cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 590 results. Next

A176206 Irregular triangle T(n,k) (n >= 1, k >= 1) read by rows: row n has length A000070(n-1) and every column k gives the positive integers.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Alford Arnold, Apr 11 2010

Keywords

Comments

The original definition was: An irregular table: Row n begins with n, counts down to 1 and repeats the intermediate numbers as often as given by the partition numbers.
Row n contains a decreasing sequence where n-k is repeated A000041(k) times, k = 0..n-1.
From Omar E. Pol, Nov 23 2020: (Start)
Row n lists in nonincreasing order the first A000070(n-1) terms of A336811.
In other words: row n lists in nonincreasing order the terms from the first n rows of triangle A336811.
Conjecture: all divisors of all terms in row n are also all parts of all partitions of n.
For more information see the example and A336811 which contains the most elementary conjecture about the correspondence divisors/partitions.
Row sums give A014153.
A338156 lists the divisors of every term of this sequence.
The n-th row of A340581 lists in nonincreasing order the terms of the first n rows of this triangle.
For a regular triangle with the same row sums see A141157. (End)
From Omar E. Pol, Jul 31 2021: (Start)
The number of k's in row n is equal to A000041(n-k), 1 <= k <= n.
The number of terms >= k in row n is equal to A000070(n-k), 1 <= k <= n.
The number of k's in the first n rows (or in the first A014153(n-1) terms of the sequence) is equal to A000070(n-k), 1 <= k <= n.
The number of terms >= k in the first n rows (or in the first A014153(n-1) terms of the sequence) is equal to A014153(n-k), 1 <= k <= n. (End)

Examples

			Triangle begins:
  1;
  2, 1;
  3, 2, 1, 1;
  4, 3, 2, 2, 1, 1, 1;
  5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1;
  6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, ...
  ... Extended by _Omar E. Pol_, Nov 23 2020
From _Omar E. Pol_, Jan 25 2020: (Start)
For n = 5, by definition the length of row 5 is A000070(5-1) = A000070(4) = 12, so the row 5 of triangle has 12 terms. Since every column lists the positive integers A000027 so the row 5 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1].
Then we have that the divisors of the numbers of the 5th row are:
.
5th row of triangle -----> 5  4  3  3  2  2  2  1  1  1  1  1
                           1  2  1  1  1  1  1
                              1
.
There are twelve 1's, four 2's, two 3's, one 4 and one 5.
In total there are 12 + 4 + 2 + 1 + 1 = 20 divisors.
On the other hand the partitions of 5 are as shown below:
.
.      5
.      3  2
.      4  1
.      2  2  1
.      3  1  1
.      2  1  1  1
.      1  1  1  1  1
.
There are twelve 1's, four 2's, two 3's, one 4 and one 5, as shown also in the 5th row of triangle A066633.
In total there are 12 + 4 + 2 + 1 + 1 = A006128(5) = 20 parts.
Finally in accordance with the conjecture we can see that all divisors of all numbers in the 5th row of the triangle are the same positive integers as all parts of all partitions of 5. (End)
		

Crossrefs

Cf. A000027 (columns), A000070 (row lengths), A338156 (divisors), A340061 (mirror).

Programs

  • Mathematica
    Table[Flatten[Table[ConstantArray[n-k,PartitionsP[k]],{k,0,n-1}]],{n,10}] (* Paolo Xausa, May 30 2022 *)

Extensions

New name, changed offset, edited and more terms from Omar E. Pol, Nov 22 2020

A129308 a(n) is the number of positive integers k such that k*(k+1) divides n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 5, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Leroy Quet, May 26 2007

Keywords

Comments

The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception.
In other words, a(n) is the number of oblong numbers (A002378) dividing n. - Bernard Schott, Jul 29 2022

Examples

			The divisors of 20 are 1,2,4,5,10,20. Of these there are two that are of the form k(k+1): 2 = 1*2 and 20 = 4*5. So a(2) = 2.
		

Crossrefs

Positions of 0's and 1's are A088725, whose characteristic function is A360128.
First appearance of n is A287142(n), with sorted version A328450.
The longest run of divisors of n has length A055874(n).
One less than A195155.

Programs

  • Mathematica
    a = {}; For[n = 1, n < 90, n++, k = 1; co = 0; While[k < Sqrt[n], If[IntegerQ[ n/(k*(k + 1))], co++ ]; k++ ]; AppendTo[a, co]]; a (* Stefan Steinerberger, May 27 2007 *)
    Table[Count[Differences[Divisors[n]],1],{n,30}] (* Gus Wiseman, Oct 15 2019 *)
  • PARI
    a(n)=sumdiv(n, d, n%(d+1)==0); \\ Michel Marcus, Jan 06 2015
    
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A129308(n): return 0 if n&1 else sum(1 for a, b in pairwise(divisors(n)) if a+1==b) # Chai Wah Wu, Jun 09 2025

Formula

a(2n-1) = 0; a(2n) = A007862(n). - Ray Chandler, Jun 24 2008
G.f.: Sum_{n>=1} x^(n*(n+1))/(1-x^(n*(n+1))). - Joerg Arndt, Jan 30 2011 [modified by Ilya Gutkovskiy, Apr 14 2021]
a(n) = A000005(n) - A137921(n), where A137921(n) is the number of maximal runs of successive divisors of n. - Gus Wiseman, Oct 15 2019
a(n) = Sum_{d|n} A005369(d). - Ridouane Oudra, Jan 22 2021
a(n) = A195155(n)-1. - Antti Karttunen, Feb 21 2023
From Amiram Eldar, Dec 31 2023: (Start)
a(n) = A088722(n) + A059841(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. (End)

Extensions

More terms from Stefan Steinerberger, May 27 2007
Extended by Ray Chandler, Jun 24 2008

A182469 Triangle read by rows in which row n lists the odd divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 3, 5, 15, 1, 1, 17, 1, 3, 9, 1, 19, 1, 5, 1, 3, 7, 21, 1, 11, 1, 23, 1, 3, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 7, 1, 29, 1, 3, 5, 15, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 7, 35, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 30 2012

Keywords

Comments

n-th row = intersection of A005408 and of n-th row of A027750.

Examples

			The triangle begins:
.  1   {1}
.  2   {1}
.  3   {1,3}
.  4   {1}
.  5   {1,5}
.  6   {1,3}
.  7   {1,7}
.  8   {1}
.  9   {1,3,9}
. 10   {1,5}
. 11   {1,11}
. 12   {1,3}
. 13   {1,13}
. 14   {1,7}
. 15   {1,3,5,15}
. 16   {1} .
		

Crossrefs

Cf. A001227 (row lengths), A000593 (row sums), A136655 (row products).
Cf. also A237048.

Programs

  • Haskell
    a182469 n k = a182469_tabf !! (n-1) !! (k-1)
    a182469_row = a027750_row . a000265
    a182469_tabf = map a182469_row [1..]
    
  • Mathematica
    Flatten[Table[Select[Divisors[n],OddQ],{n,40}]] (* Harvey P. Dale, Aug 13 2012 *)
    Flatten[Table[Divisors[n / 2^IntegerExponent[n, 2]], {n, 40}]] (* Amiram Eldar, May 02 2025 *)
  • PARI
    tabf(nn) = {for (n=1, nn, fordiv(n, d, if (d%2, print1(d, ", "))); print(););} \\ Michel Marcus, Apr 22 2017
    
  • PARI
    row(n) = divisors(n >> valuation(n, 2)); \\ Amiram Eldar, May 02 2025
    
  • Python
    from sympy import divisors
    def row(n):
        return [d for d in divisors(n) if d % 2]
    for n in range(1, 21): print(row(n)) # Indranil Ghosh, Apr 22 2017

Formula

T(n,k) = A027750(A000265(n),k), 1 <= k <= A001227(n).
A000265(n) = T(n,A001227(n)).

A193829 Irregular triangle read by rows in which row n lists the differences between consecutive divisors of n.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 1, 3, 6, 1, 2, 4, 2, 6, 1, 3, 5, 10, 1, 1, 1, 2, 6, 12, 1, 5, 7, 2, 2, 10, 1, 2, 4, 8, 16, 1, 1, 3, 3, 9, 18, 1, 2, 1, 5, 10, 2, 4, 14, 1, 9, 11, 22, 1, 1, 1, 2, 2, 4, 12, 4, 20, 1, 11, 13, 2, 6, 18, 1, 2, 3, 7, 14, 28, 1, 1, 2, 1, 4, 5, 15, 30
Offset: 2

Views

Author

Omar E. Pol, Aug 31 2011

Keywords

Comments

The sum of row n gives A000027(n-1). The product of row n gives A057449(n). Row n has length A032741(n). The final term of row n is A060681(n). It appears that the first term of row n is A057237(n).

Examples

			Written as a triangle:
1,
2,
1, 2,
4,
1, 1, 3,
6,
1, 2, 4,
2, 6,
1, 3, 5,
10,
1, 1, 1, 2, 6
		

Crossrefs

Cf. A060682 (distinct terms per row), A060680 (row minima), A060681 (row maxima).

Programs

  • Haskell
    import Data.List (genericIndex)
    a193829 n k = genericIndex a193829_tabf (n - 1) !! (k - 1)
    a193829_row n = genericIndex a193829_tabf (n - 1)
    a193829_tabf = zipWith (zipWith (-))
                           (map tail a027750_tabf') a027750_tabf'
    -- Reinhard Zumkeller, Jun 25 2015, Jun 23 2013
  • Mathematica
    Flatten[Table[Differences[Divisors[n]], {n, 2, 30}]] (* T. D. Noe, Aug 31 2011 *)

Formula

T(n,k) = A027750(n,k+1)-A027750(n,k). - R. J. Mathar, Sep 01 2011

A006206 Number of aperiodic binary necklaces of length n with no subsequence 00, excluding the necklace "0".

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078
Offset: 1

Views

Author

Keywords

Comments

Bau-Sen Du (1985/1989)'s Table 1 has this sequence, denoted A_{n,1}, as the second column. - Jonathan Vos Post, Jun 18 2007

Examples

			Necklaces are: 1, 10, 110, 1110; 11110, 11010, 111110, 111010, ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.
Cf. A001461 (partial sums), A000045, A008683, A027750.
Cf. A125951 and A113788 for similar sequences.

Programs

  • Haskell
    a006206 n = sum (map f $ a027750_row n) `div` n where
       f d = a008683 (n `div` d) * (a000045 (d - 1) + a000045 (d + 1))
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Maple
    with(numtheory): with(combinat):
    A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) end do; sum/n; end proc:
  • Mathematica
    a[n_] := Total[(MoebiusMu[n/#]*(Fibonacci[#+1] + Fibonacci[#-1]) & ) /@ Divisors[n]]/n;
    (* or *) a[n_] := Sum[LucasL[k]*MoebiusMu[n/k], {k, Divisors[n]}]/n; Table[a[n], {n,100}] (* Jean-François Alcover, Jul 19 2011, after given formulas *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)
    
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z + z**2))
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020

Formula

Euler transform is Fibonacci(n+1): 1/((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)^2 * (1 - x^6)^2 * ...) = 1/(Product_{n >= 1} (1 - x^n)^a(n)) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + ...
Coefficients of power series of natural logarithm of the infinite product Product_{n>=1} (1 - x^n - x^(2*n))^(-mu(n)/n), where mu(n) is the Moebius function. This is related to Fibonacci sequence since 1/(1 - x^n - x^(2*n)) expands to a power series whose terms are Fibonacci numbers.
a(n) = (1/n) * Sum_{d|n} mu(n/d) * (Fibonacci(d-1) + Fibonacci(d+1)) = (1/n) * Sum_{d|n} mu(n/d) * Lucas(d). Hence Lucas(n) = Sum_{d|n} d*a(d).
a(n) = round((1/n) * Sum_{d|n} mu(d)*phi^(n/d)), n > 2. - David Broadhurst [Formula corrected by Jason Yuen, Dec 29 2024]
G.f.: Sum_{n >= 1} -mu(n) * log(1 - x^n - x^(2*n))/n.
a(n) = (1/n) * Sum_{d|n} mu(d) * A001610(n/d - 1), n > 1. - R. J. Mathar, Mar 07 2009
For n > 2, a(n) = A060280(n) = A031367(n)/n.

A272618 Irregular array read by rows: n-th row contains (in ascending order) the nondivisors 1 <= k < n such that all the prime divisors p of k also divide n.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 8, 0, 8, 9, 0, 4, 8, 9, 0, 0, 4, 8, 12, 16, 0, 8, 16, 9, 4, 8, 16, 0, 9, 16, 18, 0, 4, 8, 16, 0, 8, 16, 0, 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 0, 0, 9, 27, 4, 8, 16, 32, 25, 8, 16, 24, 27, 32, 0, 4, 8, 16, 32, 9, 27, 16, 25, 32, 0, 4, 8, 9, 12, 16, 18, 24, 27, 28, 32
Offset: 1

Views

Author

Michael De Vlieger, May 03 2016

Keywords

Comments

The k are the "semidivisors" or nondivisor regular numbers of n as counted by A243822(n).
All nonzero terms k are composite and pertain to composite rows n. This is because prime k must either divide or be coprime to n, and k = 1 is both a divisor of and coprime to n.
Row n for prime p contains zero, since numbers 1 <= k < p must either divide or be coprime to prime p.
Row n for prime powers p^e contains zero, since there is only one prime divisor p of p^e and every power 1 <= m <= e of p divides p^e.
Row n = 4 is a special case of composite n that contains zero. This is because 4 is the smallest composite number; there are no composites k < n.
Thus rows n for composite n > 4 contain at least 1 nonzero value.
In base n, 1/a(n) has a terminating expansion with at least 2 places.

Examples

			For n = 12, the numbers 1 <= k < n such that the prime divisors p of k also divide n are {2, 3, 4, 6, 8, 9}; {2, 3, 4, 6} divide n = 12, thus row n = 12 is {8, 9}.
n: k
1: 0
2: 0
3: 0
4: 0
5: 0
6: 4
7: 0
8: 0
9: 0
10: 4 8
11: 0
12: 8 9
13: 0
14: 4 8
15: 9
16: 0
17: 0
18: 4 8 12 16
19: 0
20: 8 16
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, pp. 144-145, Theorem 136.

Crossrefs

Union of A027750 and nonzero terms of a(n) = A162306, thus A000005(n) + A243822(n) = A010846(n).
The union of nonzero terms of a(n) and A272619 = A133995, thus A243822(n) + A243823(n) = A045763(n).

Programs

  • Mathematica
    Table[With[{r = First /@ FactorInteger@ n}, Select[Range@ n,
    And[SubsetQ[r, Map[First, FactorInteger@ #]], ! Divisible[n, #]] &]], {n, 30}] /. {} -> 0 // Flatten (* Michael De Vlieger, May 03 2016 *)

A322791 Irregular triangle read by rows in which the n-th row lists the exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 48, 7, 49
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2018

Keywords

Examples

			The table starts
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A049419 (row lengths), A051377 (row sums).
Cf. A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary).

Programs

  • Maple
    A322791 := proc(n)
        local expundivs ,d,isue,p,ai,bi;
        expudvs := {} ;
        for d in numtheory[divisors](n) do
            isue := true ;
            for p in numtheory[factorset](n) do
                ai := padic[ordp](n,p) ;
                bi := padic[ordp](d,p) ;
                if bi > 0 then
                    if modp(ai,bi) <>0 then
                        isue := false;
                    end if;
                else
                    isue := false ;
                end if;
            end do;
            if isue then
                expudvs := expudvs union {d} ;
            end if;
        end do:
        sort(expudvs) ;
    end proc:
    seq(op(A322791(n)),n=1..40) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    divQ[n_, m_] := (n > 0 && m>0 && Divisible[n, m]); expDivQ[n_, d_] := Module[ {f=FactorInteger[n]}, And@@MapThread[divQ, {f[[;; , 2]], IntegerExponent[ d, f[[;; , 1]]]} ]]; expDivs[1]={1}; expDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; Table[expDivs[n], {n, 1, 50}] // Flatten
  • PARI
    isexpdiv(f, d) = { my(e); for (i=1, #f~, e = valuation(d, f[i, 1]); if(!e || (e && f[i, 2] % e), return(0))); 1; }
    row(n) = {my(d = divisors(n), f = factor(n), ediv = []); if(n == 1, return([1])); for(i=2, #d, if(isexpdiv(f, d[i]), ediv = concat(ediv, d[i]))); ediv; } \\ Amiram Eldar, Mar 27 2023

A056045 a(n) = Sum_{d|n} binomial(n,d).

Original entry on oeis.org

1, 3, 4, 11, 6, 42, 8, 107, 94, 308, 12, 1718, 14, 3538, 3474, 14827, 18, 68172, 20, 205316, 117632, 705686, 24, 3587174, 53156, 10400952, 4689778, 41321522, 30, 185903342, 32, 611635179, 193542210, 2333606816, 7049188, 10422970784, 38
Offset: 1

Views

Author

Labos Elemer, Jul 25 2000

Keywords

Examples

			A(x) = log(1/(1-x) * G(x^2,2) * G(x^3,3) * G(x^4,4) * ...)
where the functions G(x,n) are g.f.s of well-known sequences:
G(x,2) = g.f. of A000108 = 1 + x*G(x,2)^2;
G(x,3) = g.f. of A001764 = 1 + x*G(x,3)^3;
G(x,4) = g.f. of A002293 = 1 + x*G(x,4)^4; etc.
		

Crossrefs

Cf. A110448 (exp(A(x))); A000108 (Catalan numbers), A001764, A002293, A174462.
Cf. A000010 (comments on Dirichlet sum formulas).
Cf. A308943 (similar, with Product).

Programs

  • Haskell
    a056045 n = sum $ map (a007318 n) $ a027750_row n
    -- Reinhard Zumkeller, Aug 13 2013
    
  • Mathematica
    f[n_] := Sum[ Binomial[n, d], {d, Divisors@ n}]; Array[f, 37] (* Robert G. Wilson v, Apr 23 2005 *)
    Total[Binomial[#,Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Dec 08 2018 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,log(1/x*serreverse(x/(1+x^m +x*O(x^n))))),n)} /* Paul D. Hanna, Nov 10 2007 */
    
  • PARI
    {a(n)=sumdiv(n,d,binomial(n,d))} /* Paul D. Hanna, Nov 10 2007 */
    
  • Python
    from math import comb
    from sympy import divisors
    def A056045(n): return sum(comb(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 22 2024

Formula

L.g.f.: A(x) = Sum_{n>=1} log( G(x^n,n) ) where G(x,n) = 1 + x*G(x,n)^n. L.g.f. A(x) satisfies: exp(A(x)) = g.f. of A110448. - Paul D. Hanna, Nov 10 2007
a(n) = Sum_{k=1..A000005(n)} A007318(n, A027750(k)). - Reinhard Zumkeller, Aug 13 2013
a(n) = Sum_{k=1..n} binomial(n,gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(n,n/gcd(n,k))/phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, Nov 08 2021
a(n) = n+1 iff n is prime. - Bernard Schott, Nov 30 2021

A091050 Number of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2003

Keywords

Comments

Not the same as A005361: a(72)=5 <> A005361(72)=6.

Examples

			Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108},
a(108) = #{1^2, 2^2, 3^2, 3^3, 6^2} = 5.
		

Crossrefs

Programs

  • Haskell
    a091050 = sum . map a075802 . a027750_row
    -- Reinhard Zumkeller, Dec 13 2012
    
  • Mathematica
    ppQ[n_] := GCD @@ Last /@ FactorInteger@ n > 1; ppQ[1] = True; f[n_] := Length@ Select[ Divisors@ n, ppQ]; Array[f, 105] (* Robert G. Wilson v, Dec 12 2012 *)
  • PARI
    a(n) = 1+ sumdiv(n, d, ispower(d)>1); \\ Michel Marcus, Sep 21 2014
    
  • PARI
    a(n)={my(f=factor(n)[,2]); 1 + if(#f, sum(k=2, vecmax(f), moebius(k)*(1 - prod(i=1, #f, 1 + f[i]\k))))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = 1 iff n is squarefree: a(A005117(n)) = 1, a(A013929(n)) > 1.
a(p^k) = k for p prime, k>0: a(A000961(n)) = A025474(n).
a(n) = Sum_{k=1..A000005(n)} A075802(A027750(n,k)). - Reinhard Zumkeller, Dec 13 2012
G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + A072102 = 1.874464... . - Amiram Eldar, Dec 31 2023

Extensions

Wrong formula deleted by Amiram Eldar, Apr 29 2020

A001616 Number of parabolic vertices of Gamma_0(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 4, 6, 2, 8, 2, 6, 4, 4, 2, 8, 6, 4, 6, 6, 2, 8, 2, 8, 4, 4, 4, 12, 2, 4, 4, 8, 2, 8, 2, 6, 8, 4, 2, 12, 8, 12, 4, 6, 2, 12, 4, 8, 4, 4, 2, 12, 2, 4, 8, 12, 4, 8, 2, 6, 4, 8, 2, 16, 2, 4, 12, 6, 4, 8, 2, 12, 12, 4, 2, 12, 4, 4, 4, 8, 2, 16, 4, 6, 4, 4, 4, 16
Offset: 1

Views

Author

Keywords

Comments

Number of inequivalent cusps of Gamma_0(n). - Michael Somos, May 08 2015

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 4*x^9 + ...
		

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 102.
  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (4).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001616 n = sum $ map a000010 $ zipWith gcd ds $ reverse ds
                where ds = a027750_row n
    -- Reinhard Zumkeller, Jun 23 2013
    
  • Maple
    with(numtheory); nupara := proc (n) local b, d; b := 0; for d to n do if modp(n,d) = 0 then b := b+eval(phi(gcd(d,n/d))) fi od; b end: # Gene Ward Smith, May 22 2006
  • Mathematica
    Table[ Plus@@Map[ EulerPhi[ GCD[ #1, n/#1 ] ]&, Select[ Range[ n ], (Mod[ n, #1 ]==0)& ] ], {n, 1, 100} ] (* Olivier Gérard, Aug 15 1997 *)
    a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[ GCD[ d, n/d]], {d, Divisors@n}]]; (* Michael Somos, May 08 2015 *)
    f[p_, e_] := p^Floor[e/2] + p^Floor[(e-1)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n)=sumdiv(n,d,eulerphi(gcd(d,n/d))); \\ Joerg Arndt, Jul 17 2011
    
  • Python
    from math import prod
    from sympy import factorint
    def A001616(n): return prod(p**(e>>1)+p**(e-1>>1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 05 2024

Formula

a(n) = Sum_{d|n} phi(gcd(d,n/d)), where phi() is Euler's totient function. - Joerg Arndt, Jul 17 2011
Multiplicative with a(p^e) = p^[e/2] + p^[(e-1)/2]. - David W. Wilson, Sep 01 2001

Extensions

More terms from Olivier Gérard, Aug 15 1997
Previous Showing 81-90 of 590 results. Next