1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1
Offset: 0
A036820
Number of partitions satisfying (cn(2,5) = cn(3,5) = 0).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 4, 5, 7, 10, 12, 14, 16, 21, 27, 33, 37, 44, 54, 68, 80, 92, 106, 129, 155, 182, 207, 240, 283, 337, 389, 444, 508, 594, 692, 797, 902, 1030, 1187, 1373, 1564, 1770, 2004, 2295, 2624, 2978, 3349, 3783, 4293, 4880, 5501, 6174, 6932, 7830, 8834
Offset: 0
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 10*x^10 + ...
G.f. = q^-9 + q^31 + q^71 + q^111 + 2*q^151 + 3*q^191 + 4*q^231 + 4*q^271 + 5*q^311 + ... - _Michael Somos_, Sep 08 2012
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[1, 1, 0, 0, 1]
[1+irem(d, 5)], d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Apr 04 2014
-
a[n_] := a[n] = If[n == 0, 1, Sum[ Sum[ d*{1, 1, 0, 0, 1}[[1 + Mod[d, 5]]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, (n+4)\5, (1 - x^(5*k - 4)) * (1 - x^(5*k - 1)) * (1 - x^(5*k)), 1 + x * O(x^n)), n))}; /* Michael Somos, Feb 09 2012 */
(GW-BASIC)' A program with two A-numbers:
10 Dim A085787(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 56: For j = 1 to n
30 If A085787(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A085787(j))
40 Next j: Print a(n-1);: Next n ' Omar E. Pol, Jun 10 2012
A099087
Expansion of 1/(1 - 2*x + 2*x^2).
Original entry on oeis.org
1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216
Offset: 0
-
a:=[1,2];; for n in [3..50] do a[n]:=2*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Mar 16 2019
-
I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1) - Self(n-2)): n in [1..50]]; // G. C. Greubel, Mar 16 2019
-
CoefficientList[Series[1/(1 -2x +2x^2), {x, 0, 50}], x] (* Michael De Vlieger, Dec 24 2015 *)
-
x='x+O('x^50); Vec(1/(1-2*x+2*x^2)) \\ Altug Alkan, Dec 24 2015
-
[lucas_number1(n,2,2) for n in range(1, 50)] # Zerinvary Lajos, Apr 23 2009
A266213
Square array A(n,r), the number of neighbors at a sharp Manhattan distance r in a finite n-hypercube lattice, read by upwards antidiagonals; A(n,r) = Sum_{k=0..min(n,r)} binomial(r-1,k-1)*binomial(n,k)* 2^k.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 8, 2, 0, 1, 8, 18, 12, 2, 0, 1, 10, 32, 38, 16, 2, 0, 1, 12, 50, 88, 66, 20, 2, 0, 1, 14, 72, 170, 192, 102, 24, 2, 0, 1, 16, 98, 292, 450, 360, 146, 28, 2, 0, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 0
Offset: 0
The array A(n, k) begins:
n \ k 0 1 2 3 4 5 6 7 8 9
---------------------------------------------------------
0: 1 0 0 0 0 0 0 0 0 0
1: 1 2 2 2 2 2 2 2 2 2
2: 1 4 8 12 16 20 24 28 32 36
3: 1 6 18 38 66 102 146 198 258 326
4: 1 8 32 88 192 360 608 952 1408 1992
5: 1 10 50 170 450 1002 1970 3530 5890 9290
6: 1 12 72 292 912 2364 5336 10836 20256 35436
7: 1 14 98 462 1666 4942 12642 28814 59906 115598
8: 1 16 128 688 2816 9424 27008 68464 157184 332688
9: 1 18 162 978 4482 16722 53154 148626 374274 864146
...
For instance, in a 5-hypercube lattice there are 170 nodes situated at a Manhattan distance of 3 for a chosen node.
The triangle T(m, r) begins:
m\r 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 0
2: 1 2 0
3: 1 4 2 0
4: 1 6 8 2 0
5: 1 8 18 12 2 0
6: 1 10 32 38 16 2 0
7: 1 12 50 88 66 20 2 0
8: 1 14 72 170 192 102 24 2 0
9: 1 16 98 292 450 360 146 28 2 0
10: 1 18 128 462 912 1002 608 198 32 2 0
... Formatted by _Wolfdieter Lang_, Jan 31 2016
- Vincenzo Librandi, Table of n, a(n) for n = 0..5150
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Sect. 2.3.
- Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870 [cs.DM], 2016.
- D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
Partial sums on rows of A give
A008288.
-
# Prints the array by rows.
gf := n -> ((1 + x)/(1 - x))^n: ser := n -> series(gf(n), x, 40):
seq(lprint(seq(coeff(ser(n), x, k), k=0..6)), n=0..9); # Peter Luschny, Mar 20 2020
-
Table[Sum[Binomial[r - 1, k - 1] Binomial[n - r, k] 2^k, {k, 0, Min[n - r, r]}], {n, 0, 10}, {r, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015 *)
-
from sympy import binomial
def T(n, r):
if r==0: return 1
return sum(binomial(r - 1, k - 1) * binomial(n - r, k) * 2**k for k in range(min(n - r, r) + 1))
for n in range(11): print([T(n, r) for r in range(n + 1)]) # Indranil Ghosh, May 23 2017
A057081
Even-indexed Chebyshev U-polynomials evaluated at sqrt(11)/2.
Original entry on oeis.org
1, 10, 89, 791, 7030, 62479, 555281, 4935050, 43860169, 389806471, 3464398070, 30789776159, 273643587361, 2432002510090, 21614379003449, 192097408520951, 1707262297685110, 15173263270645039, 134852107138120241, 1198495700972437130, 10651609201613813929
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), rhs, m=11.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,-1).
-
A057081 := proc(n)
option remember;
if n <= 1 then
op(n+1,[1,10]);
else
9*procname(n-1)-procname(n-2) ;
end if;
end proc: # R. J. Mathar, Apr 30 2017
-
CoefficientList[Series[(1 + x)/(1 - 9*x + x^2), {x,0,50}], x] (* or *) LinearRecurrence[{9,-1}, {1,10}, 50] (* G. C. Greubel, Apr 12 2017 *)
-
Vec((1+x)/(1-9*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
-
[(lucas_number2(n,9,1)-lucas_number2(n-1,9,1))/7 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
Comments