cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 92 results. Next

A057353 a(n) = floor(3n/4).

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 48, 48, 49, 50, 51, 51, 52, 53, 54
Offset: 0

Views

Author

Keywords

Comments

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.
For n >= 2, a(n) is the number of different integers that can be written as floor(k^2/n) for k = 1, 2, 3, ..., n-1. Generalization of the 1st problem proposed during the 15th Balkan Mathematical Olympiad in 1998 where the question was asked for n = 1998 with a(1998) = 1498. - Bernard Schott, Apr 22 2022
For n > 1, a(n) is also the Hadwiger number of the (n+1)-cycle complement graph (up to at least n = 16). - Eric W. Weisstein, Mar 10 2025

References

  • N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.

Crossrefs

Programs

Formula

G.f.: (1+x+x^2)*x^2/((1-x)*(1-x^4)). - Bruce Corrigan (scentman(AT)myfamily.com), Jul 03 2002
For all m>=0 a(4m)=0 mod 3; a(4m+1)=0 mod 3; a(4m+2)= 1 mod 3; a(4m+3) = 2 mod 3
a(n) = A002378(n) - A173562(n). - Reinhard Zumkeller, Feb 21 2010
a(n+1) = A140201(n) - A002265(n+1). - Reinhard Zumkeller, Jan 26 2011
a(n) = n-1 - A002265(n-1) = ( A007310(n) + A057077(n+1) )/4 for n>0. a(n) = a(n-1)+a(n-4)-a(n-5) for n>4. - Bruno Berselli, Jan 28 2011
a(n) = 1/8*(6*n + 2*cos((Pi*n)/2) + cos(Pi*n) - 2*sin((Pi*n)/2) - 3). - Ilya Gutkovskiy, Sep 18 2015
a(4n) = a(4n+1). - Altug Alkan, Sep 26 2015
Sum_{n>=2} (-1)^n/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Sep 29 2022

A122542 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 2, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 8, 6, 1, 0, 2, 12, 18, 8, 1, 0, 2, 16, 38, 32, 10, 1, 0, 2, 20, 66, 88, 50, 12, 1, 0, 2, 24, 102, 192, 170, 72, 14, 1, 0, 2, 28, 146, 360, 450, 292, 98, 16, 1, 0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 19 2006, May 28 2007

Keywords

Comments

Riordan array (1, x*(1+x)/(1-x)). Rising and falling diagonals are the tribonacci numbers A000213, A001590.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,  1;
  0, 2,  4,   1;
  0, 2,  8,   6,   1;
  0, 2, 12,  18,   8,    1;
  0, 2, 16,  38,  32,   10,   1;
  0, 2, 20,  66,  88,   50,  12,   1;
  0, 2, 24, 102, 192,  170,  72,  14,   1;
  0, 2, 28, 146, 360,  450, 292,  98,  16,  1;
  0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1;
		

Crossrefs

Other versions: A035607, A113413, A119800, A266213.
Sums include: A000007, A001333 (row), A001590 (diagonal), A007483, A057077 (signed row), A078016 (signed diagonal), A086901, A091928, A104934, A122558, A122690.

Programs

  • Haskell
    a122542 n k = a122542_tabl !! n !! k
    a122542_row n = a122542_tabl !! n
    a122542_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [0, 1])
    -- Reinhard Zumkeller, Jul 20 2013, Apr 17 2013
    
  • Magma
    function T(n, k) // T = A122542
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)/(1 - (1+y)x - y x^2) + O[x]^11, x] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 0, T[n-1,k-1] +T[n-1,k] +T[n-2,k- 1] ]]; (* T = A122542 *)
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2024 *)
  • Sage
    def A122542_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (0..n)]
    for n in (0..10): print(A122542_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

Sum_{k=0..n} x^k*T(n,k) = A000007(n), A001333(n), A104934(n), A122558(n), A122690(n), A091928(n) for x = 0, 1, 2, 3, 4, 5. - Philippe Deléham, Jan 25 2012
Sum_{k=0..n} 3^(n-k)*T(n,k) = A086901(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007483(n-1), n >= 1. - Philippe Deléham, Oct 08 2006
T(2*n, n) = A123164(n).
T(n, k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), n > 1. - Philippe Deléham, Jan 25 2012
G.f.: (1-x)/(1-(1+y)*x-y*x^2). - Philippe Deléham, Mar 02 2012
From G. C. Greubel, Oct 27 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A057077(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001590(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A078016(n). (End)

A175003 Triangle read by rows demonstrating Euler's pentagonal theorem for partition numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 5, 3, -1, 7, 5, -1, 11, 7, -2, -1, 15, 11, -3, -1, 22, 15, -5, -2, 30, 22, -7, -3, 42, 30, -11, -5, 56, 42, -15, -7, 1, 77, 56, -22, -11, 1, 101, 77, -30, -15, 2, 135, 101, -42, -22, 3, 1, 176, 135, -56, -30, 5, 1, 231, 176, -77, -42, 7, 2
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2010

Keywords

Comments

Row sums = A000041 starting with offset 1.
Sum of n-th row terms = leftmost term of next row, such that terms in each row demonstrate Euler's pentagonal theorem.
Let Q = triangle A027293 with partition numbers in each column.
Let M = a diagonalized variant of A080995 as the characteristic function of the generalized pentagonal numbers starting with offset 1: (1, 1, 0, 0, 1,...)
Sign the 1's: (++--++...) getting (1, 1, 0, 0, -1, 0, -1,...) which is the diagonal of matrix M, (as an infinite lower triangular matrix with the rest zeros).
Triangle A175003 = Q*M, with deleted zeros.
Column k starts at row A001318(k). - Omar E. Pol, Sep 21 2011
From Omar E. Pol, Apr 22 2014: (Start)
Row n has length A235963(n).
For Euler's pentagonal theorem for the sum of divisors see A238442.
Note that both of Euler's pentagonal theorems refer to generalized pentagonal numbers (A001318), not to pentagonal numbers (A000326). (End)

Examples

			Triangle begins:
    1;
    1,   1;
    2,   1;
    3,   2;
    5,   3,  -1;
    7,   5,  -1;
   11,   7,  -2,  -1;
   15,  11,  -3,  -1;
   22,  15,  -5,  -2;
   30,  22,  -7,  -3;
   42,  30, -11,  -5;
   56,  42, -15,  -7,   1;
   77,  56, -22, -11,   1;
  101,  77, -30, -15,   2;
  ...
		

Crossrefs

Formula

T(n,k) = A057077(k-1)*A000041(A195310(n,k)), n >= 1, k >= 1. - Omar E. Pol, Sep 21 2011

Extensions

Corrected and extended by Omar E. Pol, Feb 14 2013

A008621 Expansion of 1/((1-x)*(1-x^4)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21
Offset: 0

Views

Author

Keywords

Comments

Arises from Gleason's theorem on self-dual codes: 1/((1-x^2)*(1-x^8)) is the Molien series for the real 2-dimensional Clifford group (a dihedral group of order 16) of genus 1.
Thickness of the hypercube graph Q_n. - Eric W. Weisstein, Sep 09 2008
Count of odd numbers between consecutive quarter-squares, A002620. Oppermann's conjecture states that for each count there will be at least one prime. - Fred Daniel Kline, Sep 10 2011
Number of partitions into parts 1 and 4. - Joerg Arndt, Jun 01 2013
a(n-1) is the minimum independence number over all planar graphs with n vertices. The bound follows from the Four Color Theorem. It is attained by a union of 4-cliques. Other extremal graphs are examined in the Bickle link. - Allan Bickle, Feb 04 2022

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, 1977, Chapter 19, Problem 3, p. 602.

Crossrefs

Cf. A002265 (equals this - 1).

Programs

Formula

a(n) = floor(n/4) + 1.
a(n) = A010766(n+4, 4).
Also, a(n) = ceiling((n+1)/4), n >= 0. - Mohammad K. Azarian, May 22 2007
a(n) = Sum_{i=0..n} A121262(i) = n/4 + 5/8 + (-1)^n/8 + A057077(n)/4. - R. J. Mathar, Mar 14 2011
a(x,y) := floor(x/2) + floor(y/2) - x where x = A002620(n) and y = A002620(n+1), n > 2. - Fred Daniel Kline, Sep 10 2011
a(n) = a(n-1) + a(n-4) - a(n-5); a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=2. - Harvey P. Dale, Feb 19 2012
From R. J. Mathar, Jun 04 2021: (Start)
G.f.: 1 / ( (1+x)*(1+x^2)*(x-1)^2 ).
a(n) + a(n-1) = A004524(n+3).
a(n) + a(n-2) = A008619(n). (End)
a(n) = A002265(n) + 1. - M. F. Hasler, Oct 17 2022

Extensions

More terms from Stefan Steinerberger, Apr 03 2006

A195310 Triangle read by rows with T(n,k) = n - A001318(k), n >= 1, k >= 1, if (n - A001318(k)) >= 0.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 2, 4, 3, 0, 5, 4, 1, 6, 5, 2, 0, 7, 6, 3, 1, 8, 7, 4, 2, 9, 8, 5, 3, 10, 9, 6, 4, 11, 10, 7, 5, 0, 12, 11, 8, 6, 1, 13, 12, 9, 7, 2, 14, 13, 10, 8, 3, 0, 15, 14, 11, 9, 4, 1, 16, 15, 12, 10, 5, 2, 17, 16, 13, 11, 6, 3, 18, 17, 14, 12, 7, 4
Offset: 1

Views

Author

Omar E. Pol, Sep 21 2011

Keywords

Comments

Also triangle read by rows in which column k lists the nonnegative integers A001477 starting at the row A001318(k). This sequence is related to Euler's Pentagonal Number Theorem. A000041(a(n)) gives the absolute value of A175003(n). To get the number of partitions of n see the example.

Examples

			Written as a triangle:
   0;
   1,  0;
   2,  1;
   3,  2;
   4,  3,  0;
   5,  4,  1;
   6,  5,  2,  0;
   7,  6,  3,  1;
   8,  7,  4,  2;
   9,  8,  5,  3;
  10,  9,  6,  4;
  11, 10,  7,  5,  0;
  12, 11,  8,  6,  1;
  13, 12,  9,  7,  2;
  14, 13, 10,  8,  3,  0;
.
For n = 15, consider row 15 which lists the numbers 14, 13, 10, 8, 3, 0. From Euler's Pentagonal Number Theorem we have that the number of partitions of 15 is p(15) = p(14) + p(13) - p(10) - p(8) + p(3) + p(0) = 135 + 101 - 42 - 22 + 3 + 1 = 176.
		

Crossrefs

Programs

Formula

A175003(n,k) = A057077(k-1)*A000041(T(n,k)), n >= 1, k >= 1.

Extensions

Name essentially suggested by Franklin T. Adams-Watters (see history), Sep 21 2011

A087960 a(n) = (-1)^binomial(n+1,2).

Original entry on oeis.org

1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1
Offset: 0

Views

Author

W. Edwin Clark, Sep 17 2003

Keywords

Comments

Period 4: repeat [1, -1, -1, 1]. - Joerg Arndt, Feb 14 2016
Also equal to the sign of product(j-i, 1<=j
Hankel transform of A097331, A097332. [Paul Barry, Aug 10 2009]
The Kn22 sums, see A180662, of triangle A108299 equal the terms of this sequence. [Johannes W. Meijer, Aug 14 2011]

Examples

			a(1) = -1 since (-1)^binomial(2,2) = (-1)^1 = -1.
G.f. = 1 - x - x^2 + x^3 + x^4 - x^5 - x^6 + x^7 + x^8 - x^9 - x^10 + ...
		

References

  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.

Programs

  • Haskell
    a087960 n = (-1) ^ (n * (n + 1) `div` 2)
    a087960_list = cycle [1,-1,-1,1]  -- Reinhard Zumkeller, Nov 15 2015
    
  • Magma
    [(-1)^Binomial(n+1,2) : n in [0..100]]; // Wesley Ivan Hurt, Jul 07 2016
    
  • Maple
    A087960:=n->(-1)^binomial(n+1,2): seq(A087960(n), n=0..100); # Wesley Ivan Hurt, Jul 07 2016
  • Mathematica
    (-1)^Binomial[Range[0,110],2] (* or *) LinearRecurrence[{0,-1},{1,1},110] (* Harvey P. Dale, Jul 07 2014 *)
    a[ n_] := (-1)^(n (n + 1) / 2); (* Michael Somos, Jul 20 2015 *)
    a[ n_] := (-1)^Quotient[ n + 1, 2]; (* Michael Somos, Jul 20 2015 *)
  • PARI
    {a(n) = (-1)^((n + 1)\2)}; /* Michael Somos, Jul 20 2015 */
    
  • Python
    def A087960(n): return -1 if n+1&2 else 1 # Chai Wah Wu, Jan 31 2023

Formula

a(n) = (-1)^A000217(n).
a(n) = (-1)^floor((n+1)/2). - Benoit Cloitre and Ray Chandler, Sep 19 2003
G.f.: (1-x)/(1+x^2). - Paul Barry, Aug 10 2009
a(n) = I^(n*(n+1)). - Bruno Berselli, Oct 17 2011
a(n) = Product_{k=1..n} 2*cos(2*k*Pi/(2*n+1)) for n>=0 (for n=0 the empty product is put to 1). See the Gradstein-Ryshik reference, p. 63, 1.396 2. with x = sqrt(-1). - Wolfdieter Lang, Oct 22 2013
a(n) + a(n-2) = 0 for n>1, a(n) = a(n-4) for n>3. - Wesley Ivan Hurt, Jul 07 2016
E.g.f.: cos(x) - sin(x). - Ilya Gutkovskiy, Jul 07 2016
a(n) = Sum_{s=0..n} (-1)^(n-s)*A111125(n, s)*2^s (row polynomials of signed A111125 evaluated at 2). - Wolfdieter Lang, May 02 2021

Extensions

More terms from Benoit Cloitre and Ray Chandler, Sep 19 2003
Offset and Vandermonde formula corrected by R. J. Mathar, Sep 25 2009

A036820 Number of partitions satisfying (cn(2,5) = cn(3,5) = 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 4, 5, 7, 10, 12, 14, 16, 21, 27, 33, 37, 44, 54, 68, 80, 92, 106, 129, 155, 182, 207, 240, 283, 337, 389, 444, 508, 594, 692, 797, 902, 1030, 1187, 1373, 1564, 1770, 2004, 2295, 2624, 2978, 3349, 3783, 4293, 4880, 5501, 6174, 6932, 7830, 8834
Offset: 0

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: (2=3 := 0).
It appears that this sequence is related to the generalized heptagonal numbers A085787 in the same way as the partition numbers A000041 are related to the generalized pentagonal numbers A001318. (See the table in comments section of A195825.) Conjecture: Column 1 of triangle A195837. Also 1 together with the row sums of triangle A195837. Also column 3 of the square array A195825. - Omar E. Pol, Oct 08 2011
Note that this sequence contains two plateaus: [1, 1, 1, 1] and [4, 4]. For more information see A195825 and A210843. - Omar E. Pol, Jun 23 2012

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 10*x^10 + ...
G.f. = q^-9 + q^31 + q^71 + q^111 + 2*q^151 + 3*q^191 + 4*q^231 + 4*q^271 + 5*q^311 + ... - _Michael Somos_, Sep 08 2012
		

Crossrefs

Cf. A113429.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[1, 1, 0, 0, 1]
          [1+irem(d, 5)], d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Apr 04 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[ Sum[ d*{1, 1, 0, 0, 1}[[1 + Mod[d, 5]]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, (n+4)\5, (1 - x^(5*k - 4)) * (1 - x^(5*k - 1)) * (1 - x^(5*k)), 1 + x * O(x^n)), n))}; /* Michael Somos, Feb 09 2012 */
    (GW-BASIC)' A program with two A-numbers:
    10 Dim A085787(100), A057077(100), a(100): a(0)=1
    20 For n = 1 to 56: For j = 1 to n
    30 If A085787(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A085787(j))
    40 Next j: Print a(n-1);: Next n ' Omar E. Pol, Jun 10 2012

Formula

Euler transform of period 5 sequence [1, 0, 0, 1, 1, ...]. - Michael Somos, Feb 09 2012
Expansion of 1 / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 08 2012
Convolution inverse of A113429. - Michael Somos, Feb 09 2012
G.f.: 1 / (Product_{k>0} (1 - x^(5*k)) * (1 - x^(5*k - 1)) * (1 - x^(5*k - 4))). - Michael Somos, Sep 08 2012
G.f.: 1 / (Sum_{k in Z} (-1)^k * x^(k * (5*k + 3) / 2)). - Michael Somos, Sep 08 2012
a(n) ~ sqrt(1+sqrt(5)) * exp(sqrt(2*n/5)*Pi) / (2^(5/2)*5^(1/4)*n). - Vaclav Kotesovec, Oct 06 2015
a(n) = (1/n)*Sum_{k=1..n} A284361(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A099087 Expansion of 1/(1 - 2*x + 2*x^2).

Original entry on oeis.org

1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216
Offset: 0

Author

Paul Barry, Sep 24 2004

Keywords

Comments

Yet another variation on A009545.
Row sums of Krawtchouk triangle A098593. Partial sums of e.g.f. exp(x)cos(x), or 2^(n/2)cos(Pi*n/2). See A009116.
Binomial transform of A057077. - R. J. Mathar, Nov 04 2008
Partial sums of A146559. - Philippe Deléham, Dec 01 2008
Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012
Also the inverse Catalan transform of A000079. - Arkadiusz Wesolowski, Oct 26 2012

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..50] do a[n]:=2*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Mar 16 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1) - Self(n-2)): n in [1..50]]; // G. C. Greubel, Mar 16 2019
    
  • Mathematica
    CoefficientList[Series[1/(1 -2x +2x^2), {x, 0, 50}], x] (* Michael De Vlieger, Dec 24 2015 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-2*x+2*x^2)) \\ Altug Alkan, Dec 24 2015
    
  • Sage
    [lucas_number1(n,2,2) for n in range(1, 50)] # Zerinvary Lajos, Apr 23 2009
    

Formula

E.g.f.: exp(x)*(cos(x) + sin(x)).
a(n) = 2^(n/2)*(cos(Pi*n/4) + sin(Pi*n/4)).
a(n) = Sum_{k=0..n} Sum_{i=0..k} binomial(n-k, k-i)*binomial(n, i) *(-1)^(k-i).
a(n) = 2*(a(n-1) - a(n-2)).
From R. J. Mathar, Apr 18 2008: (Start)
a(n) = (1-i)^(n-1) + (1+i)^(n-1) where i=sqrt(-1).
a(n) = 2 Sum_{k=0..(n-1)/2} (-1)^k*binomial(n-1,2k) if n>0. (End)
a(n) = Sum_{k=0..n} A109466(n,k)*2^k. - Philippe Deléham, Oct 28 2008
E.g.f.: (cos(x)+sin(x))*exp(x) = G(0); G(k)=1+2*x/(4*k+1-x*(4*k+1)/(2*(2*k+1)+x-2*(x^2)*(2*k+1)/((x^2)-(2*k+2)*(4*k+3)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2011
G.f.: U(0) where U(k)= 1 + x*(k+3) - x*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
a(n) = Re((1+i)^n) + Im((1+i)^n) where i = sqrt(-1) = A146559(n) + A009545(n). - Philippe Deléham, Feb 13 2013
a(n) = Sum_{j=0..n} binomial(n, j)*(-1)^binomial(j, 2); this is the case m=2 and z=-1 of f(m,n)(z) = Sum_{j=0..n} binomial(n, j)*z^binomial(j, m). See Dilcher and Ulas. - Michel Marcus, Sep 01 2020

Extensions

Signs added by N. J. A. Sloane, Nov 14 2006

A266213 Square array A(n,r), the number of neighbors at a sharp Manhattan distance r in a finite n-hypercube lattice, read by upwards antidiagonals; A(n,r) = Sum_{k=0..min(n,r)} binomial(r-1,k-1)*binomial(n,k)* 2^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 8, 2, 0, 1, 8, 18, 12, 2, 0, 1, 10, 32, 38, 16, 2, 0, 1, 12, 50, 88, 66, 20, 2, 0, 1, 14, 72, 170, 192, 102, 24, 2, 0, 1, 16, 98, 292, 450, 360, 146, 28, 2, 0, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 0
Offset: 0

Author

Dmitry Zaitsev, Dec 24 2015

Keywords

Comments

In an n-dimensional hypercube lattice, the array A(n,r) gives the number of nodes situated at a Manhattan distance equal to r, counting the current node. When counting coordinate offsets for neighboring nodes, binomial(n,k) chooses k nonzero coordinates from n coordinates, binomial(r-1,k-1) partitions the number r as the sum of exactly k nonzero numbers, and 2^k counts combinations of signs for coordinate offsets; starting indexing from 0 adds 1, which counts the current node.
In cellular automata theory, the cell surrounding with Manhattan distance less than or equal to r is called the von Neumann neighborhood of radius r or the diamond-shaped neighborhood to distinguish it from other generalizations of the von Neumann neighborhood for radius r>1, for instance, as a neighborhood having a difference in the range from -r to r in exactly one coordinate (the "narrow" von Neumann neighborhood of radius r).
The square array of partial sums of A(n,r) on rows gives us the Delannoy numbers A008288, which correspond to the number of nodes in the diamond-shaped neighborhood of radius r. - Dmitry Zaitsev, Dec 24 2015
For n >= 2, the term A(n,r) gives the number of polyominoes of bounding box 2 x (r+n-1) of area (r + 2(n-1)). Let A'(n,k) be the table A(n,k) without the first two rows. The sum of the terms in the i-th anti-diagonal of A'(n,k) gives the i-th term of A034182. - Louis Marin, Dec 11 2024

Examples

			The array A(n, k) begins:
n \ k  0  1   2   3    4     5     6      7      8      9
---------------------------------------------------------
0:     1  0   0   0    0     0     0      0      0      0
1:     1  2   2   2    2     2     2      2      2      2
2:     1  4   8  12   16    20    24     28     32     36
3:     1  6  18  38   66   102   146    198    258    326
4:     1  8  32  88  192   360   608    952   1408   1992
5:     1 10  50 170  450  1002  1970   3530   5890   9290
6:     1 12  72 292  912  2364  5336  10836  20256  35436
7:     1 14  98 462 1666  4942 12642  28814  59906 115598
8:     1 16 128 688 2816  9424 27008  68464 157184 332688
9:     1 18 162 978 4482 16722 53154 148626 374274 864146
...
For instance, in a 5-hypercube lattice there are 170 nodes situated at a Manhattan distance of 3 for a chosen node.
The triangle T(m, r) begins:
m\r 0  1   2   3   4    5   6   7  8 9 10 ...
0:  1
1:  1  0
2:  1  2   0
3:  1  4   2   0
4:  1  6   8   2   0
5:  1  8  18  12   2    0
6:  1 10  32  38  16    2   0
7:  1 12  50  88  66   20   2   0
8:  1 14  72 170 192  102  24   2  0
9:  1 16  98 292 450  360 146  28  2 0
10: 1 18 128 462 912 1002 608 198 32 2  0
... Formatted by _Wolfdieter Lang_, Jan 31 2016
		

Crossrefs

Other versions: A035607, A113413, A119800, A122542.
Partial sums on rows of A give A008288.
Cf. A001333 (row sums of T). A057077 (alternating row sums of T). - Wolfdieter Lang, Jan 31 2016

Programs

  • Maple
    # Prints the array by rows.
    gf := n -> ((1 + x)/(1 - x))^n: ser := n -> series(gf(n), x, 40):
    seq(lprint(seq(coeff(ser(n), x, k), k=0..6)), n=0..9); # Peter Luschny, Mar 20 2020
  • Mathematica
    Table[Sum[Binomial[r - 1, k - 1] Binomial[n - r, k] 2^k, {k, 0, Min[n - r, r]}], {n, 0, 10}, {r, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015 *)
  • Python
    from sympy import binomial
    def T(n, r):
        if r==0: return 1
        return sum(binomial(r - 1, k - 1) * binomial(n - r, k) * 2**k for k in range(min(n - r, r) + 1))
    for n in range(11): print([T(n, r) for r in range(n + 1)]) # Indranil Ghosh, May 23 2017

Formula

A(n, 0)=1, n>=0, A(0, r)=0, r>0.
A(n, r) = A(n, r-1) + A(n-1, r-1) + A(n-1, r).
A(n, r) = Sum_{k=0..min(n,r)} binomial(r-1,k-1)*binomial(n,k)*2^k.
Triangle T(m, r) = A(m-r, r), n >= 0, 0 <= r <= n, otherwise 0. - Wolfdieter Lang, Jan 31 2016
A(n, k) = [x^k] ((1 + x)/(1 - x))^n. - Ilya Gutkovskiy, May 23 2017

A057081 Even-indexed Chebyshev U-polynomials evaluated at sqrt(11)/2.

Original entry on oeis.org

1, 10, 89, 791, 7030, 62479, 555281, 4935050, 43860169, 389806471, 3464398070, 30789776159, 273643587361, 2432002510090, 21614379003449, 192097408520951, 1707262297685110, 15173263270645039, 134852107138120241, 1198495700972437130, 10651609201613813929
Offset: 0

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

This is the m=11 member of the m-family of sequences S(n,m-2)+S(n-1,m-2) = S(2*n,sqrt(m)) (for S(n,x) see Formula). The m=4..10 instances are A005408, A002878, A001834, A030221, A002315, A033890 and A057080, resp. The m=1..3 (signed) sequences are: A057078, A057077 and A057079, resp.
General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim_{n->oo} a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 89, 389806471, 192097408520951, 7477414486269626733119, ... - Ctibor O. Zizka, Sep 02 2008
The aerated sequence (b(n))n>=1 = [1, 0, 10, 0, 89, 0, 791, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -7, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

Programs

  • Maple
    A057081 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,10]);
        else
            9*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 9*x + x^2), {x,0,50}], x] (* or *) LinearRecurrence[{9,-1}, {1,10}, 50] (* G. C. Greubel, Apr 12 2017 *)
  • PARI
    Vec((1+x)/(1-9*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
  • Sage
    [(lucas_number2(n,9,1)-lucas_number2(n-1,9,1))/7 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 9*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = S(n, 9) + S(n-1, 9) = S(2*n, sqrt(11)) with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 9) = A018913(n).
G.f.: (1+x)/(1-9*x+x^2).
Let q(n, x) = Sum{i=0..n} x^(n-i)*binomial(2*n-i, i), a(n) = (-1)^n*q(n, -11). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-9)*(-1)^n, where L is defined as in A108299; see also A070998 for L(n,+9). - Reinhard Zumkeller, Jun 01 2005
From Peter Bala, Jun 08 2025: (Start)
a(n) = (1/sqrt(7)) * ( ((sqrt(11) + sqrt(7))/2)^(2*n+1) - ((sqrt(11) - sqrt(7))/2)^(2*n+1) ).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/11 (telescoping series: 11/(a(n) - 1/a(n)) = 1/A018913(n+1) + 1/A018913(n)).
Conjecture: for k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - s(k)/a(k*n)) = 1/(1 + a(k)) where s(k) = a(0) + a(1) + ... + a(k-1).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(11/7) [telescoping product: ((a(n) + 1)/(a(n) - 1))^2 = (1 - 4/b(n+1))/(1 - 4/b(n)), where b(n) = 2 + A056918(n)]. (End)
Previous Showing 11-20 of 92 results. Next