cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A211790 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k

Original entry on oeis.org

1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

...
Let R be the array in A211790 and let R' be the array in A211793. Then R(k,n) + R'(k,n) = 3^(n-1). Moreover, (row k of R) =(row k of A211796) for k>2, by Fermat's last theorem; likewise, (row k of R')=(row k of A211799) for k>2.
...
Generalizations: Suppose that b,c,d are nonzero integers, and let U(k,n) be the number of ordered triples (w,x,y) with all terms in {1,...,n} and b*w*k c*x^k+d*y^k, where the relation is one of these: <, >=, <=, >. What additional assumptions force the limiting row sequence to be essentially one of these: A002412, A000330, A016061, A174723, A051925?
In the following guide to related arrays and sequences, U(k,n) denotes the number of (w,x,y) as described in the preceding paragraph:
first 3 rows limiting row sequence

Examples

			Northwest corner:
  1, 7, 23, 54, 105, 181, 287, 428, 609
  1, 7, 22, 51,  97, 166, 263, 391, 554
  1, 7, 22, 50,  96, 163, 255, 378, 534
  1, 7, 22, 50,  95, 161, 253, 374, 528
  1, 7, 22, 50,  95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
		

Crossrefs

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k < x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A004068 *)
    Table[t[2, n], {n, 1, z}]  (* A211635 *)
    Table[t[3, n], {n, 1, z}]  (* A211650 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
    Table[n (n + 1) (4 n - 1)/6,
      {n, 1, z}] (* row-limit sequence, A002412 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

R(k,n) = n(n-1)(4n+1)/6 for 1<=k<=n, and
R(k,n) = Sum{Sum{floor[(x^k+y^k)^(1/k)] : 1<=x<=n, 1<=y<=n}} for 1<=k<=n.

A004320 a(n) = n*(n+1)*(n+2)^2/6.

Original entry on oeis.org

0, 3, 16, 50, 120, 245, 448, 756, 1200, 1815, 2640, 3718, 5096, 6825, 8960, 11560, 14688, 18411, 22800, 27930, 33880, 40733, 48576, 57500, 67600, 78975, 91728, 105966, 121800, 139345, 158720, 180048, 203456, 229075, 257040, 287490, 320568, 356421, 395200
Offset: 0

Views

Author

Keywords

Comments

Consider the set B(n) = {1,2,3,...n}. Let a(0) = 0. Then a(n) = Sum [ b(i)^2 - b(j)^2] for all i, j = 1 to n, b(i) belongs to B(n). E.g., a(3) = (3^2-1^2) + (3^2-2^2) + (2^2-1^2) = 16. - Amarnath Murthy, Jun 01 2001
Partial sums of A016061. - J. M. Bergot, Jun 18 2013
For n >= 3, a(n-2) is the number of permutations of n symbols that 3-commute with an n-cycle (see A233440 for definition). - Luis Manuel Rivera Martínez, Feb 24 2014
a(n) is the sum of all pairs with repetitions allowed drawn from the set of triangular numbers from A000217(0) to A000217(n). This is similar to A027480 but uses triangular numbers instead of the integers. Example for n=2: 0+1, 0+3, 1+1, 1+3, 3+3 gives sum of 16 = a(2). - J. M. Bergot, Mar 23 2016
From Mircea Dan Rus, Jul 29 2020: (Start)
a(n) is the number of lattice rectangles (squares included) inside half of an Aztec diamond of order n. This shape is obtained by stacking n rows of consecutive unit lattice squares, with the centers of rows vertically aligned and consisting successively of 2n, 2n-2,..., 4, 2 squares. See below the representation for n=6.
||_|_
||_|||_
||_|||_||
||_|||_|||_|_
||_|||_|||_|||_
|||_|||_|||_|||_|
(End)
a(n-1) = (n+1)*binomial(n+1, 3) is the number of certain rectangles (squares included) in an n X n square filled with 1 X 1 squares. Divide the n X n square, for n >= 2, into two complementary staircases by the boundary consisting of 2*n length 1 edges. For n = 1 there is no boundary. See a A000332 figure in the Mircea Dan Rus comment for the staircase with basis length n = 4. The complementary staircase is upside down with basis length n-1 = 3. Then a(n-1) is the number of rectangles in the n X n square which have at least one border link in their interior. This counting is based on the binomial identity given in the formula section, using A096948 (for n=m), A000332(n+3) and A000332(n+2). - Wolfdieter Lang, Sep 22 2020

Crossrefs

Programs

Formula

G.f.: x*(3+x)/(1-x)^5. - Paul Barry, Feb 27 2003
a(n) = (n+2)*A000292(n). - Zerinvary Lajos, May 26 2006
a(n) = A047929(n+2)/6. - Zerinvary Lajos, May 09 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Oct 28 2014
a(n) = 3*A000332(n+3) + A000332(n+2). - Mircea Dan Rus, Jul 29 2020
Sum_{n>=1} 1/a(n) = Pi^2/2 - 9/2. - Jaume Oliver Lafont, Jul 13 2017
a(n-1) = T(n)^2 - (s(n) + s(n-1)), with T(n) = binomial(n+1, 2) = A000217(n) and s(n) = binomial(n+3, 4) = A000332(n+3), for n >= 1. See a comment above, and the formula by Mircea Dan Rus. - Wolfdieter Lang, Sep 22 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/4 + 12*log(2) - 21/2. - Amiram Eldar, Jan 28 2022
E.g.f.: exp(x)*x*(18 + 30*x + 11*x^2 + x^3)/6. - Stefano Spezia, Mar 04 2023
a(n) = Sum_{j=0..n+1} binomial(n+1,2) + binomial(n+1,3). - Detlef Meya, Jan 20 2024

A206817 Sum_{0

Original entry on oeis.org

1, 10, 73, 520, 3967, 33334, 309661, 3166468, 35416555, 430546642, 5655609529, 79856902816, 1206424711303, 19419937594990, 331860183278677, 6000534640290364, 114462875817046051, 2297294297649673738, 48394006967070653425
Offset: 2

Views

Author

Clark Kimberling, Feb 12 2012

Keywords

Comments

In the following guide to related sequences,
c(n) = Sum_{0
t(n) = Sum_{0
s(k).................c(n)........t(n)
k....................A000217.....A000292
k^2..................A016061.....A004320
k^3..................A206808.....A206809
k^4..................A206810.....A206811
k!...................A206816.....A206817
prime(k).............A152535.....A062020
prime(k+1)...........A185382.....A206803
2^(k-1)..............A000337.....A045618
k(k+1)/2.............A007290.....A034827
k-th quarter-square..A049774.....A206806

Examples

			a(3) = (2-1) + (6-1) + (6-2) = 10.
		

Crossrefs

Programs

  • Mathematica
    s[k_] := k!; t[1] = 0;
    p[n_] := Sum[s[k], {k, 1, n}];
    c[n_] := n*s[n] - p[n];
    t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1];
    Table[c[n], {n, 2, 32}]          (* A206816 *)
    Flatten[Table[t[n], {n, 2, 20}]] (* A206817 *)
  • PARI
    a(n)=sum(j=1,n,j!*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
    
  • PARI
    a(n)=my(t=1); sum(j=1,n,t*=j; t*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [sum([sum([factorial(k)-factorial(j) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,21)] # Danny Rorabaugh, Apr 18 2015
    

Formula

a(n) = a(n-1)+(n-1)s(n)-p(n-1), where s(n) = n! and p(k) = 1!+2!+...+k!.
a(n) = Sum_{k=2..n} A206816(k).

A024196 a(n) = 2nd elementary symmetric function of the first n+1 odd positive integers.

Original entry on oeis.org

3, 23, 86, 230, 505, 973, 1708, 2796, 4335, 6435, 9218, 12818, 17381, 23065, 30040, 38488, 48603, 60591, 74670, 91070, 110033, 131813, 156676, 184900, 216775, 252603, 292698, 337386, 387005, 441905, 502448, 569008, 641971, 721735, 808710, 903318
Offset: 1

Keywords

Examples

			a(8) = 8*80+7*79+6*78+5*77+4*76+3*75+2*74+1*73 = 2796. - _Bruno Berselli_, Mar 13 2012
		

Crossrefs

From Johannes W. Meijer, Jun 08 2009: (Start)
Equals third right hand column of A028338 triangle.
Equals third left hand column of A109692 triangle.
Equals third right hand column of A161198 triangle divided by 2^m.
(End)
Cf. A016061.

Programs

  • GAP
    List([1..36], n -> n*(n+1)*(3*n^2+5*n+1)/6); # Muniru A Asiru, Feb 13 2018
  • Maple
    seq(n*(n+1)*(3*n^2+5*n+1)/6,n=1..25); # Muniru A Asiru, Feb 13 2018
  • Mathematica
    f[k_] := 2 k - 1; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 50}]  (* A024196 *)
    (* Clark Kimberling, Dec 31 2011 *)
    Table[(n(n+1)(3n^2+5n+1))/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,23,86,230,505},50] (* Harvey P. Dale, Jul 08 2019 *)

Formula

a(n) = n*(n+1)*(3*n^2+5*n+1)/6.
From Bruno Berselli, Mar 13 2012: (Start)
G.f.: x*(3 + 8*x + x^2)/(1 - x)^5.
a(n) = Sum_{i=1..n} (n+1-i)*((n+1)^2-i).
a(n) = n*A016061(n) - Sum_{i=0..n-1} A016061(i). (End)
a(n) - a(n-1) = A099721(n). Partial sums of A099721.- Philippe Deléham, May 07 2012
a(n) = Sum_{i=1..n} ((2*i-1)*Sum_{j=i..n} (2*j+1)) = 1*(3+5+...2*n+1) + 3*(5+7+...+2*n+1) + ... + (2*n-1)*(2*n+1). - J. M. Bergot, Apr 21 2017
a(n) = A028338(n+1, n-1), n >= 1, (third diagonal). See the crossref. below. Wolfdieter Lang, Jul 21 2017
a(n) = (A000583(n+1) - A000447(n+1))/2. - J. M. Bergot, Feb 13 2018

A132124 a(n) = n*(n+1)*(8*n + 1)/6.

Original entry on oeis.org

0, 3, 17, 50, 110, 205, 343, 532, 780, 1095, 1485, 1958, 2522, 3185, 3955, 4840, 5848, 6987, 8265, 9690, 11270, 13013, 14927, 17020, 19300, 21775, 24453, 27342, 30450, 33785, 37355, 41168, 45232, 49555, 54145, 59010, 64158, 69597, 75335, 81380, 87740, 94423
Offset: 0

Author

Reinhard Zumkeller, Aug 12 2007

Keywords

Comments

Convolution of the sequences (0,3,5,0,0,0,...) and (binomial(n+3, 3)), n >= 0. - Emeric Deutsch, Aug 30 2007

Crossrefs

Programs

  • Maple
    seq((1/6)*n*(n+1)*(8*n+1),n=0..40); # Emeric Deutsch, Aug 30 2007
  • Mathematica
    a[n_] := n*(n + 1)*(8*n + 1)/6; Array[a, 42, 0] (* Amiram Eldar, May 20 2023 *)

Formula

a(n) = A132121(n,2) for n > 1.
G.f.: x*(3+5*x)/(1-x)^4. - Emeric Deutsch, Aug 30 2007
From Bruno Berselli, Nov 25 2010: (Start)
a(n) = n*A014105(n) - A016061(n-1), since A016061(n-1) = Sum_{k=0..n-1} A014105(k) (n > 0).
Also a(n) = A002412(n) + A006331(n) = A007585(n) + A002378(n). (End)
Sum_{n>=1} 1/a(n) = 54 - 24*(sqrt(2)+1)*Pi/7 - 24*(sqrt(2)+8)*log(2)/7 + 48*sqrt(2)*log(2-sqrt(2))/7. - Amiram Eldar, May 20 2023
E.g.f.: exp(x)*x*(18 + 33*x + 8*x^2)/6. - Stefano Spezia, Feb 21 2024

A162147 a(n) = n*(n+1)*(5*n + 4)/6.

Original entry on oeis.org

0, 3, 14, 38, 80, 145, 238, 364, 528, 735, 990, 1298, 1664, 2093, 2590, 3160, 3808, 4539, 5358, 6270, 7280, 8393, 9614, 10948, 12400, 13975, 15678, 17514, 19488, 21605, 23870, 26288, 28864, 31603, 34510, 37590, 40848, 44289, 47918, 51740, 55760
Offset: 0

Author

Keywords

Comments

Partial sums of A005475.
Suppose we extend the triangle in A215631 to a symmetric array by reflection about the main diagonal. The array is defined by m(i,j) = i^2 + i*j + j^2: 3, 7, 13, ...; 7, 12, 19, ...; 13, 19, 27, .... Then a(n) is the sum of the n-th antidiagonal. Examples: 3, 7 + 7, 13 + 12 + 13, 21 + 19 + 19 + 21, etc. - J. M. Bergot, Jun 25 2013
Binomial transform of [0,3,8,5,0,0,0,...]. - Alois P. Heinz, Mar 10 2015

Examples

			For n=4, a(4) = 0*(5+0) + 1*(5+1) + 2*(5+2) + 3*(5+3) + 4*(5+4) = 80. - _Bruno Berselli_, Mar 17 2016
		

Crossrefs

Programs

Formula

From R. J. Mathar, Jun 27 2009: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
a(n) = A033994(n) + A000217(n).
G.f.: x*(3+2*x)/(1-x)^4. (End)
a(n) = A035005(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = Sum_{i=0..n} i*(n + 1 + i). - Bruno Berselli, Mar 17 2016
E.g.f.: x*(18 + 24*x + 5*x^2)*exp(x)/6. - G. C. Greubel, Apr 01 2021

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A162148 a(n) = n*(n+1)*(5*n+7)/6.

Original entry on oeis.org

0, 4, 17, 44, 90, 160, 259, 392, 564, 780, 1045, 1364, 1742, 2184, 2695, 3280, 3944, 4692, 5529, 6460, 7490, 8624, 9867, 11224, 12700, 14300, 16029, 17892, 19894, 22040, 24335, 26784, 29392, 32164, 35105, 38220, 41514, 44992, 48659, 52520, 56580
Offset: 0

Author

Keywords

Comments

Partial sums of A147875.
Equals the fourth right hand column of A175136 for n>=1. - Johannes W. Meijer, May 06 2011
a(n) is the number of triples (w,x,y) havingt all terms in {0,...,n} and x+y>w. - Clark Kimberling, Jun 14 2012

Crossrefs

Programs

Formula

a(n) = A162147(n) + A000217(n).
From Johannes W. Meijer, May 06 2011: (Start)
G.f.: x*(4+x)/(1-x)^4.
a(n) = 4*binomial(n+2,3) + binomial(n+1,3).
a(n) = A091894(3,0)*binomial(n+2,3) + A091894(3,1)*binomial(n+1,3). (End)
a(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i).
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=0, a(1)=4, a(2)=17, a(3)=44. - Harvey P. Dale, May 20 2014
E.g.f.: x*(24 +27*x +5*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A211802 R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^k < x^k + y^k; square array read by descending antidiagonals.

Original entry on oeis.org

0, 3, 0, 11, 3, 0, 28, 13, 3, 0, 56, 32, 13, 3, 0, 99, 64, 34, 13, 3, 0, 159, 113, 68, 34, 13, 3, 0, 240, 181, 117, 70, 34, 13, 3, 0, 344, 272, 187, 125, 70, 34, 13, 3, 0, 475, 388, 282, 197, 125, 70, 34, 13, 3, 0, 635, 535, 406, 292, 203, 125, 70, 34, 13, 3, 0
Offset: 1

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 1: A182260.
Row 2: A211800.
Row 3: A211801.
Limiting row sequence: A016061.
Let R be the array in this sequence and let R' be the array in A211805. Then R(k,n) + R'(k,n) = 3^(n-1).
See the Comments at A211790.

Examples

			Northwest corner:
  0   3  11  28  56  99 159 240
  0   3  13  32  64 113 181 272
  0   3  13  34  68 117 187 282
  0   3  13  34  70 125 197 292
  0   3  13  34  70 125 203 302
		

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[2 w^k < x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A182260 *)
    Table[t[2, n], {n, 1, z}]  (* A211800 *)
    Table[t[3, n], {n, 1, z}]  (* A211801 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12},
                    {k, 1, n}]] (* this sequence *)
    Table[k (k - 1) (4 k + 1)/6, {k, 1,
      z}] (* row-limit sequence, A016061 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Extensions

Definition corrected by Georg Fischer, Sep 10 2022

A240927 Positive integers with 2k digits (the first of which is not 0) where the sum of the first k digits equals the sum of the last k digits.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 1001, 1010, 1102, 1111, 1120, 1203, 1212, 1221, 1230, 1304, 1313, 1322, 1331, 1340, 1405, 1414, 1423, 1432, 1441, 1450, 1506, 1515, 1524, 1533, 1542, 1551, 1560, 1607, 1616, 1625, 1634, 1643, 1652, 1661, 1670, 1708, 1717
Offset: 1

Author

Martin Renner, Aug 03 2014

Keywords

Comments

These integers are sometimes called balanced numbers.
There are 9, 615, 50412, 4379055, 392406145, ... 2k-digit balanced numbers with k >= 1.

Examples

			1423 is a 4-digit balanced number, because the sum of the first 2 digits equals the sum of the last 2 digits: 1 + 4 = 2 + 3.
		

References

  • Cambridge Colleges Sixth Term Examination Papers (STEP) 2007, Paper I, Section A (Pure Mathematics), Nr. 1.

Crossrefs

Programs

  • Mathematica
    sfslQ[n_]:=Module[{id=IntegerDigits[n],len},len=Length[id]/2;Total[Take[ id,len]]==Total[Take[id,-len]]]; Select[Table[Range[10^n,10^(n+1)-1],{n,1,3,2}]// Flatten,sfslQ] (* Harvey P. Dale, Jun 24 2020 *)

A051895 Partial sums of second pentagonal numbers with even index (A049453).

Original entry on oeis.org

0, 7, 33, 90, 190, 345, 567, 868, 1260, 1755, 2365, 3102, 3978, 5005, 6195, 7560, 9112, 10863, 12825, 15010, 17430, 20097, 23023, 26220, 29700, 33475, 37557, 41958, 46690, 51765, 57195, 62992, 69168, 75735, 82705, 90090, 97902, 106153, 114855, 124020, 133660
Offset: 0

Author

Barry E. Williams, Dec 17 1999

Keywords

Comments

For A049453(n+1), the corresponding formula would be a(n)=(n+1)*(6*n+7) and its partial sums would be given by a(n)=(n+1)*(n+2)*(4*n+7)/2.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Magma
    I:=[0, 7, 33, 90]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
    
  • Mathematica
    Table[(n(4n-1)(n-1))/2,{n,40}]  (* Harvey P. Dale, Mar 11 2011 *)
    CoefficientList[Series[x*(7+5*x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
  • PARI
    a(n) = n*(n+1)*(4*n+3)/2; \\ Altug Alkan, Apr 20 2018

Formula

a(n) = n*(n+1)*(4*n+3)/2.
G.f.: x*(7+5*x)/(1-x)^4. - Colin Barker, Jan 12 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Apr 27 2012
a(n) = A002492(n) + A016061(n). - J. M. Bergot, Apr 20 2018
Previous Showing 11-20 of 31 results. Next