cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A195080 Interspersion fractally induced by A008621, a rectangular array, by antidiagonals.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 10, 9, 7, 8, 15, 14, 11, 13, 12, 21, 20, 16, 19, 18, 17, 28, 27, 22, 26, 25, 24, 23, 36, 35, 29, 34, 33, 32, 30, 31, 45, 44, 37, 43, 42, 41, 38, 40, 39, 55, 54, 46, 53, 52, 51, 47, 50, 49, 48, 66, 65, 56, 64, 63, 62, 57, 61, 60, 59, 58, 78, 77, 67
Offset: 1

Views

Author

Clark Kimberling, Sep 08 2011

Keywords

Comments

See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. Every pair of rows eventually intersperse. As a sequence, A194980 is a permutation of the positive integers, with inverse A195081.

Examples

			Northwest corner:
1...3...6...10..15..21..38
2...5...9...14..20..27..35
4...7...11..16..22..29..37
8...13..19..26..34..43..53
12..18..25..33..42..52..63
		

Crossrefs

Programs

  • Mathematica
    r = 4; p[n_] := 1 + Floor[n/r]
    Table[p[n], {n, 1, 90}]  (* A008621 *)
    g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
    f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
    f[20] (* A195079 *)
    row[n_] := Position[f[30], n];
    u = TableForm[Table[row[n], {n, 1, 5}]]
    v[n_, k_] := Part[row[n], k];
    w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]] (* A195080 *)
    q[n_] := Position[w, n]; Flatten[Table[q[n],
    {n, 1, 80}]] (* A195081 *)

A144075 Duplicate of A008621.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Ceiling[(n+1)/4]

Formula

G.f.: x(1+x^3-x^4)/((1-x)^2(1+x)(1+x^2)). - R. J. Mathar, Sep 12 2008

A002265 Nonnegative integers repeated 4 times.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 0

Views

Author

Keywords

Comments

For n>=1 and i=sqrt(-1) let F(n) the n X n matrix of the Discrete Fourier Transform (DFT) whose element (j,k) equals exp(-2*Pi*i*(j-1)*(k-1)/n)/sqrt(n). The multiplicities of the four eigenvalues 1, i, -1, -i of F(n) are a(n+4), a(n-1), a(n+2), a(n+1), hence a(n+4) + a(n-1) + a(n+2) + a(n+1) = n for n>=1. E.g., the multiplicities of the eigenvalues 1, i, -1, -i of the DFT-matrix F(4) are a(8)=2, a(3)=0, a(6)=1, a(5)=1, summing up to 4. - Franz Vrabec, Jan 21 2005
Complement of A010873, since A010873(n)+4*a(n)=n. - Hieronymus Fischer, Jun 01 2007
For even values of n, a(n) gives the number of partitions of n into exactly two parts with both parts even. - Wesley Ivan Hurt, Feb 06 2013
a(n-4) counts number of partitions of (n) into parts 1 and 4. For example a(11) = 3 with partitions (44111), (41111111), (11111111111). - David Neil McGrath, Dec 04 2014
a(n-4) counts walks (closed) on the graph G(1-vertex; 1-loop, 4-loop) where order of loops is unimportant. - David Neil McGrath, Dec 04 2014
Number of partitions of n into 4 parts whose smallest 3 parts are equal. - Wesley Ivan Hurt, Jan 17 2021

References

  • V. Cizek, Discrete Fourier Transforms and their Applications, Adam Hilger, Bristol 1986, p. 61.

Crossrefs

Zero followed by partial sums of A011765.
Partial sums: A130519. Other related sequences: A004526, A010872, A010873, A010874.
Third row of A180969.

Programs

Formula

a(n) = floor(n/4), n>=0;
G.f.: (x^4)/((1-x)*(1-x^4)).
a(n) = (2*n-(3-(-1)^n-2*(-1)^floor(n/2)))/8; also a(n) = (2*n-(3-(-1)^n-2*sin(Pi/4*(2*n+1+(-1)^n))))/8 = (n-A010873(n))/4. - Hieronymus Fischer, May 29 2007
a(n) = (1/4)*(n-(3-(-1)^n-2*(-1)^((2*n-1+(-1)^n)/4))/2). - Hieronymus Fischer, Jul 04 2007
a(n) = floor((n^4-1)/4*n^3) (n>=1); a(n) = floor((n^4-n^3)/(4*n^3-3*n^2)) (n>=1). - Mohammad K. Azarian, Nov 08 2007 and Aug 01 2009
For n>=4, a(n) = floor( log_4( 4^a(n-1) + 4^a(n-2) + 4^a(n-3) + 4^a(n-4) ) ). - Vladimir Shevelev, Jun 22 2010
a(n) = A180969(2,n). - Adriano Caroli, Nov 26 2010
a(n) = A173562(n)-A000290(n); a(n+2) = A035608(n)-A173562(n). - Reinhard Zumkeller, Feb 21 2010
a(n+1) = A140201(n) - A057353(n+1). - Reinhard Zumkeller, Feb 26 2011
a(n) = ceiling((n-3)/4), n >= 0. - Wesley Ivan Hurt, Jun 01 2013
a(n) = (2*n + (-1)^n + 2*sin(Pi*n/2) + 2*cos(Pi*n/2) - 3)/8. - Todd Silvestri, Oct 27 2014
E.g.f.: (x/4 - 3/8)*exp(x) + exp(-x)/8 + (sin(x)+cos(x))/4. - Robert Israel, Oct 30 2014
a(n) = a(n-1) + a(n-4) - a(n-5) with initial values a(3)=0, a(4)=1, a(5)=1, a(6)=1, a(7)=1. - David Neil McGrath, Dec 04 2014
a(n) = A004526(A004526(n)). - Bruno Berselli, Jul 01 2016
From Guenther Schrack, May 03 2019: (Start)
a(n) = (2*n - 3 + (-1)^n + 2*(-1)^(n*(n-1)/2))/8.
a(n) = a(n-4) + 1, a(k)=0 for k=0,1,2,3, for n > 3. (End)

A010766 Triangle read by rows: row n gives the numbers floor(n/k), k = 1..n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 5, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Number of times k occurs as divisor of numbers not greater than n. - Reinhard Zumkeller, Mar 19 2004
Viewed as a partition, row n is the smallest partition that contains every partition of n in the usual ordering. - Franklin T. Adams-Watters, Mar 11 2006
Row sums = A006218. - Gary W. Adamson, Oct 30 2007
A014668 = eigensequence of the triangle. A163313 = A010766 * A014668 (diagonalized) as an infinite lower triangular matrix. - Gary W. Adamson, Jul 30 2009
A018805(T(n,k)) = A242114(n,k). - Reinhard Zumkeller, May 04 2014
Viewed as partitions, all rows are self-conjugate. - Matthew Vandermast, Sep 10 2014
Row n is the partition whose Young diagram is the union of Young diagrams of all partitions of n (rewording of Franklin T. Adams-Watters's comment). - Harry Richman, Jan 13 2022

Examples

			Triangle starts:
   1:  1;
   2:  2,  1;
   3:  3,  1, 1;
   4:  4,  2, 1, 1;
   5:  5,  2, 1, 1, 1;
   6:  6,  3, 2, 1, 1, 1;
   7:  7,  3, 2, 1, 1, 1, 1;
   8:  8,  4, 2, 2, 1, 1, 1, 1;
   9:  9,  4, 3, 2, 1, 1, 1, 1, 1;
  10: 10,  5, 3, 2, 2, 1, 1, 1, 1, 1;
  11: 11,  5, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  12: 12,  6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  13: 13,  6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  14: 14,  7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  15: 15,  7, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  16: 16,  8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  17: 17,  8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  18: 18,  9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  19: 19,  9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  20: 20, 10, 6, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.

Crossrefs

Another version of A003988.
Finite differences of rows: A075993.
Cf. related triangles: A002260, A013942, A051731, A163313, A277646, A277647.
Cf. related sequences: A006218, A014668, A115725.
Columns of this triangle:
T(n,1) = n,
T(n,2) = A008619(n-2) for n>1,
T(n,3) = A008620(n-3) for n>2,
T(n,4) = A008621(n-4) for n>3,
T(n,5) = A002266(n) for n>4,
T(n,n) = A000012(n) = 1.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033322(k),
T(3,k) = A278105(k),
T(4,k) = A033324(k),
T(5,k) = A033325(k),
T(6,k) = A033326(k),
T(7,k) = A033327(k),
T(8,k) = A033328(k),
T(9,k) = A033329(k),
T(10,k) = A033330(k),
...
T(99,k) = A033419(k),
T(100,k) = A033420(k),
T(1000,k) = A033421(k),
T(10^4,k) = A033422(k),
T(10^5,k) = A033427(k),
T(10^6,k) = A033426(k),
T(10^7,k) = A033425(k),
T(10^8,k) = A033424(k),
T(10^9,k) = A033423(k).

Programs

  • Haskell
    a010766 = div
    a010766_row n = a010766_tabl !! (n-1)
    a010766_tabl = zipWith (map . div) [1..] a002260_tabl
    -- Reinhard Zumkeller, Apr 29 2015, Aug 13 2013, Apr 13 2012
    
  • Maple
    seq(seq(floor(n/k),k=1..n),n=1..20); # Robert Israel, Sep 01 2014
  • Mathematica
    Flatten[Table[Floor[n/k],{n,20},{k,n}]] (* Harvey P. Dale, Nov 03 2012 *)
  • PARI
    a(n)=t=floor((-1+sqrt(1+8*(n-1)))/2);(t+1)\(n-t*(t+1)/2) \\ Edward Jiang, Sep 10 2014
    
  • PARI
    T(n, k) = sum(i=1, n, (i % k) == 0); \\ Michel Marcus, Apr 08 2017

Formula

G.f.: 1/(1-x)*Sum_{k>=1} x^k/(1-y*x^k). - Vladeta Jovovic, Feb 05 2004
Triangle A010766 = A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Oct 30 2007
Equals A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Nov 14 2007
Let T(n,0) = n+1, then T(n,k) = (sum of the k preceding elements in the previous column) minus (sum of the k preceding elements in same column). - Mats Granvik, Gary W. Adamson, Feb 20 2010
T(n,k) = (n - A048158(n,k)) / k. - Reinhard Zumkeller, Aug 13 2013
T(n,k) = 1 + T(n-k,k) (where T(n-k,k) = 0 if n < 2*k). - Robert Israel, Sep 01 2014
T(n,k) = T(floor(n/k),1) if k>1; T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i). If we modify the formula to T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i)/i^s, where s is a complex variable, then the first column becomes the partial sums of the Riemann zeta function. - Mats Granvik, Apr 27 2016

Extensions

Cross references edited by Jason Kimberley, Nov 23 2016

A008620 Positive integers repeated three times.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26
Offset: 0

Views

Author

Keywords

Comments

Arises from Gleason's theorem on self-dual codes: the Molien series is 1/((1-x^8)*(1-x^24)) for the weight enumerators of doubly-even binary self-dual codes; also 1/((1-x^4)*(1-x^12)) for ternary self-dual codes.
The number of partitions of n into distinct parts where each part is either a power of two or three times a power of two.
Number of partitions of n into parts 1 or 3. - Reinhard Zumkeller, Aug 15 2011
The dimension of the space of modular forms on Gamma_1(3) of weight n>0 with a(q) the generator of weight 1 and c(q)^3 / 27 the generator of weight 3 where a(), c() are cubic AGM theta functions. - Michael Somos, Apr 01 2015
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
a(n-1) is the minimal number of circles that can be drawn through n points in general position in the plane. - Anton Zakharov, Dec 31 2016
Number of partitions of n into distinct parts from A029744.- R. J. Mathar, Mar 01 2023
Number of representations n=sum_i c_i*2^i with c_i in {0,1,3,4} [Anders]. See A120562 or A309025 for other c_i sets. - R. J. Mathar, Mar 01 2023

References

  • G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. page 12 Exer. 7
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, 1977, Chapter 19, Eq. (14), p. 601 and Theorem 3c, p. 602; also Problem 5 p. 620.

Crossrefs

Programs

  • Haskell
    a008620 = (+ 1) . (`div` 3)
    a008620_list = concatMap (replicate 3) [1..]
    -- Reinhard Zumkeller, Feb 19 2013, Apr 16 2012, Sep 25 2011
    
  • Magma
    [Floor(n/3)+1: n in [0..80]]; // Vincenzo Librandi, Aug 16 2011
    
  • Magma
    a := func< n | Dimension( ModularForms( Gamma1(3), n))>; /* Michael Somos, Apr 01 2015 */
  • Maple
    A008620:=n->floor(n/3)+1; seq(A008620(n), n=0..100); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    Table[Floor[n/3] + 1, {n, 0, 90}] (* Stefan Steinerberger, Apr 02 2006 *)
    Table[{n, n, n}, {n, 30}] // Flatten (* Harvey P. Dale, Jan 15 2017 *)
    Ceiling[Range[20]/3] (* Eric W. Weisstein, Aug 12 2023 *)
    Table[Ceiling[n/3], {n, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
    Table[(1 + n - Cos[2 n Pi/3] + Sin[2 n Pi/3]/Sqrt[3])/3, {n, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
    Table[(n - ChebyshevU[n, -1/2] + 1)/3, {n, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 1, 1, 2}, 20] (* Eric W. Weisstein, Aug 12 2023 *)
    CoefficientList[Series[1/((-1 + x)^2 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 12 2023 *)
  • PARI
    a(n)=n\3+1
    
  • Sage
    def a(n) : return( dimension_modular_forms( Gamma1(3), n) ); # Michael Somos, Apr 01 2015
    

Formula

a(n) = floor(n/3) + 1.
a(n) = A010766(n+3, 3).
G.f.: 1/((1-x)*(1-x^3)) = 1/((1-x)^2*(1+x+x^2)).
a(n) = A001840(n+1) - A001840(n). - Reinhard Zumkeller, Aug 01 2002
From Paul Barry, May 19 2004: (Start)
Convolution of A049347 and A000027.
a(n) = Sum_{k=0..n} (k+1)*2*sqrt(3)*cos(2*Pi*(n-k)/3 + Pi/6)/3. (End)
The g.f. is 1/(1-V_trefoil(x)), where V_trefoil is the Jones polynomial of the trefoil knot. - Paul Barry, Oct 08 2004
a(2n) = A004396(n+1). - Philippe Deléham, Dec 14 2006
a(n) = ceiling(n/3), n>=1. - Mohammad K. Azarian, May 22 2007
E.g.f.: exp(x)*(2 + x)/3 + exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 17 2022

A145393 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated or reflected to give the other, with that rotation or reflection preserving the parent square lattice.

Original entry on oeis.org

1, 2, 2, 4, 3, 5, 3, 7, 5, 7, 4, 11, 5, 8, 8, 12, 6, 13, 6, 15, 10, 11, 7, 21, 10, 13, 12, 18, 9, 22, 9, 21, 14, 16, 14, 29, 11, 17, 16, 29, 12, 28, 12, 25, 23, 20, 13, 39, 16, 27, 20, 29, 15, 34, 20, 36, 22, 25, 16, 50, 17, 26, 29, 38, 24, 40, 18, 36, 26, 40
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

From Andrey Zabolotskiy, Mar 12 2018: (Start)
If reflections are not allowed, we get A145392. If any rotations and reflections are allowed, we get A054346.
The parent lattice of the sublattices under consideration has Patterson symmetry group p4mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145394 (p6), A003051 (p6mm).
Rutherford says at p. 161 that a(n) != A054346(n) only when A002654(n) > 2, but actually these two sequence differ at other terms, too, for example, at n = 30 (see illustration). (End)

Crossrefs

Programs

  • Mathematica
    terms = 70;
    CoefficientList[Sum[(1/((1-x^m)(1-x^(4m)))-1), {m, 1, terms}] + O[x]^(terms + 1), x] // Rest (* Jean-François Alcover, Aug 05 2018 *)

Formula

a(n) = (A000203(n) + A002654(n) + A069735(n) + A145390(n))/4. [Rutherford] - N. J. A. Sloane, Mar 13 2009
G.f.: Sum_{ m>=1 } (1/((1-x^m)(1-x^(4m))) - 1). [Hanany, Orlando & Reffert, eq. (6.8)] - Andrey Zabolotskiy, Jul 05 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2) + A157228(n/m^2) + A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2) = A053866(n) + A025441(n) + Sum_{ m: m^2|n } A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2). [Rutherford] - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008621(d) = Sum_{ d|n } (1 + floor(d/4)). [From the above-given g.f.] - Andrey Zabolotskiy, Jul 17 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018

A001972 Expansion of 1/((1-x)^2*(1-x^4)) = 1/( (1+x)*(1+x^2)*(1-x)^3 ).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180, 190, 200, 210, 220, 231, 242, 253, 264, 276, 288, 300, 312, 325, 338, 351, 364, 378, 392, 406, 420, 435, 450, 465
Offset: 0

Views

Author

Keywords

Comments

First differences are A008621. - Amarnath Murthy, Apr 26 2004
a(n) = least k > a(n-1) such that k + a(n-1) + a(n-2) + a(n-3) is triangular. - Amarnath Murthy, Apr 26 2004
From Jon Perry, Nov 16 2010: (Start)
Column sums of the following array:
1 2 3 4 5 6 7 8 9...
1 2 3 4 5...
1...
--------------------
1 2 3 4 6 8 10 12 15 (End)
A001972(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2=4x+y. - Clark Kimberling, Jun 04 2012
Number of partitions of n into parts 1 (of two sorts) and 4 (of one sort). - Joerg Arndt, Aug 08 2013
In the polynomial sequence s(n) = (x*s(n-1)*s(n-4) + y*s(n-2)*s(n-3))/s(n-5), with s(k) = 1 for k = 0..4, the leading term of s(n+5) is x^a(n). See A333260. - Michael Somos, Mar 13 2020

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A000217 and A007590. - Amarnath Murthy, Apr 26 2004

Programs

  • Magma
    [Floor((n+3)^2/8): n in [0..60]]; // Vincenzo Librandi, Aug 15 2011
  • Maple
    A001972:=-(2-z+z**3-2*z**4+z**5)/(z+1)/(z**2+1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 1
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^4)),{x,0,80}],x]  (* Harvey P. Dale, Mar 27 2011 *)
  • PARI
    a(n)=(n+3)^2\8;
    

Formula

From Michael Somos, Apr 21 2000: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) + 1.
a(n) = floor((n+3)^2/8). (End)
a(n) = Sum_{k=0..n} floor((k+4)/4) = n + 1 + Sum_{k=0..n} floor(k/4). - Paul Barry, Aug 19 2003
a(n) = a(n-4) + n + 1. - Paul Barry, Jul 14 2004
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+4} floor(j/4);
a(n-4) = (1/2)*floor(n/4)*(2*n - 2 - 4*floor(n/4)). (End)
A002620(n+1) = a(2*n-1)/2.
A000217(n+1) = a(2*n).
a(n)+a(n+1)+a(n+2)+a(n+3) = (n+4)*(n+5)/2. - Amarnath Murthy, Apr 26 2004
a(n) = n^2/8 + 3*n/4 + 15/16 + (-1)^n/16 + A056594(n+3)/4. - Amarnath Murthy, Apr 26 2004
a(n) = A130519(n+4). - Franklin T. Adams-Watters, Jul 10 2009
a(n) = floor((n+1)/(1-e^(-8/(n+1)))). - Richard R. Forberg, Aug 07 2013
a(n) = a(-6-n) for all n in Z. - Michael Somos, Mar 13 2020
E.g.f.: ((8 + 7*x + x^2)*cosh(x) + 2*sin(x) + (7 + 7*x + x^2)*sinh(x))/8. - Stefano Spezia, May 09 2023

Extensions

Partially edited by R. J. Mathar, Jul 11 2009

A008718 Expansion of g.f.: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 9, 10, 11, 12, 15, 16, 19, 20, 23, 26, 29, 30, 36, 39, 42, 45, 51, 54, 60, 63, 69, 75, 81, 84, 94, 100, 106, 112, 122, 128, 138, 144, 154, 164, 174, 180, 195, 205, 215, 225, 240, 250, 265, 275, 290, 305, 320, 330, 351, 366
Offset: 0

Views

Author

Keywords

Comments

Molien series for genus-2 weight enumerators of binary self-dual codes is (1+x^18)/((1-x^2)*(1-x^8)*(1-x^12)*(1-x^24)). Exponents have been divided by 2 to get the sequence.
Or, Molien series for 4-dimensional representation of 2.{3,4,3}. This is the real 4-dimensional Clifford group of genus 2 and order 2304.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)); seq(coeff(series(%, x, n+1), x, n), n = 0..65); # modified by G. C. Greubel, Sep 09 2019
  • Mathematica
    CoefficientList[Series[(1+x^9)/((1-x)(1-x^4)(1-x^6)(1-x^12)), {x,0,65}], x] (* Harvey P. Dale, Apr 01 2011 *)
    LinearRecurrence[{1,0,1,0,-1,0,-1,1,0,0,0,1,-1,0,-1,0,1,0,1,-1}, {1,1,1, 1,2,2,3,3,4,5,6,6,9,10,11,12,15,16,19,20}, 65] (* Ray Chandler, Jul 16 2015 *)
  • PARI
    my(x='x+O('x^65)); Vec((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008718_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))).list()
    A008718_list(65) # G. C. Greubel, Sep 09 2019

Formula

a(n) ~ (1/864)*n^3. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^3+x^6 ) / ( (1-x+x^2) *(x^4-x^2+1) *(1+x)^2 *(x^2+1)^2 *(1+x+x^2)^2 *(x-1)^4 ). - R. J. Mathar, Dec 18 2014

A024186 Expansion of Molien series for 8-dimensional real Clifford group 2^{1+6}.Alt_8.2 of genus 3 and order 5160960.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 18, 22, 29, 35, 48, 57, 74, 91, 116, 140, 177, 211, 265, 319, 389, 462, 566, 667, 804, 949, 1131, 1324, 1573, 1827, 2153, 2502, 2917, 3364, 3916, 4491, 5187, 5937, 6813, 7760, 8879, 10058, 11448, 12950, 14658, 16500, 18632, 20894
Offset: 0

Views

Author

N. J. A. Sloane, G. Nebe (nebe(AT)math.rwth-aachen.de)

Keywords

Crossrefs

Programs

  • Magma
    // Commands to generate the group.
    F := QuadraticField(2); M := GeneralLinearGroup(8, F); t := 1/(2*s);
    B := M! [ -t, -t, -t, -t, -t, -t, -t, -t,
    -t, t, -t, -t, t, -t, t, t,
    -t, -t, -t, t, -t, t, t, t,
    -t, -t, t, -t, t, t, t, -t,
    -t, t, -t, t, t, t, -t, -t,
    -t, -t, t, t, t, -t, -t, t,
    -t, t, t, t, -t, -t, t, -t,
    -t, t, t, -t, -t, t, -t, t ];
    S := M! [ -1, 0, 0, 0, 0, 0, 0, 0,
    0, -1, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0,
    0, 0, 0, 0, 0, 0, 0, 1 ];
    C := M! [ 1, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0,
    0, 0, 0, 0, 0, 0, 0, 1,
    0, 1, 0, 0, 0, 0, 0, 0 ];
    G := sub< M | B, S, C >; Order(G);
  • Mathematica
    ker = {1, 0, 1, -1, 0, 0, 1, 0, -1, -1, 0, 3, -2, 0, -2, 2, 0, 0, -2, 1, 1, 1, -1, -1, 2, 0, -1, -1, 1, 2, 0, -3, 0, 2, 2, -3, -2, 0, 4, 0, -2, -3, 2, 2, 0, -3, 0, 2, 1, -1, -1, 0, 2, -1, -1, 1, 1, 1, -2, 0, 0, 2, -2, 0, -2, 3, 0, -1, -1, 0, 1, 0, 0, -1, 1, 0, 1, -1};
    init = {1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 18, 22, 29, 35, 48, 57, 74, 91, 116, 140, 177, 211, 265, 319, 389, 462, 566, 667, 804, 949, 1131, 1324, 1573, 1827, 2153, 2502, 2917, 3364, 3916, 4491, 5187, 5937, 6813, 7760, 8879, 10058, 11448, 12950, 14658, 16500, 18632, 20894, 23487, 26279, 29417, 32801, 36630, 40695, 45285, 50223, 55690, 61559, 68119, 75092, 82841, 91141, 100256, 110026, 120800, 132226, 144804, 158251, 172881, 188489, 205560, 223657};
    LinearRecurrence[ker, init, 1000] (* Jean-François Alcover, Jan 05 2020 *)

Formula

Molien series = (t^148 - t^142 + t^140 + t^136 - t^134 + t^132 + 3*t^128 + 2*t^124 + 4*t^120 + 5*t^116 + 7*t^112 + t^110 + 7*t^108 + t^106 + 10*t^104 + 2*t^102 + 11*t^100 + 3*t^98 + 12*t^96 + 4*t^94 + 14*t^92 + 5*t^90 + 16*t^88 + 5*t^86 + 15*t^84 + 4*t^82 + 20*t^80 + 7*t^78 + 18*t^76 + 4*t^74 + 18*t^72 + 7*t^70 + 20*t^68 + 4*t^66 + 15*t^64 + 5*t^62 + 16*t^60 + 5*t^58 + 14*t^56 + 4*t^54 + 12*t^52 + 3*t^50 + 11*t^48 + 2*t^46 + 10*t^44 + t^42 + 7*t^40 + t^38 + 7*t^36 + 5*t^32 + 4*t^28 + 2*t^24 + 3*t^20 + t^16 - t^14 + t^12 + t^8 - t^6 + 1) /
(t^156 - t^154 - t^150 + t^148 - t^142 + t^138 + t^136 - 3*t^132 + 2*t^130 + 2*t^126 - 2*t^124 + 2*t^118 - t^116 - t^114 - t^112 + t^110 + t^108 - 2*t^106 + t^102 + t^100 - t^98 - 2*t^96 + 3*t^92 - 2*t^88 - 2*t^86 + 3*t^84 + 2*t^82 - 4*t^78 + 2*t^74 + 3*t^72 - 2*t^70 - 2*t^68 + 3*t^64 - 2*t^60 - t^58 + t^56 + t^54 - 2*t^50 + t^48 + t^46 - t^44 - t^42 - t^40 + 2*t^38 - 2*t^32 + 2*t^30 + 2*t^26 - 3*t^24 + t^20 + t^18 - t^14 + t^8 - t^6 - t^2 + 1).

Extensions

Rechecked Mar 30 2004. There were errors in the formula line, although not in the sequence itself.

A003485 Hurwitz-Radon function at powers of 2.

Original entry on oeis.org

1, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 25, 26, 28, 32, 33, 34, 36, 40, 41, 42, 44, 48, 49, 50, 52, 56, 57, 58, 60, 64, 65, 66, 68, 72, 73, 74, 76, 80, 81, 82, 84, 88, 89, 90, 92, 96, 97, 98, 100, 104, 105, 106, 108, 112, 113, 114, 116, 120, 121, 122, 124
Offset: 0

Keywords

Comments

Positive integers that are congruent to {0, 1, 2, 4} mod 8. - Michael Somos, Dec 12 2023

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 9*x^4 + 10*x^5 + 12*x^6+ 16*x^7 + ... - _Michael Somos_, Dec 12 2023
		

References

  • T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A047466.
Cf. A008621. - Johannes W. Meijer, Jun 07 2011
Cf. A209675.

Programs

  • Haskell
    a003485 n = a003485_list !! n
    a003485_list = 1 : 2 : 4 : 8 : 9 : zipWith (+)
       (drop 4 a003485_list) (zipWith (-) (tail a003485_list) a003485_list)
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    A003485:= proc(n): ceil((n+1)/4) + ceil((n)/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: seq(A003485(n), n=0..62); # Johannes W. Meijer, Jun 07 2011
  • Mathematica
    CoefficientList[Series[(1+x+2x^2+4x^3)/((1-x)(1-x^4)),{x,0,70}],x] (* or *) LinearRecurrence[{1,0,0,1,-1},{1,2,4,8,9},71] (* Harvey P. Dale, Jun 13 2011 *)
    a[ n_] := 2*n + Max[0, 2-Mod[n-3, 4]]; (* Michael Somos, Dec 12 2023 *)
  • PARI
    {a(n) = 2*n + max(0, 2 - (n-3)%4)}; /* Michael Somos, Dec 12 2023 */

Formula

G.f.: (1 + x + 2*x^2 + 4*x^3) / ((1-x)*(1-x^4)). - Simon Plouffe in his 1992 dissertation
a(n) = ceiling((n+1)/4) + ceiling((n)/4) + 2*ceiling((n-1)/4) + 4*ceiling((n-2)/4). - Johannes W. Meijer, Jun 07 2011
a(n) = a(n-1) + a(n-4) - a(n-5); a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=9. - Harvey P. Dale, Jun 13 2011
a(n) = -A047507(-n) = a(n+4) - 8 for all n in Z. - Michael Somos, Dec 12 2023
Showing 1-10 of 24 results. Next