). - Amiram Eldar, Jan 10 2023

A282050 Coefficients in q-expansion of (E_4^2 - E_2*E_6)/1008, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 66, 732, 4228, 15630, 48312, 117656, 270600, 533637, 1031580, 1771572, 3094896, 4826822, 7765296, 11441160, 17318416, 24137586, 35220042, 47045900, 66083640, 86124192, 116923752, 148035912, 198079200, 244218775, 318570252, 389021400, 497449568, 594823350
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 23 2018

Examples

			a(6) = 1^6*6^1 + 2^6*3^1 + 3^6*2^1 + 6^6*1^1 = 48312.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), this sequence (phi_{6, 1}), A282060 (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A145095 (-q*E'_6), A008410 (E_4^2 = E_8), A282096 (E_2*E_6).

Programs

  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E4[x]^2 - E2[x]*E6[x])/1008 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^6*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n * sigma(n, 5)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = A145095(n)/504 for n > 0.
G.f.: phi_{6, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A008410(n) - A282096(n))/1008. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^6 + p = A131472(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A001160(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(6) * n^7 / 7. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-6). (End)
G.f. Sum_{k>=1} k^6*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A356192 a(n) is the smallest cubefull exponentially odd number (A335988) that is divisible by n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356193 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^Max[e, 3], p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^max(f[i,2],3), f[i,1]^(f[i,2]+1)))};

Formula

Multiplicative with a(p^e) = p^max(e,3) if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A335988.
a(n) = A356191(n) iff n is a powerful number (A001694).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p^2-1)/(p^3*(p^2-1))) = 1.69824776889117043774... .
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(6)/4) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^8 + 1/p^9 - 1/p^10) = 0.1559368144... . - Amiram Eldar, Nov 13 2022
Previous Showing 11-20 of 117 results. Next