cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 199 results. Next

A112468 Riordan array (1/(1-x), x/(1+x)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 0, 2, -2, 1, 1, 1, -2, 4, -3, 1, 1, 0, 3, -6, 7, -4, 1, 1, 1, -3, 9, -13, 11, -5, 1, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Row sums are A040000. Diagonal sums are A112469. Inverse is A112467. Row sums of k-th power are 1, k+1, k+1, k+1, .... Note that C(n,k) = Sum_{j=0..n-k} C(n-j-1, n-k-j).
Equals row reversal of triangle A112555 up to sign, where log(A112555) = A112555 - I. Unsigned row sums equals A052953 (Jacobsthal numbers + 1). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms. - Paul D. Hanna, Jan 20 2006
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively (see the square array in A112739). - Philippe Deléham, Feb 22 2014

Examples

			Triangle starts
  1;
  1,  1;
  1,  0,  1;
  1,  1, -1,  1;
  1,  0,  2, -2,  1;
  1,  1, -2,  4, -3,  1;
  1,  0,  3, -6,  7, -4,  1;
Matrix log begins:
  0;
  1,  0;
  1,  0,  0;
  1,  1, -1,  0;
  1,  1,  1, -2,  0;
  1,  1,  1,  1, -3,  0; ...
Production matrix begins
  1,  1,
  0, -1,  1,
  0,  0, -1,  1,
  0,  0,  0, -1,  1,
  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0,  0, -1,  1.
- _Paul Barry_, Apr 08 2011
		

Crossrefs

Cf. A174294, A174295, A174296, A174297. - Mats Granvik, Mar 15 2010
Cf. A072547 (central terms), A112555 (reversed rows), A112465, A052953, A112556, A112739, A119258.
See A279006 for another version.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        else return T(n-1,k-1) - T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
  • Haskell
    a112468 n k = a112468_tabl !! n !! k
    a112468_row n = a112468_tabl !! n
    a112468_tabl = iterate (\xs -> zipWith (-) ([2] ++ xs) (xs ++ [0])) [1]
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return T(n-1,k-1) - T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)*hypergeom( [1,n+1],[k+2],m)/(k+1)!; A112468 := (n,k) -> T(n,n-k,-1);
    seq(print(seq(simplify(A112468(n,k)),k=0..n)),n=0..10); # Peter Luschny, Jul 25 2014
  • Mathematica
    T[n_, 0] = 1; T[n_, n_] = 1; T[n_, k_ ]:= T[n, k] = T[n-1, k-1] - T[n-1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff((1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x),n,X),k,Y)} \\ Paul D. Hanna, Jan 20 2006
    
  • PARI
    T(n,k) = if(k==0 || k==n, 1, T(n-1, k-1) - T(n-1, k)); \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or n<0): return 0
        elif (k==0 or k==n): return 1
        else: return T(n-1, k-1) - T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
    

Formula

Triangle T(n,k) read by rows: T(n,0)=1, T(n,k) = T(n-1,k-1) - T(n-1,k). - Mats Granvik, Mar 15 2010
Number triangle T(n, k)= Sum_{j=0..n-k} C(n-j-1, n-k-j)*(-1)^(n-k-j).
G.f. of matrix power T^m: (1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x). G.f. of matrix log: x*(1-2*x*y+x^2*y)/(1-x*y)^2/(1-x). - Paul D. Hanna, Jan 20 2006
T(n, k) = R(n,n-k,-1) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k,k+1)*hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014

A287804 Number of quinary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 5, 17, 59, 205, 713, 2481, 8635, 30057, 104629, 364225, 1267923, 4413861, 15365465, 53490097, 186209299, 648230545, 2256616133, 7855718641, 27347281995, 95201200637, 331413874569, 1153716087665, 4016309864843, 13981555011321, 48672509644725
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=17=25-8 sequences contain every combination except these eight: 01,10,12,21,23,32,34,43.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -5, -1}, {1, 5, 17}, 50]
  • Python
    def a(n):
        if n in [0,1,2]:
            return [1,5,17][n]
        return 5*a(n-1)-5*a(n-2)-a(n-3)

Formula

a(n) = 5*a(n-1) - 5a(n-2) - a(n-3), a(0)=1, a(1)=5, a(2)=17.
G.f.: (1 - 3*x^2)/(1 - 5*x + 5*x^2 + x^3).

A287819 Number of nonary sequences of length n such that no two consecutive terms have distance 4.

Original entry on oeis.org

1, 9, 71, 561, 4433, 35031, 276827, 2187585, 17287073, 136608591, 1079529611, 8530826457, 67413620993, 532726379847, 4209793089371, 33267280400913, 262889866978817, 2077449112980255, 16416740845208075, 129730917736941417, 1025179795159015841
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 81 - 10 = 71 sequences contain every combination except these ten: 04,40,15,51,26,62,37,73,48,84.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8, 1, -14}, {1, 9, 71, 561}, 40]
  • Python
    def a(n):
        if n in [0, 1, 2, 3]:
            return [1, 9, 71, 561][n]
        return 8*a(n-1)+a(n-2)-14*a(n-3)

Formula

For n>2, a(n) = 8*a(n-1) + a(n-2) - 14*a(n-3), a(0)=1, a(1)=9, a(2)=71, a(3)=561.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 8 x - x^2 + 14 x^3).

A175654 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1 - x - x^2)/(1 - 3*x - x^2 + 6*x^3).

Original entry on oeis.org

1, 2, 6, 14, 36, 86, 210, 500, 1194, 2822, 6660, 15638, 36642, 85604, 199626, 464630, 1079892, 2506550, 5811762, 13462484, 31159914, 72071654, 166599972, 384912086, 888906306, 2052031172, 4735527306, 10925175254, 25198866036, 58108609526, 133973643090
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010; edited Jun 21 2013

Keywords

Comments

a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the center square the bishop flies into a rage and turns into a raging elephant.
In chaturanga, the old Indian version of chess, one of the pieces was called gaja, elephant in Sanskrit. The Arabs called the game shatranj and the elephant became el fil in Arabic. In Spain chess became chess as we know it today but surprisingly in Spanish a bishop isn't a Christian bishop but a Moorish elephant and it still goes by its original name of el alfil.
On a 3 X 3 chessboard there are 2^9 = 512 ways for an elephant to fly into a rage on the central square (off the center the piece behaves like a normal bishop). The elephant is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the corner squares the 512 elephants lead to 46 different elephant sequences, see the overview of elephant sequences and the crossreferences.
The sequence above corresponds to 16 A[5] vectors with decimal values 71, 77, 101, 197, 263, 269, 293, 323, 326, 329, 332, 353, 356, 389, 449 and 452. These vectors lead for the side squares to A000079 and for the central square to A175655.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.
  • David Hooper and Kenneth Whyld, The Oxford Companion to Chess, pp. 74, 366, 1992.

Crossrefs

Cf. Elephant sequences corner squares [decimal value A[5]]: A040000 [0], A000027 [16], A000045 [1], A094373 [2], A000079 [3], A083329 [42], A027934 [11], A172481 [7], A006138 [69], A000325 [26], A045623 [19], A000129 [21], A095121 [170], A074878 [43], A059570 [15], A175654 [71, this sequence], A026597 [325], A097813 [58], A057711 [27], 2*A094723 [23; n>=-1], A002605 [85], A175660 [171], A123203 [186], A066373 [59], A015518 [341], A134401 [187], A093833 [343].

Programs

  • Magma
    [n le 3 select Factorial(n) else 3*Self(n-1) +Self(n-2) -6*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2021
    
  • Maple
    nmax:=28; m:=1; A[1]:=[0,0,0,0,1,0,0,0,1]: A[2]:=[0,0,0,1,0,1,0,0,0]: A[3]:=[0,0,0,0,1,0,1,0,0]: A[4]:=[0,1,0,0,0,0,0,1,0]: A[5]:=[0,0,1,0,0,0,1,1,1]: A[6]:=[0,1,0,0,0,0,0,1,0]: A[7]:=[0,0,1,0,1,0,0,0,0]: A[8]:=[0,0,0,1,0,1,0,0,0]: A[9]:=[1,0,0,0,1,0,0,0,0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{3,1,-6}, {1,2,6}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -6,1,3]^n*[1;2;6])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [( (1-x-x^2)/((1-2*x)*(1-x-3*x^2)) ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Dec 08 2021

Formula

G.f.: (1 - x - x^2)/(1 - 3*x - x^2 + 6*x^3).
a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) with a(0)=1, a(1)=2 and a(2)=6.
a(n) = ((6+10*A)*A^(-n-1) + (6+10*B)*B^(-n-1))/13 - 2^n with A = (-1+sqrt(13))/6 and B = (-1-sqrt(13))/6.
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n)*2*A000244(n)/(A075118(n) - A006130(n-1)*sqrt(13)).
a(n) = b(n) - b(n-1) - b(n-2), where b(n) = Sum_{k=1..n} Sum_{j=0..k} binomial(j,n-3*k+2*j)*(-6)^(k-j)*binomial(k,j)*3^(3*k-n-j), n>0, b(0)=1, with a(0) = b(0), a(1) = b(1) - b(0). - Vladimir Kruchinin, Aug 20 2010
a(n) = 2*A006138(n) - 2^n = 2*(A006130(n) + A006130(n-1)) - 2^n. - G. C. Greubel, Dec 08 2021
E.g.f.: 2*exp(x/2)*(13*cosh(sqrt(13)*x/2) + 3*sqrt(13)*sinh(sqrt(13)*x/2))/13 - cosh(2*x) - sinh(2*x). - Stefano Spezia, Feb 12 2023

A104350 Partial products of largest prime factors of numbers <= n.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1260, 2520, 7560, 37800, 415800, 1247400, 16216200, 113513400, 567567000, 1135134000, 19297278000, 57891834000, 1099944846000, 5499724230000, 38498069610000, 423478765710000, 9740011611330000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

Partial Products of A006530: a(n) = Product_{k=1..n} A006530(k).
a(n) = a(n-1)*A006530(n) for n>1, a(1) = 1;
A020639(a(n)) = A040000(n-1), A006530(a(n)) = A007917(n) for n>1.
A001221(a(n)) = A000720(n), A001222(a(n)) = A001477(n-1).
A007947(a(n)) = A034386(n).
a(n) = A000142(n) / A076928(n). [Corrected by Franklin T. Adams-Watters, Oct 30 2006]
In decimal representation: A104351(n) = number of digits of a(n), A104355(n) = number of trailing zeros of a(n).
A104357(n) = a(n) - 1, A104365(n) = a(n) + 1.

References

  • Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.

Crossrefs

Programs

  • Haskell
    a104350 n = a104350_list !! (n-1)
    a104350_list = scanl1 (*) a006530_list
    -- Reinhard Zumkeller, Apr 10 2014
    
  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *)
    FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]] (* Harvey P. Dale, May 25 2023 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=prod(i=2,n,gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    first(n)=my(v=vector(n,i,1)); forfactored(k=2,n, v[k[1]]=v[k[1]-1]*vecmax(k[2][,1])); v \\ Charles R Greathouse IV, May 10 2017

Formula

log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021

Extensions

More terms from David Wasserman, Apr 24 2008

A113311 Expansion of (1+x)^2/(1-x).

Original entry on oeis.org

1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Paul Barry, Oct 25 2005

Keywords

Comments

Row sums of A113310.
Let m=3. We observe that a(n)=Sum_{k=0..floor(n/2)} C(m,n-2*k). Then there is a link with A040000 and A115291: it is the same formula with respectively m=2 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
Also continued fraction expansion of (3+sqrt(5))/4. - Bruno Berselli, Sep 23 2011
Also decimal expansion of 121/900. - Vincenzo Librandi, Sep 24 2011

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} Sum_{i=0..n-k} (-1)^i*C(i+k-2, i).
E.g.f.: 4*exp(x) - x - 3. - Elmo R. Oliveira, Aug 08 2024

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A040002 Continued fraction for sqrt(5).

Original entry on oeis.org

2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 11/45. - Natan Arie Consigli, Jan 19 2016

Examples

			2.236067977499789696409173668... = 2 + 1/(4 + 1/(4 + 1/(4 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A002163 (decimal expansion), A001077/A001076 (convergents), A248235 (Egyptian fraction).
Cf. Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).
Essentially the same as A010709.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[5],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    PadRight[{2},120,{4}] (* Harvey P. Dale, Jul 06 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 26000); x=contfrac(sqrt(5)); for (n=0, 20000, write("b040002.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

a(0) = 2, a(n) = 4 n>0. - Natan Arie Consigli, Jan 19 2016
From Elmo R. Oliveira, Feb 16 2024: (Start)
G.f.: 2*(1+x)/(1-x).
E.g.f.: 4*exp(x) - 2.
a(n) = 2*A040000(n). (End)

A122542 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 2, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 8, 6, 1, 0, 2, 12, 18, 8, 1, 0, 2, 16, 38, 32, 10, 1, 0, 2, 20, 66, 88, 50, 12, 1, 0, 2, 24, 102, 192, 170, 72, 14, 1, 0, 2, 28, 146, 360, 450, 292, 98, 16, 1, 0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 19 2006, May 28 2007

Keywords

Comments

Riordan array (1, x*(1+x)/(1-x)). Rising and falling diagonals are the tribonacci numbers A000213, A001590.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,  1;
  0, 2,  4,   1;
  0, 2,  8,   6,   1;
  0, 2, 12,  18,   8,    1;
  0, 2, 16,  38,  32,   10,   1;
  0, 2, 20,  66,  88,   50,  12,   1;
  0, 2, 24, 102, 192,  170,  72,  14,   1;
  0, 2, 28, 146, 360,  450, 292,  98,  16,  1;
  0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1;
		

Crossrefs

Other versions: A035607, A113413, A119800, A266213.
Sums include: A000007, A001333 (row), A001590 (diagonal), A007483, A057077 (signed row), A078016 (signed diagonal), A086901, A091928, A104934, A122558, A122690.

Programs

  • Haskell
    a122542 n k = a122542_tabl !! n !! k
    a122542_row n = a122542_tabl !! n
    a122542_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [0, 1])
    -- Reinhard Zumkeller, Jul 20 2013, Apr 17 2013
    
  • Magma
    function T(n, k) // T = A122542
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)/(1 - (1+y)x - y x^2) + O[x]^11, x] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 0, T[n-1,k-1] +T[n-1,k] +T[n-2,k- 1] ]]; (* T = A122542 *)
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2024 *)
  • Sage
    def A122542_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (0..n)]
    for n in (0..10): print(A122542_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

Sum_{k=0..n} x^k*T(n,k) = A000007(n), A001333(n), A104934(n), A122558(n), A122690(n), A091928(n) for x = 0, 1, 2, 3, 4, 5. - Philippe Deléham, Jan 25 2012
Sum_{k=0..n} 3^(n-k)*T(n,k) = A086901(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007483(n-1), n >= 1. - Philippe Deléham, Oct 08 2006
T(2*n, n) = A123164(n).
T(n, k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), n > 1. - Philippe Deléham, Jan 25 2012
G.f.: (1-x)/(1-(1+y)*x-y*x^2). - Philippe Deléham, Mar 02 2012
From G. C. Greubel, Oct 27 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A057077(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001590(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A078016(n). (End)

A068875 Expansion of (1 + x*C)*C, where C = (1 - (1 - 4*x)^(1/2))/(2*x) is the g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592, 117572, 416024, 1485800, 5348880, 19389690, 70715340, 259289580, 955277400, 3534526380, 13128240840, 48932534040, 182965127280, 686119227300, 2579808294648, 9723892802904, 36734706144304, 139067101832008
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

A Catalan transform of A040000 under the mapping g(x) -> g(x*c(x)), where c(x) is the g.f. of A000108. Sequence A040000 can be retrieved using the mapping g(x) -> g(x*(1-x)). A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * (-1)^k * a(n-k). a(n) and A040000 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
a(n) is the number of Dyck (n+1)-paths all of whose nonterminal descents to ground level are of odd length. For example, a(2) counts UUUDDD, UUDUDD, UDUUDD, UDUDUD. - David Callan, Jul 25 2005
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is the sum of the top row terms in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
0, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
For example, the top row of M^3 = (2, 4, 3, 1) with sum = 10 = a(3). (End)
For n >= 1, a(n) is the number of binary trees with n+1 internal node in which one of the subtrees of the root is empty. Cf. A002057. [Sedgewick and Flajolet] - Geoffrey Critzer, Jan 05 2013
Empirical: a(n) is the number of entries of absolute value 1 that appear among all partitions in the canonical basis of the Temperley-Lieb algebra of order n. - John M. Campbell, Oct 17 2017
For n >= 1, a(n) is the number of Dyck paths of size n+2, whose corresponding unit interval graph has P3-hull number equal to 2. This result is due to Alrik Sandberg. - Per W. Alexandersson, Jan 09 2024

Examples

			G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 84*x^5 + 264*x^6 + 858*x^7 + ...
For example, the canonical basis of the Temperley-Lieb algebra of order 3 is {{{-3, 1}, {-2, -1}, {2, 3}}, {{-3, 3}, {-2, 2}, {-1, 1}}, {{-3, 3}, {-2, -1}, {1, 2}}, {{-3, -2}, {-1, 1}, {2, 3}}, {{-3, -2}, {-1, 3}, {1, 2}}}, and we see that the total number of entries of absolute value 1 that appear among the partitions in this basis is a(3) = 10.
		

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, p. 225.

Crossrefs

A002420 and A262543 are essentially the same sequence as this.

Programs

  • Magma
    [1] cat [2*Binomial( 2*n, n)/(n+1): n in [1..30]]; // Vincenzo Librandi, Oct 17 2017
  • Maple
    Z:=(1-sqrt(1-4*x))/2/x: G:=(2-(1+x)*Z)/Z: Gser:=series(-G, x=0, 30): (1,seq(coeff(Gser, x, n), n=2..26)); # Zerinvary Lajos, Dec 23 2006
    Z:=-(1-z-sqrt(1-z))/sqrt(1-z): Zser:=series(Z, z=0, 32): (1,seq(coeff(Zser*4^n, z, n), n=2..26)); # Zerinvary Lajos, Jan 01 2007
    A068875List := proc(m) local A, P, n; A := [1, 2]; P := [2];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A068875List(26); # Peter Luschny, Mar 24 2022
  • Mathematica
    nn=30;t=(1-(1-4x )^(1/2))/(2x);Prepend[Table[Coefficient[Series[1+x (y t -y+1)^2,{x,0,nn}],x ^n y],{n,2,nn}],1]  (* Geoffrey Critzer, Jan 05 2013 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 2 Binomial[ 2 n, n]/(n + 1)]; (* Michael Somos, Jun 18 2014 *)
    a[ n_] := SeriesCoefficient[ -1 + 4 / (1 + Sqrt[ 1 - 4 x]), {x, 0, n}]; (* Michael Somos, Jun 18 2014 *)
    Table[If[n==0, 1, 2 CatalanNumber[n]], {n,0,25}] (* Peter Luschny, Feb 27 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * binomial( 2*n, n) / (n + 1))}; /* Michael Somos, Aug 17 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( -1 + 4 / (1 + sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Aug 17 2005 */
    

Formula

Apart from initial term, twice Catalan numbers.
G.f.: (1 - x - sqrt(1 - 4*x)) / x. - Michael Somos, Apr 13 2012
From Paul Barry, Nov 14 2004: (Start)
G.f.: (1 + x*c(x))/(1 - x*c(x)), where c(x) is the g.f. of A000108.
a(n) = C(n)*(2-0^n), where C(n) = A000108(n).
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(2*n, n-k) *((2*k + 1)/(n + k + 1)) * binomial(k, j) * (-1)^(j-k) * (2 - 0^j). (End)
Assuming offset 1, then series reversion of g.f. A(x) is -A(-x). - Michael Somos, Aug 17 2005
Assuming offset 2, then A(x) satisfies A(x - x^2) = x^2 - x^4 and so A(x) = C(x)^2 - C(x)^4, A(A(x)) = C(x)^4 - C(x)^8, A(A(A(x))) = C(x)^8 - C(x)^16, etc., where C(x) = (1-sqrt(1-4*x))/2 = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + ... . - Paul D. Hanna, May 16 2008
Apart from initial term, INVERTi transform of A000984(n+1) = binomial(2*n+2,n+1), also, for n >= 1, a(n) = (1/Pi)*Integral_{x=0..4} x^(n-1)*sqrt(x*(4 - x)). - Groux Roland, Mar 15 2011
D-finite with recurrence (n+2)*a(n) - 2*(2*n+1)*a(n-1) = 0, n > 1. - R. J. Mathar, Nov 14 2011
For n > 0, a(n) = C(2*n+2, n+1) mod 4*C(2*n, n - 1). - Robert G. Wilson v, May 02 2012
For n > 0, a(n) = 2^(2*n + 1) * Gamma(n + 1/2)/(sqrt(Pi) * (n + 1)!). - Vaclav Kotesovec, Sep 16 2013
G.f.: 1 + 2*x/(Q(0) - x), where Q(k) = 2*x + (k + 1)/(2*k + 1) - 2*x*(k + 1)/(2*k + 1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
G.f.: 3 - 4*x - 2*S(0), where S(k) = 2*k + 1 - x*(2*k + 3)/(1 - x*(2*k + 1)/S(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 23 2013
0 = a(n)*(16*a(n+1) - 10*a(n+2)) + a(n+1)*(2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jun 18 2014
If A(x)^t = 1 + 2*t*x + Sum_{n >= 2} t*P(n,t)*x^n, then we conjecture that all the zeros of the polynomial P(n,t) lie on the vertical line Re(t) = -n/2 in the complex plane. - Peter Bala, Oct 05 2015
a(n+1) = a(n) + (1/2)*(Sum_{k=0..n} a(k)*a(n-k)) if n > 0. - Michael Somos, Apr 22 2022
b(n) = a(n+1) - a(n) for all n in Z if b(0) = 2, a(-1) = -1, a(0) = 0, a(-1) = 3, a(-2) = -1 where b = A071721. - Michael Somos, Apr 23 2022

A108561 Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0 < k < n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 1, -1, 1, 2, 2, 0, 1, 1, 3, 4, 2, 1, -1, 1, 4, 7, 6, 3, 0, 1, 1, 5, 11, 13, 9, 3, 1, -1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, -1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, -1, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0, 1, 1, 11, 56, 174, 367
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 10 2005

Keywords

Comments

Sum_{k=0..n} T(n,k) = A078008(n);
Sum_{k=0..n} abs(T(n,k)) = A052953(n-1) for n > 0;
T(n,1) = n - 2 for n > 1;
T(n,2) = A000124(n-3) for n > 2;
T(n,3) = A003600(n-4) for n > 4;
T(n,n-6) = A001753(n-6) for n > 6;
T(n,n-5) = A001752(n-5) for n > 5;
T(n,n-4) = A002623(n-4) for n > 4;
T(n,n-3) = A002620(n-1) for n > 3;
T(n,n-2) = A008619(n-2) for n > 2;
T(n,n-1) = n mod 2 for n > 0;
T(2*n,n) = A072547(n+1).
Sum_{k=0..n} T(n,k)*x^k = A232015(n), A078008(n), A000012(n), A040000(n), A001045(n+2), A140725(n+1) for x = 2, 1, 0, -1, -2, -3 respectively. - Philippe Deléham, Nov 17 2013, Nov 19 2013
(1,a^n) Pascal triangle with a = -1. - Philippe Deléham, Dec 27 2013
T(n,k) = A112465(n,n-k). - Reinhard Zumkeller, Jan 03 2014

Examples

			From _Philippe Deléham_, Nov 17 2013: (Start)
Triangle begins:
  1;
  1, -1;
  1,  0,  1;
  1,  1,  1, -1;
  1,  2,  2,  0,  1;
  1,  3,  4,  2,  1, -1;
  1,  4,  7,  6,  3,  0,  1; (End)
		

Crossrefs

Cf. A007318 (a=1), A008949(a=2), A164844(a=10).
Similar to the triangles A035317, A059259, A080242, A112555.
Cf. A072547 (central terms).

Programs

  • GAP
    Flat(List([0..13],n->List([0..n],k->Sum([0..k],i->Binomial(n,i)*(-2)^(k-i))))); # Muniru A Asiru, Feb 19 2018
  • Haskell
    a108561 n k = a108561_tabl !! n !! k
    a108561_row n = a108561_tabl !! n
    a108561_tabl = map reverse a112465_tabl
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Maple
    A108561 := (n, k) -> add(binomial(n, i)*(-2)^(k-i), i = 0..k):
    seq(seq(A108561(n,k), k = 0..n), n = 0..12); # Peter Bala, Feb 18 2018
  • Mathematica
    Clear[t]; t[n_, 0] = 1; t[n_, n_] := t[n, n] = (-1)^Mod[n, 2]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • Sage
    def A108561_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, k) for k in (1..n-1)]+[(-1)^(n+1)]
    for n in (1..12): print(A108561_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: (1-y*x)/(1-x-(y+y^2)*x). - Philippe Deléham, Nov 17 2013
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 17 2013
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..k} binomial(n,i)*(-2)^(k-i), 0 <= k <= n.
The n-th row polynomial is the n-th degree Taylor polynomial of the rational function (1 + x)^n/(1 + 2*x) about 0. For example, for n = 4, (1 + x)^4/(1 + 2*x) = 1 + 2*x + 2*x^2 + x^4 + O(x^5). (End)

Extensions

Definition corrected by Philippe Deléham, Dec 26 2013
Previous Showing 21-30 of 199 results. Next