cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A002024 k appears k times; a(n) = floor(sqrt(2n) + 1/2).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Keywords

Comments

Integer inverse function of the triangular numbers A000217. The function trinv(n) = floor((1+sqrt(1+8n))/2), n >= 0, gives the values 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ..., that is, the same sequence with offset 0. - N. J. A. Sloane, Jun 21 2009
Array T(k,n) = n+k-1 read by antidiagonals.
Eigensequence of the triangle = A001563. - Gary W. Adamson, Dec 29 2008
Can apparently also be defined via a(n+1)=b(n) for n >= 2 where b(0)=b(1)=1 and b(n) = b(n-b(n-2))+1. Tested to be correct for all n <= 150000. - José María Grau Ribas, Jun 10 2011
For any n >= 0, a(n+1) is the least integer m such that A000217(m)=m(m+1)/2 is larger than n. This is useful when enumerating representations of n as difference of triangular numbers; see also A234813. - M. F. Hasler, Apr 19 2014
Number of binary digits of A023758, i.e., a(n) = ceiling(log_2(A023758(n+2))). - Andres Cicuttin, Apr 29 2016
a(n) and A002260(n) give respectively the x(n) and y(n) coordinates of the sorted sequence of points in the integer lattice such that x(n) > 0, 0 < y(n) <= x(n), and min(x(n), y(n)) < max(x(n+1), y(n+1)) for n > 0. - Andres Cicuttin, Dec 25 2016
Partial sums (A060432) are given by S(n) = (-a(n)^3 + a(n)*(1+6n))/6. - Daniel Cieslinski, Oct 23 2017
As an array, T(k,n) is the number of digits columns used in carryless multiplication between a k-digit number and an n-digit number. - Stefano Spezia, Sep 24 2022
a(n) is the maximum number of possible solutions to an n-statement Knights and Knaves Puzzle, where each statement is of the form "x of us are knights" for some 1 <= x <= n, knights can only tell the truth and knaves can only lie. - Taisha Charles and Brittany Ohlinger, Jul 29 2023

Examples

			From _Clark Kimberling_, Sep 16 2008: (Start)
As a rectangular array, a northwest corner:
  1 2 3 4 5 6
  2 3 4 5 6 7
  3 4 5 6 7 8
  4 5 6 7 8 9
This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...
		

References

  • Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.
  • K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985
  • R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.
  • J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

a(n+1) = 1+A003056(n), A022846(n)=a(n^2), a(n+1)=A002260(n)+A025581(n).
A123578 is an essentially identical sequence.

Programs

  • Haskell
    a002024 n k = a002024_tabl !! (n-1) !! (k-1)
    a002024_row n = a002024_tabl !! (n-1)
    a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]
    a002024_list = concat a002024_tabl
    a002024' = round . sqrt . (* 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 05 2015, Feb 12 2012, Mar 18 2011
    
  • Haskell
    a002024_list = [1..] >>= \n -> replicate n n
    
  • Haskell
    a002024 = (!!) $ [1..] >>= \n -> replicate n n
    -- Sascha Mücke, May 10 2016
    
  • Magma
    [Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* Branko Curgus, May 12 2009 *)
    Table[n, {n, 13}, {n}] // Flatten (* Robert G. Wilson v, May 11 2010 *)
    Table[PadRight[{},n,n],{n,15}]//Flatten (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */
    
  • PARI
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */
    
  • PARI
    t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */
    
  • PARI
    t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */
    
  • PARI
    A002024(n)=(sqrtint(n*8)+1)\2 \\ M. F. Hasler, Apr 19 2014
    
  • PARI
    a(n)=(sqrtint(8*n-7)+1)\2
    
  • PARI
    a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ R. J. Cano, Mar 17 2014
    
  • Python
    from math import isqrt
    def A002024(n): return (isqrt(8*n)+1)//2 # Chai Wah Wu, Feb 02 2022
  • Sage
    [floor(sqrt(2*n) +1/2) for n in (1..80)] # G. C. Greubel, Dec 10 2018
    

Formula

a(n) = floor(1/2 + sqrt(2n)). Also a(n) = ceiling((sqrt(1+8n)-1)/2). [See the Liu link for a large collection of explicit formulas. - N. J. A. Sloane, Oct 30 2019]
a((k-1)*k/2 + i) = k for k > 0 and 0 < i <= k. - Reinhard Zumkeller, Aug 30 2001
a(n) = a(n - a(n-1)) + 1, with a(1)=1. - Ian M. Levitt (ilevitt(AT)duke.poly.edu), Aug 18 2002
a(n) = round(sqrt(2n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
T(n,k) = A003602(A118413(n,k)); = T(n,k) = A001511(A118416(n,k)). - Reinhard Zumkeller, Apr 27 2006
G.f.: (x/(1-x))*Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, Oct 06 2003
Equals A127899 * A004736. - Gary W. Adamson, Feb 09 2007
Sum_{i=1..n} Sum_{j=i..n+i-1} T(j,i) = A000578(n); Sum_{i=1..n} T(n,i) = A000290(n). - Reinhard Zumkeller, Jun 24 2007
a(n) + n = A014132(n). - Vincenzo Librandi, Jul 08 2010
a(n) = ceiling(-1/2 + sqrt(2n)). - Branko Curgus, May 12 2009
a(A169581(n)) = A038567(n). - Reinhard Zumkeller, Dec 02 2009
a(n) = round(sqrt(2*n)) = round(sqrt(2*n-1)); there exist a and b greater than zero such that 2*n = 2+(a+b)^2 -(a+3*b) and a(n)=(a+b-1). - Fabio Civolani (civox(AT)tiscali.it), Feb 23 2010
A005318(n+1) = 2*A005318(n) - A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - a(n). - N. J. A. Sloane, Feb 11 2012
Expansion of psi(x) * x / (1 - x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Mar 19 2014
G.f.: (x/(1-x)) * Product_{n>=1} (1 + x^n) * (1 - x^(2*n)). - Paul D. Hanna, Feb 27 2016
a(n) = 1 + Sum_{i=1..n/2} ceiling(floor(2(n-1)/(i^2+i))/(2n)). - José de Jesús Camacho Medina, Jan 07 2017
a(n) = floor((sqrt(8*n-7)+1)/2). - Néstor Jofré, Apr 24 2017
a(n) = floor((A000196(8*n)+1)/2). - Pontus von Brömssen, Dec 10 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
G.f. as array: (x^2*(1 - y)^2 + y^2 + x*y*(1 - 2*y))/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Apr 22 2024

A002321 Mertens's function: Sum_{k=1..n} mu(k), where mu is the Moebius function A008683.

Original entry on oeis.org

1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, -2, -2, -1, -1, -1, -2, -3, -4, -4, -3, -2, -1, -1, -2, -1, 0, 0, -1, -2, -3, -3, -3, -2, -3, -3, -3, -3, -2, -2, -3, -3, -2, -2, -1, 0, -1, -1, -2, -1, -1, -1, 0, -1, -2, -2, -1, -2, -3, -3, -4, -3, -3, -3, -2, -3, -4, -4, -4
Offset: 1

Views

Author

Keywords

Comments

Partial sums of the Moebius function A008683.
Also determinant of n X n (0,1) matrix defined by A(i,j)=1 if j=1 or i divides j.
The first positive value of Mertens's function for n > 1 is for n = 94. The graph seems to show a negative bias for the Mertens function which is eerily similar to the Chebyshev bias (described in A156749 and A156709). The purported bias seems to be empirically approximated to - (6 / Pi^2) * (sqrt(n) / 4) (by looking at the graph) (see MathOverflow link, May 28 2012) where 6 / Pi^2 = 1 / zeta(2) is the asymptotic density of squarefree numbers (the squareful numbers having Moebius mu of 0). This would be a growth pattern akin to the Chebyshev bias. - Daniel Forgues, Jan 23 2011
All integers appear infinitely often in this sequence. - Charles R Greathouse IV, Aug 06 2012
Soundararajan proves that, on the Riemann Hypothesis, a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^14), sharpening the well-known equivalence. - Charles R Greathouse IV, Jul 17 2015
Balazard & De Roton improve this (on the Riemann Hypothesis) to a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^k) for any k > 5/2, where the implied constant in the Vinogradov symbol depends on k. Saha & Sankaranarayanan reduce the exponent to 5/4 on additional hypotheses. - Charles R Greathouse IV, Feb 02 2023

Examples

			G.f. = x - x^3 - x^4 - 2*x^5 - x^6 - 2*x^7 - 2*x^8 - 2*x^9 - x^10 - 2*x^11 - 2*x^12 - ...
		

References

  • E. Landau, Vorlesungen über Zahlentheorie, Chelsea, NY, Vol. 2, p. 157.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • F. Mertens, "Über eine zahlentheoretische Funktion", Akademie Wissenschaftlicher Wien Mathematik-Naturlich Kleine Sitzungsber, IIa 106, (1897), p. 761-830.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.1.
  • Biswajyoti Saha and Ayyadurai Sankaranarayanan, On estimates of the Mertens function, International Journal of Number Theory, Vol. 15, No. 02 (2019), pp. 327-337.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge, 1999, see p. 482.

Crossrefs

First column of A134541.
First column of A179287.

Programs

  • Haskell
    import Data.List (genericIndex)
    a002321 n = genericIndex a002321_list (n-1)
    a002321_list = scanl1 (+) a008683_list
    -- Reinhard Zumkeller, Jul 14 2014, Dec 26 2012
    
  • Magma
    [&+[MoebiusMu(k): k in [1..n]]: n in [1..81]]; // Bruno Berselli, Jul 12 2021
  • Maple
    with(numtheory); A002321 := n->add(mobius(k),k=1..n);
  • Mathematica
    Rest[ FoldList[ #1+#2&, 0, Array[ MoebiusMu, 100 ] ] ]
    Accumulate[Array[MoebiusMu,100]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = sum( k=1, n, moebius(k))
    
  • PARI
    a(n) = if( n<1, 0, matdet( matrix(n, n, i, j, j==1 || 0==j%i)))
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import mobius
    def M(n): return sum(mobius(k) for k in range(1,n + 1))
    print([M(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 18 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002321(n):
        if n == 0:
            return 0
        c, j = n, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A002321(k1)
            j, k1 = j2, n//j2
        return j-c # Chai Wah Wu, Mar 30 2021
    

Formula

Assuming the Riemann hypothesis, a(n) = O(x^(1/2 + eps)) for every eps > 0 (Littlewood - see Landau p. 161).
Lambert series: Sum_{n >= 1} a(n)*(x^n/(1-x^n)-x^(n+1)/(1-x^(n+1))) = x and -1/x. - Mats Granvik, Sep 09 2010 and Sep 23 2010
a(n)+2 = A192763(n,1) for n>1, and A192763(1,k) for k>1 (conjecture). - Mats Granvik, Jul 10 2011
Sum_{k = 1..n} a(floor(n/k)) = 1. - David W. Wilson, Feb 27 2012
a(n) = Sum_{k = 1..n} tau_{-2}(k) * floor(n/k), where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 23 2013
a(n) = Sum_{k=1..A002088(n)} exp(2*Pi*i*A038566(k)/A038567(k-1)) where i is the imaginary unit. - Eric Desbiaux, Jul 31 2014
Schoenfeld proves that |a(n)| < 5.3*n/(log n)^(10/9) for n > 1. - Charles R Greathouse IV, Jan 17 2018
G.f. A(x) satisfies: A(x) = (1/(1 - x)) * (x - Sum_{k>=2} (1 - x^k) * A(x^k)). - Ilya Gutkovskiy, Aug 11 2021

A002088 Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 18, 22, 28, 32, 42, 46, 58, 64, 72, 80, 96, 102, 120, 128, 140, 150, 172, 180, 200, 212, 230, 242, 270, 278, 308, 324, 344, 360, 384, 396, 432, 450, 474, 490, 530, 542, 584, 604, 628, 650, 696, 712, 754, 774, 806, 830, 882, 900, 940, 964
Offset: 0

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): 1 <= x <= y <= n, 1=gcd(x,y)}. - Michael Somos, Jun 13 1999
Sum_{k=1..n} phi(k) gives the number of distinct arithmetic progressions which contain an infinite number of primes and whose difference does not exceed n. E.g., {1k+1}, {2k+1}, {3k+1, 3k+2}, {4k+1, 4k+3}, {5k+1, ..5k+4} means 10 sequences. - Labos Elemer, May 02 2001
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 = zeta(2)^2 = A098198 ~2.705808084277845. - Labos Elemer, Sep 20 2004 (corrected by Peter Pein, Apr 28 2009)
Also the number of rationals p/q in (0,1] with denominators q<=n. - Franz Vrabec, Jan 29 2005
a(n) is the number of initial segments of Beatty sequences for real numbers > 1, cut off when the next term in the sequence would be >= n. For example, the sequence 1,2 is included for n=3 and n=4, but not for n >= 5 because the next term of the Beatty sequence must be 3 or 4. Problem suggested by David W. Wilson. - Franklin T. Adams-Watters, Oct 19 2006
Number of complex numbers satisfying any one of {x^1=1, x^2=1, x^3=1, x^4=1, x^5=1, ..., x^n=1}. - Paul Smith (math.idiot(AT)gmail.com), Mar 19 2007
a(n+2) equals the number of Sturmian words of length n which are 'special', prefix of two Sturmian words of length n+1. - Fred Lunnon, Sep 05 2010
For n > 1: A020652(a(n)) = 1 and A038567(a(n)) = n; for n > 0: A214803(a(n)) = 1. - Reinhard Zumkeller, Jul 29 2012
Also number of elements in the set {(x,y): 1 <= x + y <= n, x >= 0, y > 0, with x and y relatively prime integers}. Thus, the number of reduced rational numbers x/y with x nonnegative, y positive, and x + y <= n. (For n >= 1, 0 <= x/y <= n - 1, clearly including each integer in this interval.) - Rick L. Shepherd, Apr 08 2014
This function, the partial sums of phi = A000010, is sometimes denoted by (uppercase) Phi. - M. F. Hasler, Apr 18 2015
From Roger Ford, Jan 16 2016: (Start)
For n >= 1: a(n) is the number of perfect arched semi-meander solutions with n arches. To be perfect the number of arch groupings must equal the number of arches with a length of 1 in the current generation and every preceding generation.
Example: p is the number of arches with length 1 (/\), g is the number of arch groups (-), n is number of arches in the top half of a semi-meander solution
/\
/\ //\\
//\\-/\-///\\\- n=6 p=3 g=3 Each preceding arch configuration
/\ /\ is formed by attaching the arch
/\-//\\-//\\- n=5 p=3 g=3 end in the first position and the
/\ arch end in the last position.
//\\
///\\\-/\- n=4 p=2 g=2
/\
//\\-/\- n=3 p=2 g=2
/\-/\- n=2 p=2 g=2
/\- n=1 p=1 g=1. (End)
a(n) is the number of distinct lists of binary words of length n that are balanced (Sturmian). - Dan Rockwell, Will Wodrich, Aaliyah Fiala, and Bob Burton, May 30 2019
2013 IMO Problem 6 shows that a(n) is the number of ways to arrange the numbers 0, 1, ..., n on a circle such that for any numbers 0 <= a < b < c < d <= n, the chord joining a and d does not intersect with the chord intersecting b and c, with rotation counted as same. - Yifan Xie, Aug 26 2025

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 12*x^6 + 18*x^7 + 22*x^8 + 28*x^9 + ...
		

References

  • A. Beiler, Recreations in the Theory of Numbers, Dover Publications, 1966, Chap. XVI.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 138.
  • M. N. Huxley, The Distribution of Prime Numbers, Oxford Univ. Press, 1972, p. 6.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section I.21.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 94, Problem 11.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.

Crossrefs

Programs

  • GAP
    List([1..60],n->Sum([1..n],i->Phi(i))); # Muniru A Asiru, Jul 31 2018
    
  • Haskell
    a002088 n = a002088_list !! n
    a002088_list = scanl (+) 0 a000010_list -- Reinhard Zumkeller, Jul 29 2012
    
  • Magma
    [&+[EulerPhi(i): i in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Aug 01 2018
    
  • Maple
    with(numtheory): A002088:=n->add(phi(i),i=1..n): seq(A002088(n), n=0..70);
  • Mathematica
    Table[Plus @@ EulerPhi[Range[n]], {n, 0, 57}] (* Alonso del Arte, May 30 2006 *)
    Accumulate[EulerPhi[Range[0,60]]] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    a(n)=sum(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    a(n)=my(s=1); forsquarefree(k=1,n,s+=(n\k[1])^2*moebius(k)); s/2 \\ Charles R Greathouse IV, Oct 15 2021
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]]=s+=eulerphi(k)); v \\ Charles R Greathouse IV, Oct 15 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002088(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A002088(k1)-1)
            j, k1 = j2, n//j2
        return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021
  • Sage
    [sum(euler_phi(k) for k in (1..n)) for n in (0..60)] # G. C. Greubel, Nov 25 2018
    

Formula

a(n) = (3*n^2)/(Pi^2) + O(n log n).
More precisely, a(n) = (3/Pi^2)*n^2 + O(n*(log(n))^(2/3)*(log(log(n)))^(4/3)), (A. Walfisz 1963). - Benoit Cloitre, Feb 02 2003
a(n) = (1/2)*Sum_{k>=1} mu(k)*floor(n/k)*floor(1+n/k). - Benoit Cloitre, Apr 11 2003
a(n) = A000217(n) - A063985(n) = A018805(n) - A015614(n). - Reinhard Zumkeller, Jan 21 2013
A slightly simpler version of Cloitre's formula is a(n) = 1/2 + Sum_{k=1..oo} floor(n/k)^2*mu(k)/2. - Bill Gosper, Jul 25 2020
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach (Pi^4)/36 = Zeta(2)^2 = 2.705808084277845. See also A067282. - Labos Elemer, Sep 21 2004
A024916(n)/a(n) = zeta(2)^2 + O(log(n)/n). This follows from asymptotic formulas for the sequences. - Franklin T. Adams-Watters, Oct 19 2006
Row sums of triangle A134542. - Gary W. Adamson, Oct 31 2007
G.f.: (Sum_{n>=1} mu(n)*x^n/(1-x^n)^2)/(1-x), where mu(n) = A008683(n). - Mamuka Jibladze, Apr 06 2015
a(n) = A005728(n) - 1, for n >= 0. - Wolfdieter Lang, Nov 22 2016
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (M(floor(n/k)) - M(floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k) * floor(n/k) * floor(1+n/k))/2, where M(k) is the Mertens function (A002321) and mu(k) is the Moebius function (A008683). - Daniel Suteu, Nov 23 2018
a(n) = A015614(n)+1. - R. J. Mathar, Apr 26 2023
a(n) = A000217(n) - Sum{k=2..n} a(floor(n/k)). From summing over Id = 1 (Dirichlet convolution) phi. - Jason Xu, Jul 31 2024
a(n) = Sum_{k=1..n} k*A002321(floor(n/k)). - Ridouane Oudra, Jul 03 2025

Extensions

Additional comments from Len Smiley

A038566 Numerators in canonical bijection from positive integers to positive rationals <= 1: arrange fractions by increasing denominator then by increasing numerator.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 4, 5, 7, 8, 1, 3, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 5, 7, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 5, 9, 11, 13, 1, 2, 4, 7, 8, 11, 13, 14, 1, 3, 5, 7, 9, 11, 13, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Offset: 1

Views

Author

Keywords

Comments

For denominators see A038567.
Row n has length A000010(n).
Also numerators in canonical bijection from positive integers to all positive rational numbers: arrange fractions in triangle in which in the n-th row the phi(n) numbers are the fractions i/j with gcd(i,j) = 1, i+j=n, i=1..n-1, j=n-1..1. n>=2. Denominators (A020653) are obtained by reversing each row.
Also triangle in which n-th row gives phi(n) numbers between 1 and n that are relatively prime to n.
A038610(n) = least common multiple of n-th row. - Reinhard Zumkeller, Sep 21 2013
Row n has sum A023896(n). - Jamie Morken, Dec 17 2019
This irregular triangle gives in row n the smallest positive reduced residue system modulo n, for n >= 1. If one takes 0 for n = 1 it becomes the smallest nonnegative residue system modulo n. - Wolfdieter Lang, Feb 29 2020

Examples

			The beginning of the list of positive rationals <= 1: 1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, .... This is A038566/A038567.
The beginning of the triangle giving all positive rationals: 1/1; 1/2, 2/1; 1/3, 3/1; 1/4, 2/3, 3/2, 4/1; 1/5, 5/1; 1/6, 2/5, 3/4, 4/3, 5/2, 6/1; .... This is A020652/A020653, with A020652(n) = A038566(n+1). [Corrected by _M. F. Hasler_, Mar 06 2020]
The beginning of the triangle in which n-th row gives numbers between 1 and n that are relatively prime to n:
n\k 1 2 3  4  5  6  7  8 9 10 11 12 13 14 15 16 17 18
1:  1
2:  1
3:  1 2
4:  1 3
5:  1 2 3  4
6:  1 5
7:  1 2 3  4  5  6
8:  1 3 5  7
9:  1 2 4  5  7  8
10: 1 3 7  9
11: 1 2 3  4  5  6  7  8 9 10
12: 1 5 7 11
13: 1 2 3  4  5  6  7  8 9 10 11 12
14: 1 3 5  9 11 13
15: 1 2 4  7  8 11 13 14
16: 1 3 5  7  9 11 13 15
17: 1 2 3  4  5  6  7  8 9 10 11 12 13 14 15 16
18: 1 5 7 11 13 17
19: 1 2 3  4  5  6  7  8 9 10 11 12 13 14 15 16 17 18
20: 1 3 7  9 11 13 17 19
... Reformatted. - _Wolfdieter Lang_, Jan 18 2017
------------------------------------------------------
		

References

  • Richard Courant and Herbert Robbins. What Is Mathematics?, Oxford, 1941, pp. 79-80.
  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 163.

Crossrefs

A054424 gives mapping to Stern-Brocot tree.
Row sums give rationals A111992(n)/A069220(n), n>=1.
A112484 (primes, rows n >=3).

Programs

  • Haskell
    a038566 n k = a038566_tabf !! (n-1) !! (k-1)
    a038566_row n = a038566_tabf !! (n-1)
    a038566_tabf=
       zipWith (\v ws -> filter ((== 1) . (gcd v)) ws) [1..] a002260_tabl
    a038566_list = concat a038566_tabf
    -- Reinhard Zumkeller, Sep 21 2013, Feb 23 2012
    
  • Maple
    s := proc(n) local i,j,k,ans; i := 0; ans := [ ]; for j while i
    				
  • Mathematica
    Flatten[Table[Flatten[Position[GCD[Table[Mod[j, w], {j, 1, w-1}], w], 1]], {w, 1, 100}], 2]
    row[n_]:=Select[Range[n],GCD[n,#]==1 &]; Array[row,17]//Flatten (* Stefano Spezia, Jul 20 2025 *)
  • PARI
    first(n)=my(v=List(),i,j);while(iCharles R Greathouse IV, Feb 07 2013
    
  • PARI
    row(n) = select(x->gcd(n, x)==1, [1..n]); \\ Michel Marcus, May 05 2020
    
  • SageMath
    def aRow(n):
        if n == 1: return 1
        return [k for k in ZZ(n).coprime_integers(n+1)]
    print(flatten([aRow(n) for n in range(1, 18)])) # Peter Luschny, Aug 17 2020

Formula

The n-th "clump" consists of the phi(n) integers <= n and prime to n.
a(n) = A002260(A169581(n)). - Reinhard Zumkeller, Dec 02 2009
a(n+1) = A020652(n) for n > 1. - Georg Fischer, Oct 27 2020

Extensions

More terms from Erich Friedman
Offset corrected by Max Alekseyev, Apr 26 2010

A020652 Numerators in canonical bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 4, 5, 7, 8, 1, 3, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 5, 7, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 5, 9, 11, 13, 1, 2, 4, 7, 8, 11, 13, 14, 1, 3, 5, 7, 9, 11, 13, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 5
Offset: 1

Views

Author

Keywords

Comments

a(A002088(n)) = 1 for n > 1. - Reinhard Zumkeller, Jul 29 2012
When read as an irregular table with each 1 entry starting a new row, then the n-th row consists of the set of multiplicative units of Z_{n+1}. These rows form a group under multiplication mod n. - Tom Edgar, Aug 20 2013
The pair of sequences A020652/A020653 is defined by ordering the positive fractions p/q (reduced to lowest terms) by increasing p+q, then increasing p: 1/1; 1/2, 2/1; 1/3, 3/1; 1/4, 2/3, 3/2, 4/1; 1/5, 5/1; 2/5, 3/4, 4/3, 5/2; etc. For given p+q, there are A000010(p+q) fractions, listed starting at index A002088(p+q-1). - M. F. Hasler, Mar 06 2020

Examples

			Arrange positive fractions < 1 by increasing denominator then by increasing numerator: 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6 ... (this is A020652/A038567). - _William Rex Marshall_, Dec 16 2010
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • Richard Courant and Herbert Robbins. What Is Mathematics?, Oxford, 1941, pp. 79-80.
  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

Essentially the same as A038566, which is the main entry for this sequence.
A054424 gives mapping to Stern-Brocot tree.
Cf. A037161.

Programs

  • Haskell
    a020652 n = a020652_list !! (n-1)
    a020652_list = map fst [(u,v) | v <- [1..], u <- [1..v-1], gcd u v == 1]
    -- Reinhard Zumkeller, Jul 29 2012
    
  • Maple
    with (numtheory): A020652 := proc (n) local sum, j, k; sum := 0: k := 2: while (sum < n) do: sum := sum + phi(k): k := k + 1: od: sum := sum - phi(k-1): j := 1; while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 1: fi: j := j+1: od: RETURN (j-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com), Nov 06 2001
  • Mathematica
    Reap[Do[If[GCD[num, den] == 1, Sow[num]], {den, 1, 20}, {num, 1, den-1}] ][[2, 1]] (* Jean-François Alcover, Oct 22 2012 *)
  • PARI
    a(n)=my(s,j=1,k=1);while(sCharles R Greathouse IV, Feb 07 2013
    
  • Python
    from sympy import totient, gcd
    def a(n):
        s=0
        k=2
        while sIndranil Ghosh, May 23 2017, after Ulrich Schimke's MAPLE code

A182972 Numerators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 4, 1, 3, 1, 2, 3, 4, 5, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 1, 2, 4, 7, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 3, 7, 9, 1, 2, 4, 5, 8, 10, 1, 3, 5, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 5, 7, 11, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 1, 3, 5, 7, 9, 11
Offset: 1

Views

Author

William Rex Marshall, Dec 16 2010

Keywords

Comments

A023022(n) and A245677(n) give number and numerator of sum of fractions a(k)/A182973(k) such that a(k) + A182973(k) = n. - Reinhard Zumkeller, Jul 30 2014

Examples

			Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
1/2
1/3
1/4 2/3
1/5
1/6 2/5 3/4
1/7 3/5
1/8 2/7 4/5
1/9 3/7
1/10 2/9 3/8 4/7 5/6
1/11 5/7
1/12 2/11 3/10 4/9 5/8 6/7
1/13 3/11 5/9
1/14 2/13 4/11 7/8
1/15 3/13 5/11 7/9
1/16 2/15 3/14 4/13 5/12 6/11 7/10 8/9
1/17 5/13 7/11
1/18 2/17 3/16 4/15 5/14 6/13 7/12 8/11 9/10
1/19 3/17 7/13 9/11
(this is A182972/A182973).
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.

Crossrefs

Cf. A182973 (denominators), A366191 (interleaved).
Essentially the same as A333856.

Programs

  • Haskell
    a182972 n = a182972_list !! (n-1)
    a182972_list = map fst $ concatMap q [3..] where
       q x = [(num, den) | num <- [1 .. div x 2],
                           let den = x - num, gcd num den == 1]
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Maple
    t1:=[];
    for n from 2 to 40 do
    t1:=[op(t1),1/(n-1)];
    for i from 2 to floor((n-1)/2) do
       if gcd(i,n-i)=1 then t1:=[op(t1),i/(n-i)]; fi; od:
    od:
    t1;
  • Mathematica
    t1={}; For[n=2, n <= 40, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; t1 // Numerator // Rest (* Jean-François Alcover, Jan 20 2015, translated from Maple *)
  • Pascal
    program a182972;
    var
      num,den,n: longint;
    function gcd(i,j: longint):longint;
    begin
      repeat
        if i>j then i:=i mod j else j:=j mod i;
      until (i=0) or (j=0);
      if i=0 then gcd:=j else gcd:=i;
    end;
    begin
      num:=1; den:=1; n:=0;
      repeat
        repeat
          inc(num); dec(den);
          if num>=den then
          begin
            inc(den,num); num:=1;
          end;
        until gcd(num,den)=1;
        inc(n); writeln(n,' ',num);
      until n=100000;
    end.
    
  • Python
    from itertools import count, islice
    from math import gcd
    def A182972_gen(): # generator of terms
        return (i for n in count(2) for i in range(1,1+(n-1>>1)) if gcd(i,n-i)==1)
    A182972_list = list(islice(A182972_gen(),10)) # Chai Wah Wu, Aug 28 2023

Extensions

Corrected by William Rex Marshall, Aug 12 2013

A038569 Denominators in a certain bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 3, 5, 1, 5, 2, 5, 3, 5, 4, 6, 1, 6, 5, 7, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 8, 1, 8, 3, 8, 5, 8, 7, 9, 1, 9, 2, 9, 4, 9, 5, 9, 7, 9, 8, 10, 1, 10, 3, 10, 7, 10, 9, 11, 1, 11, 2, 11, 3, 11, 4, 11, 5, 11, 6, 11, 7, 11, 8, 11, 9, 11, 10, 12, 1, 12, 5, 12, 7, 12, 11, 13, 1, 13
Offset: 0

Views

Author

Keywords

Comments

See A020652/A020653 for an alternative version where the fractions p/q are listed by increasing p+q, then p. - M. F. Hasler, Nov 25 2021

Examples

			First arrange the positive fractions p/q <= 1 by increasing denominator, then by increasing numerator:
1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, ... (this is A038566/A038567).
Now follow each but the first term by its reciprocal:
1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, ... (this is A038568/A038569).
		

References

  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

See A020652, A020653 for an alternative version.

Programs

  • Maple
    with (numtheory): A038569 := proc (n) local sum, j, k; sum := 1: k := 2: while (sum < n) do: sum := sum + 2 * phi(k): k := k + 1: od: sum := sum - 2 * phi(k-1): j := 1: while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 2: fi: j := j+1: od: if sum > n then RETURN (k-1) fi: RETURN (j-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := Module[{s = 1, k = 2, j = 1}, While[s <= n, s = s + 2*EulerPhi[k]; k = k+1]; s = s - 2*EulerPhi[k-1]; While[s <= n, If[GCD[j, k-1] == 1, s = s+2]; j = j+1]; If[s > n+1, k-1, j-1]]; Table[a[n], {n, 0, 99}](* Jean-François Alcover, Nov 10 2011, after Maple *)
  • PARI
    a(n) = { my (e); for (q=1, oo, if (n+1<2*e=eulerphi(q), for (p=1, oo, if (gcd(p,q)==1, if (n+1<2, return ([q,p][n+2]), n-=2))), n-=2*e)) } \\ Rémy Sigrist, Feb 25 2021
  • Python
    from sympy import totient, gcd
    def a(n):
        s=1
        k=2
        while s<=n:
            s+=2*totient(k)
            k+=1
        s-=2*totient(k - 1)
        j=1
        while s<=n:
            if gcd(j, k - 1)==1: s+=2
            j+=1
        if s>n + 1: return k - 1
        return j - 1 # Indranil Ghosh, May 23 2017, translated from Mathematica
    

Extensions

More terms from Erich Friedman
Definition clarified by N. J. A. Sloane, Nov 25 2021

A182973 Denominators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.

Original entry on oeis.org

2, 3, 4, 3, 5, 6, 5, 4, 7, 5, 8, 7, 5, 9, 7, 10, 9, 8, 7, 6, 11, 7, 12, 11, 10, 9, 8, 7, 13, 11, 9, 14, 13, 11, 8, 15, 13, 11, 9, 16, 15, 14, 13, 12, 11, 10, 9, 17, 13, 11, 18, 17, 16, 15, 14, 13, 12, 11, 10, 19, 17, 13, 11, 20, 19, 17, 16, 13, 11, 21, 19, 17, 15, 13, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12
Offset: 1

Views

Author

William Rex Marshall, Dec 16 2010

Keywords

Comments

A023022(n) and A245678(n) give number and denominator of sum of fractions A182972(k)/a(k) such that A182972(k) + a(k) = n. - Reinhard Zumkeller, Jul 30 2014

Examples

			Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
1/2, 1/3, 1/4, 2/3, 1/5, 1/6, 2/5, 3/4, 1/7, 3/5, 1/8, 2/7, 4/5, 1/9, 3/7, ...
(this is A182972/A182973).
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.

Crossrefs

Cf. A182972 (numerators), A366191 (interleaved).

Programs

  • Haskell
    a182973 n = a182973_list !! (n-1)
    a182973_list = map snd $ concatMap q [3..] where
       q x = [(num, den) | num <- [1 .. div x 2],
                           let den = x - num, gcd num den == 1]
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Mathematica
    A182973list[s_] := Table[If[CoprimeQ[num, s-num], s-num, Nothing], {num, Floor[s/2]}]; Flatten[Array[A182973list, 25, 3]] (* Paolo Xausa, Feb 27 2024 *)
  • Pascal
    program a182973;
    var
      num,den,n: longint;
    function gcd(i,j: longint):longint;
    begin
      repeat
        if i>j then i:=i mod j else j:=j mod i;
      until (i=0) or (j=0);
      if i=0 then gcd:=j else gcd:=i;
    end;
    begin
      num:=1; den:=1; n:=0;
      repeat
        repeat
          inc(num); dec(den);
          if num>=den then
          begin
            inc(den,num); num:=1;
          end;
        until gcd(num,den)=1;
        inc(n); writeln(n,' ',den);
      until n=100000;
    end.
    
  • Python
    from itertools import count, islice
    from math import gcd
    def A182973_gen(): # generator of terms
        return (n-i for n in count(2) for i in range(1,1+(n-1>>1)) if gcd(i,n-i)==1)
    A182973_list = list(islice(A182973_gen(),10)) # Chai Wah Wu, Aug 28 2023

A038568 Numerators in canonical bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 4, 1, 5, 2, 5, 3, 5, 4, 5, 1, 6, 5, 6, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 7, 1, 8, 3, 8, 5, 8, 7, 8, 1, 9, 2, 9, 4, 9, 5, 9, 7, 9, 8, 9, 1, 10, 3, 10, 7, 10, 9, 10, 1, 11, 2, 11, 3, 11, 4, 11, 5, 11, 6, 11, 7, 11, 8, 11, 9, 11, 10, 11, 1, 12, 5, 12, 7, 12, 11, 12, 1, 13, 2
Offset: 0

Views

Author

Keywords

Comments

Even-indexed terms are positive integers in order, with m occurring phi(m) times. Preceding odd-indexed terms (except for missing initial 0) are the corresponding numbers <= m and relatively prime to m, in increasing order. The denominators are just this sequence shifted left. Thus each positive rational occurs exactly once as a ratio a(n)/a(n+1). - Franklin T. Adams-Watters, Dec 06 2006

Examples

			First arrange fractions by increasing denominator, then by increasing numerator:
1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, ... (this is A038566/A038567);
now follow each term (except the first) with its reciprocal:
1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, ... (this is A038568/A038569).
		

References

  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

Programs

  • Julia
    using Nemo
    function A038568List(len)
        a, A = QQ(0), []
        for n in 1:len
            a = next_minimal(a)
            push!(A, numerator(a))
        end
    A end
    A038568List(84) |> println # Peter Luschny, Mar 13 2018
    
  • Maple
    with (numtheory): A038568 := proc (n) local sum, j, k; sum := 1: k := 2: while (sum < n) do: sum := sum + 2 * phi(k): k := k + 1: od: sum := sum - 2 * phi(k-1): j := 1: while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 2: fi: j := j+1: od: if sum > n then RETURN (j-1) fi: RETURN (k-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := Module[{sum = 1, k = 2}, While[sum < n, sum = sum + 2*EulerPhi[k]; k = k+1]; sum = sum - 2*EulerPhi[k-1]; j = 1; While[sum < n, If[GCD[j, k-1] == 1, sum = sum+2]; j = j+1; ]; If[sum > n, Return[j-1]]; Return[k-1] ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2012, translated from Maple *)
  • PARI
    a(n) = { my (e); for (q=1, oo, if (n+1<2*e=eulerphi(q), for (p=1, oo, if (gcd(p,q)==1, if (n+1<2, return ([p,q][n+2]), n-=2))), n-=2*e)) } \\ Rémy Sigrist, Feb 25 2021
  • Python
    from sympy import totient, gcd
    def a(n):
        s=1
        k=2
        while sn: return j - 1
        return k - 1 # Indranil Ghosh, May 23 2017, translated from Mathematica
    

Extensions

More terms from Erich Friedman

A319514 The shell enumeration of N X N where N = {0, 1, 2, ...}, also called boustrophedonic Rosenberg-Strong function. Terms are interleaved x and y coordinates.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 0, 2, 0, 2, 1, 2, 2, 1, 2, 0, 2, 0, 3, 1, 3, 2, 3, 3, 3, 3, 2, 3, 1, 3, 0, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 3, 4, 2, 4, 1, 4, 0, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 5, 4, 5, 3, 5, 2, 5, 1, 5, 0, 6, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 6, 6, 5
Offset: 0

Views

Author

Peter Luschny, Sep 22 2018

Keywords

Comments

If (x, y) and (x', y') are adjacent points on the trajectory of the map then for the boustrophedonic Rosenberg-Strong function max(|x - x'|, |y - y'|) is always 1 whereas for the Rosenberg-Strong function this quantity can become arbitrarily large. In this sense the boustrophedonic variant is continuous in contrast to the original Rosenberg-Strong function.
We implemented the enumeration also as a state machine to avoid the evaluation of the square root function.
The inverse function, computing n for given (x, y), is m*(m + 1) + (-1)^(m mod 2)*(y - x) where m = max(x, y).

Examples

			The map starts, for n = 0, 1, 2, ...
(0, 0), (0, 1), (1, 1), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2), (0, 3),
(1, 3), (2, 3), (3, 3), (3, 2), (3, 1), (3, 0), (4, 0), (4, 1), (4, 2), (4, 3),
(4, 4), (3, 4), (2, 4), (1, 4), (0, 4), (0, 5), (1, 5), (2, 5), (3, 5), (4, 5),
(5, 5), (5, 4), (5, 3), (5, 2), (5, 1), (5, 0), (6, 0), (6, 1), (6, 2), (6, 3),
(6, 4), (6, 5), (6, 6), (5, 6), (4, 6), (3, 6), (2, 6), (1, 6), (0, 6), ...
The enumeration can be seen as shells growing around the origin:
(0, 0);
(0, 1), (1, 1), (1, 0);
(2, 0), (2, 1), (2, 2), (1, 2), (0, 2);
(0, 3), (1, 3), (2, 3), (3, 3), (3, 2), (3, 1), (3, 0);
(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (3, 4), (2, 4), (1, 4), (0, 4);
(0, 5), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (5, 4), (5, 3), (5, 2),(5,1),(5,0);
		

References

  • A. L. Rosenberg, H. R. Strong, Addressing arrays by shells, IBM Technical Disclosure Bulletin, vol 14(10), 1972, p. 3026-3028.

Crossrefs

Cf. A319289 (x coordinates), A319290 (y coordinates).
Cf. A319571 (stripe enumeration), A319572 (stripe x), A319573 (stripe y).
A319513 uses the encoding 2^x*3*y.

Programs

  • Julia
    function A319514(n)
        k, r = divrem(n, 2)
        m = x = isqrt(k)
        y = k - x^2
        x <= y && ((x, y) = (2x - y, x))
        isodd(m) ? (y, x)[r+1] : (x, y)[r+1]
    end
    [A319514(n) for n in 0:52] |> println
    # The enumeration of N X N with a state machine:
    # PigeonRosenbergStrong(n)
    function PRS(x, y, state)
        x == 0 && state == 0 && return x, y+1, 1
        y == 0 && state == 2 && return x+1, y, 3
        x == y && state == 1 && return x, y-1, 2
        x == y && return x-1, y, 0
        state == 0 && return x-1, y, 0
        state == 1 && return x+1, y, 1
        state == 2 && return x, y-1, 2
        return x, y+1, 3
    end
    function ShellEnumeration(len)
        x, y, state = 0, 0, 0
        for n in 0:len
            println("$n -> ($x, $y)")
            x, y, state = PRS(x, y, state)
        end
    end
    # Computes n for given (x, y).
    function Pairing(x::Int, y::Int)
        m = max(x, y)
        d = isodd(m) ? x - y : y - x
        m*(m + 1) + d
    end
    ShellEnumeration(20)
Previous Showing 11-20 of 38 results. Next