cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 118 results. Next

A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1

Views

Author

Keywords

Comments

From Antti Karttunen, Aug 21 2018: (Start)
a(n) is the denominator of any rational-valued sequence f(n) which has been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d
Proof:
Proof is by induction. We assume as our induction hypothesis that the given multiplicative formula for A046644 (resp. additive formula for A046645) holds for all proper divisors d|n, dA046645(p) = 1. [Remark: for squares of primes, f(p^2) = (4*b(p^2) - 1)/8, thus a(p^2) = 8.]
First we note that A005187(x+y) <= A005187(x) + A005187(y), with equivalence attained only when A004198(x,y) = 0, that is, when x and y do not have any 1-bits in the shared positions. Let m = Sum_{e} A005187(e), with e ranging over the exponents in prime factorization of n.
For [case A] any n in A268388 it happens that only when d (and thus also n/d) are infinitary divisors of n will Sum_{e} A005187(e) [where e now ranges over the union of multisets of exponents in the prime factorizations of d and n/d] attain value m, which is the maximum possible for such sums computed for all divisor pairs d and n/d. For any n in A268388, A037445(n) = 2^k, k >= 2, thus A037445(n) - 2 = 2 mod 4 (excluding 1 and n from the count, thus -2). Thus, in the recursive formula above, the maximal denominator that occurs in the sum is 2^m which occurs k times, with k being an even number, but not a multiple of 4, thus the factor (1/2) in the front of the whole sum will ensure that the denominator of the whole expression is 2^m [which thus is equal to 2^A046645(n) = a(n)].
On the other hand [case B], for squares in A050376 (A082522, numbers of the form p^(2^k) with p prime and k>0), all the sums A005187(x)+A005187(y), where x+y = 2^k, 0 < x <= y < 2^k are less than A005187(2^k), thus it is the lonely "middle pair" f(p^(2^(k-1))) * f(p^(2^(k-1))) among all the pairs f(d)*f(n/d), 1 < d < n = p^(2^k) which yields the maximal denominator. Furthermore, as it occurs an odd number of times (only once), the common factor (1/2) for the whole sum will increase the exponent of 2 in denominator by one, which will be (2*A005187(2^(k-1))) + 1 = A005187(2^k) = A046645(p^(2^k)).
(End)
From Antti Karttunen, Aug 21 2018: (Start)
The following list gives a few such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n). Here ε stands for sequence A063524 (1, 0, 0, ...).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
(End)
This sequence gives an upper bound for the denominators of any rational-valued sequence obtained as the "Dirichlet Square Root" of any integer-valued sequence. - Andrew Howroyd, Aug 23 2018

Crossrefs

See A046643 for more details. See also A046645, A317940.
Cf. A299150, A299152, A317832, A317926, A317932, A317934 (for denominator sequences of other similar constructions).

Programs

Formula

From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = 2^A005187(n).
a(1) = 1; for n > 1, a(n) = A000079(A005187(A067029(n))) * a(A028234(n)).
a(n) = A000079(A046645(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025

A037992 Smallest number with 2^n divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 17297280, 294053760, 5587021440, 128501493120, 3212537328000, 93163582512000, 2888071057872000, 106858629141264000, 4381203794791824000, 188391763176048432000, 8854412869274276304000, 433866230594439538896000
Offset: 0

Author

Keywords

Comments

Positions where the number of infinitary divisors of n (A037445), increases to a record (cf. A002182), or infinitary analog of highly composite numbers (A002182). - Vladimir Shevelev, May 13-22 2016
Infinitary superabundant numbers: numbers m with record values of the infinitary abundancy index, A049417(m)/m > A049417(k)/k for all k < m. - Amiram Eldar, Sep 20 2019

Programs

  • Haskell
    a037992 n = head [x | x <- [1..], a000005 x == 2 ^ n]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Catch[ For[ k = 2, True, k++, If[ an = k*a[n-1]; DivisorSigma[0, an] == 2^n, Throw[an]]]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 16 2012 *)
  • PARI
    {a(n)= local(A,m,c,k,p); if(n<1, n==0, c=0; A=1; m=1; while( cMichael Somos, Apr 15 2005 */
    
  • Python
    def a(n):
      product = 1
      k = 1
      for i in range(n+1):
        product *= k   # k=A050376(i), for i>=1
        while product % k == 0:
          k += 1
      return product
    # Jason L. Miller, Mar 20 2024

Formula

A000005(a(n)) = A000079(n).
a(n) = Product_{k=1..n} A050376(k), product of the first n terms of A050376. - Lekraj Beedassy, Jun 30 2004
a(n) = A052330(2^n -1). - Thomas Ordowski, Jun 29 2005
A001221(a(n+1)) <= A001221(a(n))+1, see also A074239; A007947(a(n)) gives a sequence of primorials (A002110) in nondecreasing order. - Reinhard Zumkeller, Apr 16 2006, corrected: Apr 09 2015
a(n) = A005179(2^n). - Ivan N. Ianakiev, Apr 01 2015
a(n+1)/a(n) = A050376(n+1). - Jinyuan Wang, Oct 14 2018

Extensions

a(18) from Don Reble, Aug 20 2002

A286324 a(n) is the number of bi-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8
Offset: 1

Author

Michel Marcus, May 07 2017

Keywords

Comments

a(n) is the number of terms of the n-th row of A222266.

Examples

			From _Michael De Vlieger_, May 07 2017: (Start)
a(1) = 1 since 1 is the empty product; all divisors of 1 (i.e., 1) have a greatest common unitary divisor that is 1. 1 is a unitary divisor of all numbers n.
a(p) = 2 since 1 and p have greatest common unitary divisor 1.
a(6) = 4 since the divisor pairs {1, 6} and {2, 3} have greatest common unitary divisor 1.
a(24) = 8 since {1, 24}, {2, 12}, {3, 8}, {4, 6} have greatest unitary divisors {1, {1, 3, 8, 24}}, {{1, 2}, {1, 3, 4, 12}}, {{1, 3}, {1, 8}}, {{1, 4}, {1, 2, 3, 6}}: 1 is the greatest common unitary divisor among all 4 pairs. (End)
		

Crossrefs

Cf. A222266, A188999, A293185 (indices of records), A340232, A350390.
Cf. A000005, A034444 (unitary), A037445 (infinitary).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, 1 &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 90}] (* Michael De Vlieger, May 07 2017 *)
    f[p_, e_] := If[OddQ[e], e + 1, e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120] (* Amiram Eldar, Dec 19 2018 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = #biudivs(n);
    
  • PARI
    a(n)={my(f=factor(n)[,2]); prod(i=1, #f, my(e=f[i]); e + e % 2)} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (X^3 - X^2 + X + 1) / ((X-1)^2 * (X+1)))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = e + (e mod 2). - Andrew Howroyd, Aug 05 2018
a(A340232(n)) = 2*n. - Bernard Schott, Mar 12 2023
a(n) = A000005(A350390(n)) (the number of divisors of the largest exponentially odd number dividing n). - Amiram Eldar, Sep 01 2023
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Let f(s) = Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (p-1)/((p+1)*p^2)) = A306071 = 0.80733082163620503914865427993003113402584582508155664401800520770441381...,
f'(1) = f(1) * Sum_{p prime} 2*(p^2 - p - 1) * log(p) /(p^4 + 2*p^3 + 1) = f(1) * 0.40523703144422392508596509911218523410441417240419849262346362977537989... = f(1) * A306072
and gamma is the Euler-Mascheroni constant A001620. (End)

A126168 Sum of the proper infinitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 36, 1, 16, 13, 12, 1, 42, 1, 19, 15, 20, 13, 14, 1, 22, 17, 50, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 66, 17, 64, 23, 32, 1, 60, 1, 34, 17, 21, 19, 78, 1, 22, 27, 74, 1, 78, 1, 40, 29
Offset: 1

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			As the infinitary divisors of 240 are 1, 3, 5, 15, 16, 48, 80, 240, we have a(240) = 1 + 3 + 5 + 15 + 16 + 48 + 80 = 168.
		

Crossrefs

Programs

  • Maple
    A049417 := proc(n)
        local a,pe,k,edgs,p ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            edgs := convert(op(2,pe),base,2) ;
            for k from 0 to nops(edgs)-1 do
                dk := op(k+1,edgs) ;
                a := a*(p^(2^k*(1+dk))-1)/(p^(2^k)-1) ;
            end do:
        end do:
        a ;
    end proc:
    A126168 := proc(n)
        A049417(n)-n ;
    end proc:
    seq(A126168(n),n=1..100) ; # R. J. Mathar, Jul 23 2021
  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; properinfinitarydivisorsum /@ Range[75]
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); a[n_] := isigma[n] - n; Array[a, 100] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)))} \\ This function from Andrew Lelechenko, Apr 22 2014
    A126168(n) = (A049417(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula.

Formula

a(n) = isigma(n) - n = A049417(n) - n.

A000379 Numbers where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028.

Original entry on oeis.org

1, 6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 129
Offset: 1

Keywords

Comments

This sequence and A000028 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
See A000028 for precise definition, Maple program, etc.
The sequence contains products of even number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that the infinitary Möbius function (A064179) of m equals 1. (This follows from the definition of A064179.)
A number m is in the sequence iff the number k = k(m) of terms of A050376 that divide m with odd maximal exponent is even (see example).
(End)
Numbers k for which A064547(k) [or equally, A268386(k)] is even. Numbers k for which A010060(A268387(k)) = 0. - Antti Karttunen, Feb 09 2016
The sequence is closed under the commutative binary operation A059897(.,.). As integers are self-inverse under A059897(.,.), it therefore forms a subgroup of the positive integers considered as a group under A059897(.,.). Specifically (expanding on the comment above dated May 04 2010) it is the subgroup of even length words in A050376, which is the group's lexicographically earliest ordered minimal set of generators. A000028, the set of odd length words in A050376, is its complementary coset. - Peter Munn, Nov 01 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is a square.
Numbers whose exponentially odious part (A367514) has an even number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 0. (End)

Examples

			If m = 120, then the maximal exponent of 2 that divides 120 is 3, for 3 it is 1, for 4 it is 1, for 5 it is 1. Thus k(120) = 4 and 120 is a term. - _Vladimir Shevelev_, Oct 28 2013
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequences: A030229, A238748, A262675, A268390.
Subsequence of A268388 (apart from the initial 1).
Complement: A000028.
Sequences used in definitions of this sequence: A133008, A050376, A059897, A064179, A064547, A124010 (prime exponents), A268386, A268387, A010060.
Other 2-way classifications: A000069/A001969 (to which A000120 and A010060 are relevant), A000201/A001950.
This is different from A123240 (e.g., does not contain 180). The first difference occurs already at n=31, where A123240(31) = 60, a value which does not occur here, as a(31+1) = 62. The same is true with respect to A131181, as A131181(31) = 60.

Programs

  • Haskell
    a000379 n = a000379_list !! (n-1)
    a000379_list = filter (even . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Mathematica
    Select[ Range[130], EvenQ[ Count[ Flatten[ IntegerDigits[#, 2]& /@ Transpose[ FactorInteger[#]][[2]]], 1]]&] // Prepend[#, 1]& (* Jean-François Alcover, Apr 11 2013, after Harvey P. Dale *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2==0 \\ Charles R Greathouse IV, Aug 31 2013
    (Scheme, two variants)
    (define A000379 (MATCHING-POS 1 1 (COMPOSE even? A064547)))
    (define A000379 (MATCHING-POS 1 1 (lambda (n) (even? (A000120 (A268387 n))))))
    ;; Both require also my IntSeq-library. - Antti Karttunen, Feb 09 2016

Extensions

Edited by N. J. A. Sloane, Dec 20 2007, to restore the original definition.

A091732 Iphi(n): infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 3, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 6, 24, 12, 16, 18, 28, 8, 30, 15, 20, 16, 24, 24, 36, 18, 24, 12, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 16, 40, 18, 36, 28, 58, 24, 60, 30, 48, 45, 48, 20, 66, 48, 44, 24, 70, 24, 72, 36, 48
Offset: 1

Author

Steven Finch, Mar 05 2004

Keywords

Comments

Not the same as A064380.
With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = (A050376(i)-1) * (A050376(j)-1) * ... * (A050376(k)-1). (Cf. the first formula). - Antti Karttunen, Jan 15 2019

Examples

			a(6)=2 since 6=P_1*P_2, where P_1=2^(2^0) and P_2=3^(2^0); hence (P_1-1)*(P_2-1)=2.
12=3*4 (3,4 are in A050376). Therefore, a(12) = 12*(1-1/3)*(1-1/4) = 6. - _Vladimir Shevelev_, Feb 20 2011
		

Programs

  • Maple
    A091732 := proc(n) local f,a,e,p,b; a :=1 ; for f in ifactors(n)[2] do e := op(2,f) ; p := op(1,f) ; b := convert(e,base,2) ; for i from 1 to nops(b) do if op(i,b) > 0 then a := a*(p^(2^(i-1))-1) ; end if; end do: end do: a ; end proc:
    seq(A091732(n),n=1..20) ; # R. J. Mathar, Apr 11 2011
  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); Array[a, 100] (* Amiram Eldar, Feb 28 2020 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); }; \\ Antti Karttunen, Jan 15 2019

Formula

Consider the set, I, of integers of the form p^(2^j), where p is any prime and j >= 0. Let n > 1. From the fundamental theorem of arithmetic and the fact that the binary representation of any integer is unique, it follows that n can be uniquely factored as a product of distinct elements of I. If n = P_1*P_2*...*P_t, where each P_j is in I, then iphi(n) = Product_{j=1..t} (P_j - 1).
From Vladimir Shevelev, Feb 20 2011: (Start)
Thus we have the following analog of the formula phi(n) = n*Product_{p prime divisors of n} (1-1/p): if the factorization of n over distinct terms of A050376 is n = Product(q) (this factorization is unique), then a(n) = n*Product(1-1/q). Thus a(n) is infinitary multiplicative, i.e., if n_1 and n_2 have no common i-divisors, then a(n_1*n_2) = a(n_1)*a(n_2). Now we see that this property is stronger than the usual multiplicativity, therefore a(n) is a multiplicative arithmetic function.
Add that Sum_{d runs i-divisors of n} a(d)=n and a(n) = n*Sum_{d runs i-divisors of n} A064179(d)/d. The latter formulas are analogs of the corresponding formulas for phi(n): Sum_{d|n} phi(d) = n and phi(n) = n*Sum_{d|n} mu(d)/d. (End).
a(n) = n - A323413(n). - Antti Karttunen, Jan 15 2019
a(n) <= A064380(n), with equality if and only if n is in A050376. - Amiram Eldar, Feb 18 2023

A000028 Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 101, 102, 103, 104, 105, 107, 108, 109, 110, 113, 114, 121, 126, 127, 128, 130, 131, 132, 135, 136, 137
Offset: 1

Keywords

Comments

This sequence and A000379 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
Contains (for example) 180, so is different from A123193. - Max Alekseyev, Sep 20 2007
The sequence contains products of odd number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that infinitary Moebius function of m (A064179) equals -1. This follows from the definition of A064179.
Number m is in the sequence if and only if the number k = k(m) of terms of A050376 which divide m with odd maximal exponent is odd.
For example, if m = 96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus k(96) = 3 and 96 is a term.
(End)
Positions of odd terms in A064547, A268386 and A293439. - Antti Karttunen, Nov 09 2017
Lexicographically earliest sequence of distinct nonnegative integers such that no term is the A059897 product of 2 terms. (A059897 can be considered as a multiplicative operator related to the Fermi-Dirac factorization of numbers described in A050376.) Specifying that the A059897 product be of 2 distinct terms leaves the sequence unchanged. The equivalent sequences using standard integer multiplication are A026416 (with the 2 terms specified as distinct) and A026424 (otherwise). - Peter Munn, Mar 16 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is not a square.
Numbers whose exponentially odious part (A367514) has an odd number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 1. (End)

Examples

			If k = 96 then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1. 5 in binary is 101_2 and has so has a sum of binary digits of 1 + 0 + 1 = 2. 1 in binary is 1_2 and so has a sum of binary digits of 1. Thus the sum of digits of binary exponents is 2 + 1 = 3 which is odd and so 96 is a term. - _Vladimir Shevelev_, Oct 28 2013, edited by _David A. Corneth_, Mar 20 2019
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A133008, A000379 (complement), A000120 (binary weight function), A064547; also A066724, A026477, A050376, A084400, A268386, A293439.
Note that A000069 and A001969, also A000201 and A001950 give other decompositions of the integers into two classes.
Cf. A124010 (prime exponents).

Programs

  • Haskell
    a000028 n = a000028_list !! (n-1)
    a000028_list = filter (odd . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Maple
    (Maple program from N. J. A. Sloane, Dec 20 2007) expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end; # returns a list of the exponents e_1, e_2, ...
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: # returns weight of binary expansion
    LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # returns sum of weights of exponents
    M:=400; t0:=[]; t1:=[]; for n from 1 to M do if LamMos(n) mod 2 = 0 then t0:=[op(t0),n] else t1:=[op(t1),n]; fi; od: t0; t1; # t0 is A000379, t1 is the present sequence
  • Mathematica
    iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@ (DigitCount[ Last[ Transpose[ FactorInteger[ n ] ] ], 2, 1 ]) ], -1, 1 ] ]; q=Select[ Range[ 20000 ],iMoebiusMu[ # ]===-1& ] (* Wouter Meeussen, Dec 21 2007 *)
    Rest[Select[Range[150],OddQ[Count[Flatten[IntegerDigits[#,2]&/@ Transpose[ FactorInteger[#]][[2]]],1]]&]] (* Harvey P. Dale, Feb 25 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2 \\ Charles R Greathouse IV, Aug 31 2013

Extensions

Entry revised by N. J. A. Sloane, Dec 20 2007, restoring the original definition, correcting the entries and adding a new b-file.

A064380 Number of numbers less than n that are infinitarily relatively prime to n; the infinitary Euler phi function.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 4, 8, 5, 10, 7, 12, 8, 9, 15, 16, 11, 18, 13, 14, 14, 22, 10, 24, 16, 18, 19, 28, 13, 30, 20, 22, 21, 25, 26, 36, 24, 27, 18, 40, 17, 42, 32, 33, 29, 46, 34, 48, 32, 36, 39, 52, 24, 42, 27, 40, 37, 58, 30, 60, 40, 49, 48, 50, 30, 66, 51, 49, 35, 70, 34, 72, 48
Offset: 2

Author

Wouter Meeussen, Sep 27 2001

Keywords

Comments

Not the same as A091732.
Let E[n] be the set of different terms of A050376 for which n = Product_{q in E[n]}q. Put Z(n) = n^2/Product_{q in E[n]}(q+1). Then a(n) = Z(n) + o(n^eps), where eps>0 arbitrary small. In fact, in the limits of [2,1000] we have for 636 numbers |a(n)-Z(n)| <= 1/2, for 242 numbers 1/2 < |a(n)-Z(n)| <= 1, for 117 numbers 1 < |a(n)-Z(n)| < 2 and only for 4 numbers (namely, 308, 738, 846 and 966) 2 <= |a(n)-Z(n)| < 3. - Vladimir Shevelev, Apr 17 2010

Examples

			irelprime[6] = {1, 4, 5} because iDivisors[6] = {1, 2, 3, 6} and iDivisors[4] = {1, 4} so 4 is infinitary_relatively_prime to 6 since it lacks common infinitary divisors with 6.
For n = 2 .. 8, irelprime[n] gives {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,4,5}, {1,2,3,4,5,6}, {1,3,5,7}.
Let n = 10000 = 16*625 (16 and 625 are terms of A050376). Then a(10000) = Sum_{t_1>=0} Sum_{t_2>=0}(-1)^(t_1+t_2) * floor(16*625/(16^t_1*625^t_2)) = 16*625 - 16 - 625 + 1 + floor(625/16) - floor(625/256) = 9397. Note that, Z(n) = 9396.7 - _Vladimir Shevelev_, Apr 17 2010
		

References

  • V. S. Abramovich (Shevelev), On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17.
  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Programs

  • Maple
    maxpowp := proc(p, n) local f; for f in ifactors(n)[2] do if op(1, f) = p then return op(2, f) ; end if; end do: return 0 ; end proc:
    isidiv := proc(d, n) local n2, d2, p, j; if n mod d <> 0 then return false; end if; for p in numtheory[factorset](n) do n2 := maxpowp(p, n) ; n2 := convert(n2, base, 2) ; d2 := maxpowp(p, d) ; d2 := convert(d2, base, 2) ; for j from 1 to nops(d2) do if op(j, n2) = 0 and op(j, d2) <> 0 then return false; end if; end do: end do; return true; end proc:
    idivisors := proc(n) local a, d; a := {} ; for d in numtheory[divisors](n) do if isidiv(d, n) then a := a union {d} ; end if; end do: a ; end proc:
    isInfrelpr := proc(n, m) idivisors(n) intersect idivisors(m) = {1} ; end proc:
    A064380 := proc(n) option remember; local a; a := 0 ; for m from 1 to n-1 do if isInfrelpr(m, n) then a := a+1 ; end if; end do ; a ; end proc: # R. J. Mathar, Feb 19 2011
  • Mathematica
    Table[ Length[ irelprime[ n ] ], {n, 2, 128} ] (* with irelprime[ n ] defined in A064379 *)
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;;, 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; a[n_] := Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]; Array[a, 100, 2] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1,return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
    a(n) = sum(j = 1, n-1, isinfcoprime(j, n)); \\ Amiram Eldar, Mar 26 2023

Formula

a(n) = Sum_{t_1>=0} Sum_{t_2>=0}... Sum_{t_m>=0} (-1)^(t_1+...+t_m) *floor(n/(q_1^t_1*...*q_m^t_m)), where q_i are distinct terms of A050376, such that n=q_1*...*q_m. - Vladimir Shevelev, Apr 17 2010

Extensions

Name edited by Peter Munn, Nov 14 2022

A212172 Row n of table represents second signature of n: list of exponents >= 2 in canonical prime factorization of n, in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0
Offset: 1

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A056170(n) if A056170(n) is positive, or 1 if A056170(n) = 0.
The multiset of exponents >=2 in the prime factorization of n completely determines a(n) for over 20 sequences in the database (see crossreferences). It also determines the fractions A034444(n)/A000005(n) and A037445(n)/A000005(n).
For squarefree numbers, this multiset is { } (the empty multiset). The use of 0 in the table to represent each n with no exponents >=2 in its prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers will be represented as { }.
For each second signature {S}, there exist values of j and k such that, if the second signature of n is {S}, then A085082(n) is congruent to j modulo k. These values are nontrivial unless {S} = { }. Analogous (but not necessarily identical) values of j and k also exist for each second signature with respect to A088873 and A181796.
Each sequence of integers with a given second signature {S} has a positive density, unlike the analogous sequences for prime signatures. The highest of these densities is 6/Pi^2 = 0.607927... for A005117 ({S} = { }).

Examples

			First rows of table read: 0; 0; 0; 2; 0; 0; 0; 3; 2; 0; 0; 2;...
12 = 2^2*3 has positive exponents 2 and 1 in its canonical prime factorization (1s are often left implicit as exponents). Since only exponents that are 2 or greater appear in a number's second signature, 12's second signature is {2}.
30 = 2*3*5 has no exponents greater than 1 in its prime factorization. The multiset of its exponents >= 2 is { } (the empty multiset), represented in the table with a 0.
72 = 2^3*3^2 has positive exponents 3 and 2 in its prime factorization, as does 108 = 2^2*3^3. Rows 72 and 108 both read {3,2}.
		

Crossrefs

A181800 gives first integer of each second signature. Also see A212171, A212173-A212181, A212642-A212644.
Functions determined by exponents >=2 in the prime factorization of n:
Additive: A046660, A056170.
Other: A007424, A051903 (for n > 1), A056626, A066301, A071325, A072411, A091050, A107078, A185102 (for n > 1), A212180.
Sequences that contain all integers of a specific second signature: A005117 (second signature { }), A060687 ({2}), A048109 ({3}).

Programs

  • Magma
    &cat[IsEmpty(e)select [0]else Reverse(Sort(e))where e is[pe[2]:pe in Factorisation(n)|pe[2]gt 1]:n in[1..102]]; // Jason Kimberley, Jun 13 2012
  • Mathematica
    row[n_] := Select[ FactorInteger[n][[All, 2]], # >= 2 &] /. {} -> 0 /. {k__} -> Sequence[k]; Table[row[n], {n, 1, 100}] (* Jean-François Alcover, Apr 16 2013 *)

Formula

For nonsquarefree n, row n is identical to row A057521(n) of table A212171.

A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
a(n) = A046644(n)/A006519(n). - Andrew Howroyd and Antti Karttunen, Aug 30 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018
Previous Showing 21-30 of 118 results. Next