cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A110679 a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 1, a(1) = 2, a(2) = 11.

Original entry on oeis.org

1, 2, 11, 44, 189, 798, 3383, 14328, 60697, 257114, 1089155, 4613732, 19544085, 82790070, 350704367, 1485607536, 6293134513, 26658145586, 112925716859, 478361013020, 2026369768941, 8583840088782, 36361730124071, 154030760585064, 652484772464329
Offset: 0

Views

Author

Creighton Dement, Aug 02 2005

Keywords

Comments

2tesseq[A*B*cyc(A)] (see program code) gives an alternative formula for A110528.
a(n) is the number of tilings of a 2 X n rectangle by using 1 X 1 squares, dominoes and right trominoes. - Roberto Tauraso, Mar 21 2017

Crossrefs

Programs

  • Magma
    [(Fibonacci(3*n+2) +(-1)^n)/2: n in [0..30]]; // G. C. Greubel, Apr 19 2019
    
  • Maple
    seriestolist(series((-1+x)/((x+1)*(x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -1jesseq[A*B*cyc(A)] with A = - 'j + 'k - 'ii' - 'ij' - 'ik' and B = - .5'i - .5i' - .5'ii' + .5'jj' - .5'kk' + .5'jk' + .5'kj' - .5e
  • Mathematica
    a[n_] := (Fibonacci[3*n+2] + (-1)^n)/2; a /@ Range[0, 22] (* Giovanni Resta, Mar 21 2017 *)
  • PARI
    Vec((1 - x) / ((1 + x)*(1 - 4*x - x^2)) + O(x^30)) \\ Colin Barker, Mar 21 2017
    
  • PARI
    {a(n) = -(-1)^n * (fibonacci(-2 - 3*n)\2)}; /* Michael Somos, Mar 26 2017 */
    
  • Sage
    [(fibonacci(3*n+2) +(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019

Formula

Program "FAMP" finds: 2*(-1^(n+1)) = A110528(n) - A001076(n+1) - 2*a(n). Program "Superseeker" finds: a(n) = A110526(n+1) - A110526(n); a(n) + a(n+1) = A033887(n+1).
a(n) = (-1)^n*Sum_{k=0..n} (-1)^k*Fibonacci(3*k+1). - Gary Detlefs, Jan 22 2013
a(n) = (Fibonacci(3*n+2)+(-1)^n)/2. - Roberto Tauraso, Mar 21 2017
From Colin Barker, Mar 21 2017: (Start)
G.f.: (1 - x) / ((1 + x)*(1 - 4*x - x^2)).
a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3) for n>2.
(End)
a(n) = -(-1)^n * A049651(-1 - n) for all n in Z. - Michael Somos, Mar 26 2017
a(2*n) = A254627(2*n+1); a(2*n+1) = A077259(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
2*a(n) = A015448(n+1)+(-1)^n. - R. J. Mathar, Oct 03 2021

Extensions

Typo in program code fixed by Creighton Dement, Dec 11 2009

A134972 Decimal expansion of 2 divided by golden ratio = 2/phi = 4/(1 + sqrt(5)) = 2*(-1 + phi).

Original entry on oeis.org

1, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7, 4, 9, 6, 9, 5
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

Convergents are 4/2, 8/8, 32/24, 96/80, 320/256, 1024/832, 3328/2688, 10752/8704, 34816/28160, 112640/91136, 364544/294912, 1179648/954368, 3817472/3088384, 12353536/9994240, ... = A209084/A063727. - Seiichi Kirikami, Mar 14 2012
2*(-1 + phi) is an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Feb 16 2016

Examples

			1.236067977499789696...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[4/(1+Sqrt[5]), 150] ] [ [1] ] (* Seiichi Kirikami, Mar 14 2012 *)
  • PARI
    4/(1+sqrt(5)) \\ Altug Alkan, Apr 11 2016

Formula

Equals A134945 - 2 = A002163 - 1 = A098317 - 3. - R. J. Mathar, Oct 27 2008
2*(-1 + A001622). - Wolfdieter Lang, Feb 17 2016
Equals the harmonic mean of 1 and phi, 2*phi/(1+phi). - Stanislav Sykora, Apr 11 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!-8*n!^2)/(n!^2*3^(2*n+2)).
Equals -1 + Sum_{n>=0} 5*(2*n)!/(n!^2*3^(2*n+1)). (End)
Equals 1/A019863. - R. J. Mathar, Jan 17 2021
Equals 2*sin(Pi/5)/sin(2*Pi/5) = hypergeom([1/5, 3/5], [7/5], 1) = hypergeom([-1/5, -3/5], [3/5], 1). - Peter Bala, Mar 04 2022

A167808 Numerator of x(n), where x(n) = x(n-1) + x(n-2) with x(0)=0, x(1)=1/2.

Original entry on oeis.org

0, 1, 1, 1, 3, 5, 4, 13, 21, 17, 55, 89, 72, 233, 377, 305, 987, 1597, 1292, 4181, 6765, 5473, 17711, 28657, 23184, 75025, 121393, 98209, 317811, 514229, 416020, 1346269, 2178309, 1762289, 5702887, 9227465, 7465176, 24157817, 39088169, 31622993
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 12 2009

Keywords

Comments

Define a sequence c(n) by c(0)=0, c(1)=1; thereafter c(n) = (c(n-2)*c(n-1)-1)/(c(n-2)+c(n-1)+2). Then it appears that (apart from signs), a(n) is the denominator of c(n). - Jonas Holmvall, Jun 21 2023

Crossrefs

Cf. A000045, A130196 (denominator).
The a(2*n) appear in A179135. - Johannes W. Meijer, Jul 01 2010

Programs

  • GAP
    a:=[0,1,1,1,3,5];; for n in [7..40] do a[n]:=4*a[n-3]+a[n-6]; od; a; # Muniru A Asiru, Oct 16 2018
  • Maple
    nmax:=39; x(0):=0: x(1):=1/2:for n from 2 to nmax do x(n):=x(n-1)+x(n-2) od: for n from 0 to nmax do a(n):= numer(x(n)) od: seq(a(n),n=0..nmax); # Johannes W. Meijer, Jul 01 2010
    with(combinat):f:=n->fibonacci(n):L:=n->f(n)+2*f(n-1):seq(numer(f(n)/L(n)), n=0..39); # Gary Detlefs, Dec 11 2010
  • Mathematica
    f[n_]:=Numerator[Fibonacci[n]/Fibonacci[n+3]];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011*)
    Numerator[LinearRecurrence[{1,1},{0,1/2},40]] (* Harvey P. Dale, Aug 08 2014 *)
    CoefficientList[Series[-x (1 + x + x^2 - x^3 + x^4)/((x^2 + x - 1) (x^4 - x^3 + 2 x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 08 2014 *)
    LinearRecurrence[{0, 0, 4, 0, 0, 1},{0, 1, 1, 1, 3, 5},40] (* Ray Chandler, Aug 03 2015 *)
    a[n_]:=If[Mod[n,3]==0, Fibonacci[n]/2, Fibonacci[n]]; Array[a, 40, 0] (* Stefano Spezia, Oct 16 2018 *)

Formula

a(n) = (a(n-1)*A131534(n) + a(n-2)*A131534(n+2))/A131534(n+1) for n > 1.
a(3*n) = A001076(n) = (a(3*n-1) + a(3*n-2))/2;
a(3*n+1) = A033887(n) = 2*a(3*n-1) + a(3*n-2);
a(3*n+2) = A015448(n+1) = a(3*n-1) + 2*a(3*n-2).
From Johannes W. Meijer, Jul 01 2010: (Start)
a(2*n) = A001906(n)/A131534(n+1) for n >= 0 and a(2*n+1) = A179131(n)/5 for n >= 1.
a(6*n+2) - 2*a(6*n) = A134493(n);
2*a(6*n+1) - a(6*n+3) = A023039(n);
2*a(6*n+4) - a(6*n+2) = A134497(n);
a(6*n+5) - 2*a(6*n+3) = A103134(n);
2*a(6*n+4) - a(6*n+6) = A075796(n).
(End)
From Gary Detlefs, Dec 11 2010: (Start)
a(n) = numerator(A000045(n)/A000032(n)).
If n mod 3 = 0 then a(n) = Fibonacci(n)/2, else a(n)= Fibonacci(n). (End)
G.f.: -x*(1 + x + x^2 - x^3 + x^4) / ( (x^2 + x - 1)*(x^4 - x^3 + 2*x^2 + x + 1) ). - R. J. Mathar, Mar 08 2011
a(n) = 4*a(n-3) + a(n-6). - Muniru A Asiru, Oct 16 2018

Extensions

Typo in title corrected by Johannes W. Meijer, Jun 26 2010

A264341 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 0,1 or 1,2.

Original entry on oeis.org

4, 13, 8, 49, 55, 16, 181, 490, 233, 32, 676, 3567, 4900, 987, 64, 2521, 28925, 70669, 49000, 4181, 128, 9409, 223356, 1243225, 1399783, 490000, 17711, 256, 35113, 1759250, 20386617, 53429620, 27726581, 4900000, 75025, 512, 131044, 13750304
Offset: 1

Views

Author

R. H. Hardin, Nov 11 2015

Keywords

Comments

Table starts
....4......13.........49...........181..............676.................2521
....8......55........490..........3567............28925...............223356
...16.....233.......4900.........70669..........1243225.............20386617
...32.....987......49000.......1399783.........53429620...........1855980772
...64....4181.....490000......27726581.......2296230561.........168990466353
..128...17711....4900000.....549201567......98684484373.......15386771913704
..256...75025...49000000...10878455069....4241136597604.....1400983500645217
..512..317811..490000000..215477871383..182270189212469...127561175981852920
.1024.1346269.4900000000.4268134837381.7833376999538689.11614593343457551705

Examples

			Some solutions for n=3 k=4
..7..8..9..3..4....1..0..3..2..4....7..8..2..3..4....1..2..9..4..3
.12..5..0..1..2...12..6..7..9..8....5..6..0..1..9...12..6..0..7..8
.17.10.13..6.14...11.10..5.14.13...11.10.12.13.14...10.18..5.14.13
.15.16.18.11.19...16.15.17.18.19...15.17.16.18.19...15.17.16.11.19
		

Crossrefs

Column 1 is A000079(n+1).
Column 2 is A033887(n+1).
Row 1 is A097948.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) +a(n-2)
k=3: a(n) = 10*a(n-1)
k=4: a(n) = 19*a(n-1) +16*a(n-2)
k=5: a(n) = 43*a(n-1) -43*a(n-3) +a(n-4)
k=6: a(n) = 87*a(n-1) +374*a(n-2) -470*a(n-3) +207*a(n-4) +3*a(n-5)
k=7: a(n) = 191*a(n-1) +1102*a(n-2) -7594*a(n-3) -38349*a(n-4) +38507*a(n-5)
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4)
n=2: [order 14]
n=3: [order 34]

A049651 a(n) = (F(3*n+1) - 1)/2, where F=A000045 (the Fibonacci sequence).

Original entry on oeis.org

0, 1, 6, 27, 116, 493, 2090, 8855, 37512, 158905, 673134, 2851443, 12078908, 51167077, 216747218, 918155951, 3889371024, 16475640049, 69791931222, 295643364939, 1252365390980, 5305104928861, 22472785106426, 95196245354567, 403257766524696, 1708227311453353, 7236167012338110
Offset: 0

Views

Author

Keywords

Comments

This is the sequence A(0,1;4,1;2) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
For n>0, a(n) is the least number whose greedy Fibonacci-union-Lucas representation (as at A214973), has n terms. - Clark Kimberling, Oct 23 2012

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 24.

Crossrefs

Pairwise sums of A049652.

Programs

Formula

From Ralf Stephan, Jan 23 2003: (Start)
a(n) = 4*a(n-1) + a(n-2) + 2, a(0)=0, a(1)=1.
G.f.: x*(1+x)/((1-x)*(1-4*x-x^2)).
a(n) is asymptotic to -1/2+(sqrt(5)+5)/20*(sqrt(5)+2)^n. (End)
a(n+1) = F(2) + F(5) + F(8) + ... + F(3n+2).
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3), a(0)=0, a(1)=1, a(2)= 6. Observation by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(2*n) = A077259(2*n); a(2*n+1) = A294262(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)) - 5)/10. - Stefano Spezia, May 24 2024

A134504 a(n) = Fibonacci(7n + 6).

Original entry on oeis.org

8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: (-8-x) / (-1 + 29*x + x^2). - R. J. Mathar, Jul 04 2011
a(n) = A000045(A017053(n)). - Michel Marcus, Nov 08 2013
a(n) = 29*a(n-1) + a(n-2). - Wesley Ivan Hurt, Mar 15 2023

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A180147 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 4*x - 3*x^2 + 6*x^3).

Original entry on oeis.org

1, 7, 31, 139, 607, 2659, 11623, 50827, 222223, 971635, 4248247, 18574555, 81213151, 355086787, 1552539271, 6788138539, 29679651247, 129767784979, 567381262423, 2480750497147, 10846539065983, 47424120180835
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
On a 3 X 3 chessboard there are 2^9 = 512 ways to go berserk on the central square (we assume here that a berserker might behave like a rook). The berserker is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program. For the central squares the 512 berserkers lead to 42 berserker sequences, see the cross-references for some examples.
The sequence above corresponds to six A[5] vectors with decimal values between 191 and 506. These vectors lead for the corner squares to A180145 and for the side squares to A180146.

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).
Cf. Berserker sequences central square [numerical values A[5]]: A000007 [0], A000012 [16], 2*A001835 [17, n>=1 and a(0)=1], A155116 [3], A077829 [7], A000302 [15], 6*A179606 [111, with leading 1 added], 2*A033887 [95, n>=1 and a(0)=1], A180147 [191, this sequence], 2*A180141 [495, n>=1 and a(0)=1], 4*A107979 [383, with leading 1 added].

Programs

  • Maple
    with(LinearAlgebra): nmax:=22; m:=5; A[5]:=[0,1,0,1,1,1,1,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1+3x)/(1-4x-3x^2+6x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,3,-6},{1,7,31},40] (* Harvey P. Dale, Oct 10 2011 *)

Formula

G.f.: (1+3*x)/(1 - 4*x - 3*x^2 + 6*x^3).
a(n) = 4*a(n-1) + 3*a(n-2) - 6*a(n-3) with a(0)=1, a(1)=7 and a(2)=31.
a(n) = -1/2 + (7+6*A)*A^(-n-1)/22 + (7+6*B)*B^(-n-1)/22 with A=(-3+sqrt(33))/12 and B=(-3-sqrt(33))/12.
a(n) = A180146(n) + 3*A180146(n-1) with A180146(-1) = 0.

A134494 a(n) = Fibonacci(6n+2).

Original entry on oeis.org

1, 21, 377, 6765, 121393, 2178309, 39088169, 701408733, 12586269025, 225851433717, 4052739537881, 72723460248141, 1304969544928657, 23416728348467685, 420196140727489673, 7540113804746346429, 135301852344706746049, 2427893228399975082453
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(6*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
    
  • Maple
    seq( combinat[fibonacci](6*n+2),n=0..10) ; # R. J. Mathar, Apr 17 2011
  • Mathematica
    Table[Fibonacci[6n+2], {n, 0, 30}]
    Table[ChebyshevU[3*n, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
  • PARI
    a(n)=fibonacci(6*n+2) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    Vec((1+3*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: ( 1+3*x ) / ( 1-18*x+x^2 ).
a(n) = 3*A049660(n)+A049660(n+1). (End)
a(n) = A000045(A016933(n)). - Michel Marcus, Nov 07 2013
a(n) = ((5-3*sqrt(5)+(5+3*sqrt(5))*(9+4*sqrt(5))^(2*n)))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n, 3) = S(n,18) + 3*S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023

Extensions

Index in definition corrected by T. D. Noe, Joerg Arndt, Apr 17 2011

A185384 A binomial transform of Fibonacci numbers.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 13, 24, 15, 3, 34, 84, 78, 32, 5, 89, 275, 340, 210, 65, 8, 233, 864, 1335, 1100, 510, 126, 13, 610, 2639, 4893, 5040, 3115, 1155, 238, 21, 1597, 7896, 17080, 21112, 16310, 8064, 2492, 440, 34, 4181, 23256, 57492, 82908, 76860, 47502, 19572, 5184, 801, 55
Offset: 0

Views

Author

Emanuele Munarini, Feb 29 2012

Keywords

Comments

Triangle begins:
1,
2, 1,
5, 6, 2,
13, 24, 15, 3,
34, 84, 78, 32, 5,
89, 275, 340, 210, 65, 8,
233, 864, 1335, 1100, 510, 126, 13,
610, 2639, 4893, 5040, 3115, 1155, 238, 21,
1597, 7896, 17080, 21112, 16310, 8064, 2492, 440, 34,
...
Diagonal: a(n,n) = F(n+1).
First column: a(n,0) = F(2n+1) (A001519).
Row sums: Sum_{k=0..n} a(n,k) = F(3n+1) (A033887).
Alternated row sums: Sum_{k=0..n} (-1)^k * a(n,k) = 1.
Diagonal sums: Sum_{k=0..floor(n/2)} a(n-k,k) = A208481(n).
Alternated diagonal sums: Sum_{k=0..floor(n/2)} (-1)^k * a(n-k,k) = F(n+3)-1 (A000071).
Row square-sums: Sum_{k=0..n} a(n,k)^2 = A208588(n).
Central coefficients: a(2*n,n) = binomial(2n,n)*F(3n+1) (A208473), where F(n) are the Fibonacci numbers (A000045).
Mirror image of the triangle in A122070. - Philippe Deléham, Mar 13 2012
Subtriangle of (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 13 2012

Examples

			From _Philippe Deléham_, Mar 13 2012: (Start)
(1, 1, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
    1;
    1,   0;
    2,   1,    0;
    5,   6,    2,    0;
   13,  24,   15,    3,   0;
   34,  84,   78,   32,   5,   0;
   89, 275,  340,  210,  65,   8,  0;
  233, 864, 1335, 1100, 510, 126, 13, 0;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[Binomial[n,i]Binomial[i,k]Fibonacci[i+1],{i,k,n}],{n,0,20},{k,0,n}]]
    CoefficientList[Series[CoefficientList[Series[(1 - x)/(1 - 3*x + x^2 - x*y - x^2*y - x^2*y^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* G. C. Greubel, Jun 28 2017 *)
  • Maxima
    create_list(binomial(n,k)*fib(2*n-k+1),n,0,20,k,0,n);
    
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(i=k,n, binomial(n,i) * binomial(i,k) * fibonacci(i+1)), ", "))) \\ G. C. Greubel, Jun 28 2017

Formula

a(n,k) = Sum_{i=k..n} binomial(n,i)*binomial(i,k)*F(i+1).
a(n,k) = binomial(n,i) * Sum_{i=k..n} binomial(n-k,n-i)*F(i+1).
Explicit form: a(n,k) = binomial(n,k)*F(2*n-k+1).
G.f.: (1-x)/(1-3*x+x^2-x*y-x^2*y-x^2*y^2).
Recurrence: a(n+2,k+2) = 3*a(n+1,k+2) + a(n+1,k+1) - a(n,k+2) + a(n,k+1) + a(n,k).
T(n,k) = A122070(n,n-k). - Philippe Deléham, Mar 13 2012

A134501 a(n) = Fibonacci(7n + 3).

Original entry on oeis.org

2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-2+3*x) / (-1 + 29*x + x^2).
a(n) = 2*A049667(n+1) - 3*A049667(n). (End)
a(n) = A000045(A017017(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed to 0 by Vincenzo Librandi, Apr 16 2011
Previous Showing 11-20 of 40 results. Next